Handout 25 Evolution off the Main Sequence

- The details of this process are quite complex and there is no simple explanation.
 - I quote Hansen and Kawaler (1993, "Stellar Interiors", p. 55)
 - "The enormous increase in radius that accompanies hydrogen exhaustion moves the star into the red giant region of the H-R diagram. While the transition to red giant dimensions is a fundamental result of all evolutionary calculations, a convincing yet intuitively satisfactory explanation of this dramatic transformation has not been formulated."
 - However, the main external feature, that the star back-tracks along its pre-Main Sequence track, can be understood using simplified stellar models using the *Ansatz* that: the **nuclear luminosity increases**.
 - This increase is caused by the depletion of H fuel, leading to
 - a He rich, inert, isothermal core
 - a H-burning shell surrounding the core
 - which we return to later

Equilibrium Stellar Configurations

Refer to the stages of contraction to the zero-age Main
Sequence

Stellar evolution to main sequence

• From Lecture 16:

R/Rsun	<t></t>	timescale	comment
10 5 2 1	¹ 10 ⁶ K 2 10 ⁶ K 5 10 ⁶ K 10 ⁷ K	$\begin{array}{c} t_{\rm K-H} \sim 10^4 \ {\rm y} \\ t_{\rm K-H} \sim 10^5 \ {\rm y} \\ t_{\rm K-H} \sim 10^6 \ {\rm y} \\ t_{\rm nucl} \sim 10^{10} \ {\rm y} \end{array}$	Nuclear reactions start Vigorous Nuclear reactions Nuclear = Luminosity

- Here we identify the 4 marked positions on the H-R diagram's evolutionary track with the 4 radii above
- Recall the definition of Thermal Equilibrium
 - $L_{\rm nuc} = L_{\rm H-R} \ .$
 - i.e. the nuclear energy generation rate integrated over the whole star equals the Luminosity on the H-R diagram

Thought experiment

- Imagine the cross sections for nuclear capture in the p-p chain are all doubled
 - For a given configuration (i.e. T and density), the nuclear energy generation rate will be doubled.
 - The Main Sequence (i.e. thermal equilibrium) will be reached sooner
 - The new Main Sequence point will be position 2 on my H-R diagram
- Double them again
 - Now the Main Sequence will be position 3
- Double them again
 - Thermal equilibrium achieved at position 4
- Thermal Equilibrium depends on the rate of nuclear energy generation in the central regions of the star

Ascent into Red Giant branch

- So, if a new, potent, energy source is created in the center of star
 - It will travel from 1 to 3
- If even more energy is created
 - It will go from 3 to 4
- It has become a Red Giant
 - Temperatures around 3000 K
 - Luminosity greater than 1000 times solar
 - Lifetime
 - $< 10^{11}/1000 = 100$ million years
 - burning the 90% of the total H remaining after the Main Sequence
- The puzzle is: what is this energy source?

Evolutionary tracks on H-R diagram

The blue lines show the evolutionary path to the **Main Sequence**.

The vertical portion happens when the star is **fully Convective**. **Hayashi** figured this out.

The star's take a right turn when they develop a Radiative core – this track is nearly horizontal.

The time from the right turn to the main sequence Is about 10 million years for a 1 solar mass star – the Kelvin-Helmholtz timescale.

Evolved star

- Unfortunately, a simple linear stellar model won't work for this phase of evolution
 - All the action near a small central region
 - High density
 - High temperature
 - Mostly He
 - Incompatible with a simple linear stellar model
 - It's possible (Stein) to add a linear-stellar-model core to a diffuse envelope
 - simplicity lost
 - physics made no clearer
 - permits more realistic tracks
 - i.e. path from 1 to 3 doesn't go via 2 in real stars

For a touch of reality H-R diagram of Globular Cluster

- Globular cluster group of 100,000 to a million stars
 - Size, of order parsec
 - Held together by gravity
 - Satisfies virial theorem
 - Isothermal sphere
 - Heavier stars sink to center
 - lower velocity since $(1/2)mv^2 = (3/2)kT$
 - All formed at same time
 - free- fall and sound-crossing times short compared to age
 - Age about 10 billion years
 - Stars more massive than sun have left main sequence
 - higher masses have evolved further than lower masses
 - positions on H-R diagram gives locus of tracks for 1-2 solar masses
 - » Vu-graph, Fig. 2.10, M3
 - » >2 solar masses have become white dwarfs

H-R diagram of Globular Cluster

- The Globular clusters stars are Population II
 - formed with low metal abundance
 - 1/10 to 1/1000 solar
 - Opacities less
 - Both interior (Kramers) and photosphere (H-)
 - Main sequence different
 - opacity less
 - radiation luminosity greater
 - effective T and L greater for a given R
 - must contract further to achieve Thermal Equilibrium
 - Evolutionary tracks also will be different than Pop I stars like the sun
- Check out Globular Cluster H-R diagram

Formation of He core

- Concentrate on stars near 1 solar mass
 - p-p chain converts 4 H atoms to He + energy
 - Strong temperature dependence (~ T⁴) means reactions primarily in central hot, dense, central regions
 - Lack of convection throughout H-burning regions and beyond means H will be depleted and He enriched
 - p-p reactions stop when all H converted to He
 - Happens first at the very center
 - Moves outward with time
 - Star leaves Main Sequence when about 10% of the star's H has been converted to He
 - i.e. creating a He core with about 10% of star's mass
 - $\, \ast \,$ sun has He core with about 5% of its mass
 - He is inert
 - triple alpha burning to C requires 100 million degrees

Nature of He core

- He core is nearly isothermal
 - No nuclear reactions
 - Only very slow contraction
 - L(r) essentially **zero** for $r < r_{core}$.
 - therefore dT/dr is close to zero, i.e. isothermal
- He core hot and dense
 - Hydrostatic equilibrium
 - pressure at r_{core} must support the 90% of the star mass above it
 - mean molecular weight about twice as big (calculate)
 - product of ρT has to be twice that of the H-burning shell just above
 - P and T continuous across r_{core} boundary
 - » no infinite acceleration or luminosity
 - Actually, e-degeneracy pressure is quite significant in core
 - i.e. pressure without temperature!

Ascent to Red Giant status

- He core kept hot by H-burning shell surrounding it
 - As shown by Stein and others, the nuclear luminosity from the shell will be
 - ~ ρ_{shell}^2
 - i.e. 2-body reaction
 - ~ T_{shell}^{n}
 - where n = 4 for p-p chain but more like 14-18 for CNO bi-cycle
 - Models for the He core show the shell temperature is quite high
 - about **60 million** degrees for a 1 solar mass star
 - Therefore, the **CNO bi-cycle** will dominate
 - energy generation concentrated in thin, hottest region
 - Energy generation quite high
 - High luminosity forces star onto convective track
 - see vg Fig. 17 from Stein
 - compare to accurate, Iben tracks
 - » compare Iben pre (Fig.12.8)- and post (13.1)- Main Sequence tracks

H-shell burning, inert He core

He core and H shell are tiny very high T and density

H envelope is huge 100 Rsun, 1 AU

Large size implies low T $T \sim M/R$

Low T means high opacity Kramers b-f and f-f

High opacity forces large T gradient $|dT/dr| \sim \kappa$

Large T-gradient causes convection

Core contracts

Envelope expands

Hydrogen Shell Burning on the Red Giant Branch

Evolutionary Tracks off the Main Sequence

