
Handout 24 Star Formation

Pictures from text

- HL Tau
 - T Tauri star
 - Emission lines in spectrum
 - Optically thin region above photosphere
 - Either bigger or hotter than star
 - P-Cygni profile
 - Blue-shifted absorption → outflow at 100's km/s
 - Accretion engine also drives bi-polar outflows
 - Occasionally see red-shifted, infall
 - CO disk
 - Remnant from collapse of star
 - □ Velocities → Keplerian rotation
 - □ Mass ~ 1-10% of star
 - From dust emission, assuming 1% mass in dust
 - CO optically thick
 - Minimum solar nebula enough to form a solar system

04^h31^m38^s5 38^s4 Right Ascension (J2000)

Young stellar objects

HH 30 disk

- Seen in silhouette
- Star hidden in center
- \square "Jets" \rightarrow bipolar outflow
- Disks in Orion
 - Illuminated by nebular emission
 - Sometimes see the star in center
 - Wakeup call
 - Intense radiation from nearby O-B stars can eat away disk material – evaporating disks
 - Disks dissipate (disappear) in < 10 My</p>

Older disks (debris)

β Pic, HR 4796

- Only dust remains, little or no gas
 - M < 0.01% of star</p>
- □ Ages < 100 My
- Alice Quillen models structure in disk
 - Affected by orbiting planets
 - Subtle resonance effects
- Debris informs us about planet formation
 - Dust composition different than interstellar
 - Crystalline silicates rather than amorphous
 - Dust lifetime < age of disk</p>
 - Radiation pressure and Poynting-Robertson drag
 - Dust replenished from larger, unseen orbiting bodies
 - Comet nuclei or Kuiper-belt objects

Complications to star formation

Angular momentum

- \Box Even a tiny original spin \rightarrow stops collapse
 - Can only collapse parallel to spin axis
 - Formation of disk
 - Need a mechanism to transfer angular momenum
 - □ Magnetic fields?
 - Mechanism drives bipolar outflows
 - Carries excess angular momentum away
- Magnetic fields
 - Even tiny 0.01% ionization couples to B-field
 - Can't move perpendicular field
 - □ As collapse proceeds, B field increases
 - Magnetic pressure ~ B²

Spectrum of stellar masses – "Initial Mass Function"

- Note: during initial collapse, optically thin
 - I I state away heat
 - ~ isothermal
 - Jeans mass ~ 1/sqroot(p) decreases
 - Rotation, magnetic fields, turbulence lead to fragmentation
 - □ Whole spectrum of stars form
 - Most stars born in clusters
 - Most stars born in binary/multiple systems
 - A "holy grail" of star formation theory is to explain the IMF – Fig. 12.9
 - □ While you're at it, also explain the incidence of binaries
 - And also how many are close, how many far
 - □ And, by the way, explain the orbital eccentricities

Late stages of star formation

Eventually cloud becomes opaque

- $\Box \rightarrow T$ increases and slows collapse
 - T ~ 1500 K, dust vaporized
 - T ~ 4000 K, molecules dissociated
 - T ~ 10,000 K, H ionized
- Finally

Optically thick, hydrostatic equilibrium, ionized interior

■ E.g. at R = 30 Rsun

 \Box <T> ~ (1/30) 10⁷ K ~ 3 10⁵ K

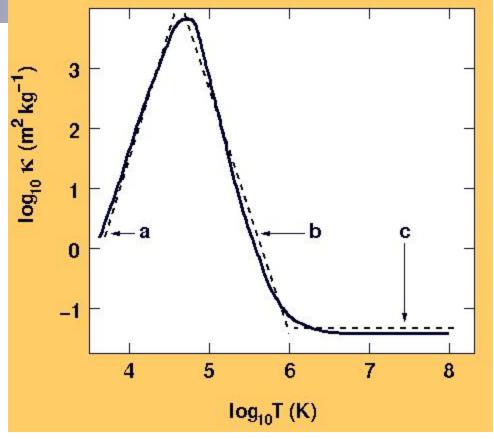
Stellar evolution to the main sequence proceeds

Evolution to Main Sequence

- Initially, opacity high
 - \Box Kramers' $\kappa \sim \rho T^{-3.5}$ is large
 - Radiative |dT/dr| exceeds adiabatic
 - Convectively unstable
 - Hot air rises!
 - □ Interior fully convective
 - Luminosity determined by *surface*, where it becomes radiative

 $\Box \text{ Use Te} = T(\tau = 2/3)$

- Photosphere H- opacity $P(\tau = 2/3) \sim T_e^{-5.3/(1+0.7)}$
- Interior $P(\tau = 2/3) = P_c (Te/Tc)^{2.5}$
 - □ Use virial theorem for Tc, Pc, solve for Te


 $\Box T_e \sim R^{0.06}$

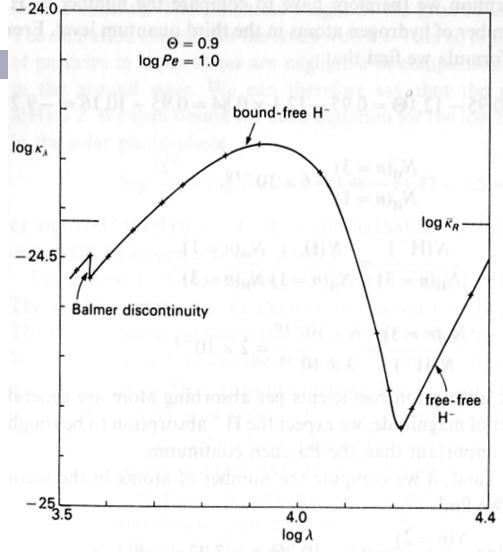
□ Nearly vertical, Hayashi tracks on H-R diagram

T-dependence of opacity

http://www.shef.ac.uk/physics/people/vdhillon/teaching/phy213/phy213 _opacity_form.html

- Region $a \rightarrow peak$
 - □ H- opacity
 - ∎ f-f + f-b
 - ~ T⁺⁴
 - atmospheric opacity
 - → Hayashi track
- Region b
 - "metal" opacity
 - ∎ f-f + f-b
 - ~ T^{-3.5}
 - interior opacity
 - → rad've

H- b-f and f-f opacity


H- (bound-free) in the visual and H-(free-free) in the IR are the principal sources of opacity in the Sun's atmosphere. For the sun, the H Balmer continuum shortward of the 3647A Balmer jump (b-f from the n=2 level) is an additional contributor.

H- is even more dominant in cooler K and M star atmospheres.

opacity minimum occurs at 1.6 microns

Leads to flux maximum in the H-band

H-K color never gets very red But J-H color gets very red

Evolution on H-R diagram

- Contraction along vertical, Hayashi tracks continues till opacity low enough for significant radiative region in the core develops
 - $\Box~\rho$ ~ M/R³, T ~ M/R, Kramers κ ~ R $^{0.5}$
- Now, L determined by opacity and T-gradient
 - \Box T-gradient |dT/dr| ~ M/R² from virial theorem
 - □ Kramers radiative track slightly upward to left on H-R diagram
- Time scale for evolution Kelvin-Helmholtz
 - $\Box = (1/2)|PE|/L \sim (M^2/R)/L$
 - Increasing as L and R decrease
- If hot enough, e-scattering opacity throughout interior
 - Horizontal tracks, to the left
- Eventually, ρ and T big enough for many nuclear reactions
 - $\epsilon \sim \rho T^4$ near 15 M degrees
 - □ Lnuc = Lrad, "Thermal equilibrium"
- Star stops moving on H-R diagram -- it has reached the Main Sequence