Handout 22: The Interstellar Medium (ISM)

Calculation of 21 cm intensity

- The density of hydrogen n is small (1/cm^3)
- The number in the upper state is even smaller
 - Typical collision rate $< n\sigma v > ~ 1/300 y$
 - □ Lifetime excited state 3 My >> 300 y
 - Upper and lower states in Thermodynamic Equil.
 - □ Energy gap hv << kT

$$\square$$
 n_{upper}/n_{lower} = g_{upper}/g_{lower} = 3/1

- □ ¾ of H atoms in upper state
- □ The 21 cm line never seen in the lab
 - L limited to meters
- □ In space L can be very large, 100's of pc

Neutral, HI clouds in galaxy

Dust is optically thin at 21 cm Extinction ~ 1/λ or 1/λ²

Can see whole galaxy

□ See HI clouds

- n ~ 100/cm^3
 - □ From optically thin intensity
 - \Box Assume cloud width = L

■ T ~ 50 K

From emission and absorption by the same cloud

Emission/Absorption from HI clouds sgive:optical depth τ and T of cloud.

Look at bright extragalactic source behind cloud

Intensity = $I_0 \exp(-\tau)$, solve for τ

Look at emission from the cloud

Intensity = $[1 - \exp(-\tau)]BI(T)$, solve for T

Cloud near 0 km/s: optical depth about 0.14, brightness T 16 K → T about 112 K

Cloud near -35 km/s: optical depth < 0.05, brightness T ~ 5 K, → T > 200 K

Molecular clouds

In clouds with visual extinction > 1 mag

- \Box H disappears, H₂ forms (and other molecules)
- Dust important
 - Shield hv > 4 eV dissociating photons
 - Greatly enhance H₂ formation rate
 - □ 2 H atoms come together
 - \square H₂ molecule forms
 - □ No place to put the extra 4 eV of energy
 - They fly apart again
 - □ 3rd body needed
 - Conserve energy and momentum
 - Energy used to eject H₂ molecule from dust grain

CO tracer of molecular clouds

Unfortunately, H₂ very hard to detect

- Zero dipole moment weak (forbidden) rad'n
- 🗆 Minimum hν rot'l energy 🗲 28 μm
 - Energy ~ $1/28 \text{ eV} \rightarrow \text{T} > 300 \text{ K}$ to excite
 - Versus 15 K typical molecular cloud T
- Prodigious dust emission totally swamps feeble H₂ radiation
- Use abundant CO molecule to trace
 - $\Box \sim 10^{-4}$ of H₂, but
 - Has electric dipole moment (non-symmetric)
 - Radiation at 2.6 mm → T > 3 K can excite
 - Dust emission weak at 2.6 mm

Molecular clouds – Where stars form

Example: Orion Molecular cloud
 Density ~ 1,000 cm^-3

□ T ~ 20 K

□ Size ~ 10 pc

M ~ 10^5 – 10^6 solar, a Giant Molecular Cloud

- Within cloud, see "dense cores"
 - □ Size ~ 0.01 pc, density 10^7 cm^-3

Calculate extinction and M

□ ~ 100 mag, ~ 10 solar masses

We believe stars form in these "dense cores"

Cloud collapse – Jeans criterion

- Recall: lack of collapse → H'static equil.
 dP/dr = -gρ everywhere
- If P not high enough collapse @ free-fall timescale
 - \Box t = (1/2)Period ~ 1/sqroot(G ρ)

□ K.E. = -(1/2)P.E.

- If K.E. is below this, the P = nkT is insufficient
- Collapse occurs (the Jeans' criterion)

Jeans collapse

Star Formation

Cloud core masses (i.e. radii) often exceed the Jeans limit

Collapse is happening

□ Free-fall timescale ~ 10,000 y

Very quick, c.f. Kelvin-Helmholtz 10 My

- Extinction very large
 - At visible, > 400 mag
 - Regions hidden from view
 - Must study at IR and radio wavelengths