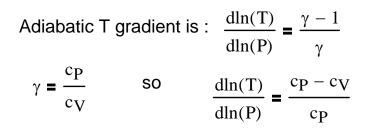
Handout 19: Evolution of stars on the Hertzsprung-Russell Diagram

From H.W. #7:



If the T-gradient required by rad'n xfer in order to transport the L outward is steeper than this

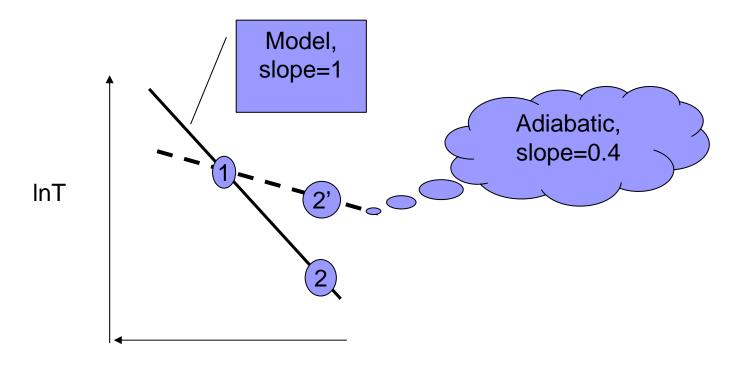
 \Box (dlnT/dlnP)_{rad} > (dlnT/dlnP)_{adiabatic}

- Convectively unstable
 - Energy carried by convection rather than rad'n
 - Only slightly superadiabatic gradient is needed
 - (dlnT/dlnP)_{actual} ~ (dlnT/dlnP)_{adiabatic}

Uniform density stellar model is convectively unstable

- P = nkT
 - \Box number density n = constant
 - \Box dT/dP = 1/nk
 - $\Box (dInT/dInP) = (P/T)(dT/dP) = 1$
 - \Box 1 > 0.4, model is convectively unstable everywhere!
 - Balloon moved from 1 to 2' (figure) adiabatically
 - i.e. no heat added
 - Hotter than surroundings (i.e. 2)
 - Less dense → will rise further (convection)
 - Carries heat energy to higher levels!

Figure: Unstable T-gradient



InP

Uniform stellar model

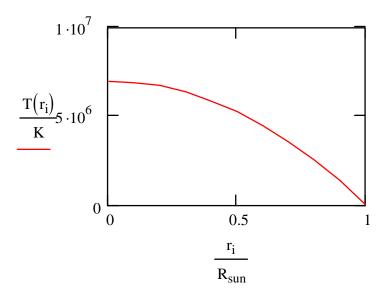
$$\rho := \frac{M_{sun}}{\frac{4}{3} \cdot \pi \cdot R_{sun}^3} \quad \text{constant} \qquad g(r) := \frac{G \cdot \rho \cdot \frac{4}{3} \cdot \pi \cdot r^3}{\frac{2}{r^2}}$$

$$\frac{\mathrm{dP}}{\mathrm{dr}} = -g \cdot \rho = \frac{-4}{3} \cdot \pi \cdot G \cdot \rho^2 \cdot r \qquad P(R_{\mathrm{sun}}) = 0$$

$$P(r) = \int_{r}^{R_{sun}} \frac{-4}{3} \cdot \pi \cdot G \cdot \rho^{2} \cdot r \, dr \qquad P(r) := \frac{2}{3} \cdot \pi \cdot G \cdot \rho^{2} \cdot \left(R_{sun}^{2} - r^{2}\right)$$

$$\mu := \frac{10+4}{20+3}$$
 $\mu = 0.609$ $n := \frac{\rho}{\mu \cdot m_{\rm H}}$

$$T(\mathbf{r}) := \frac{1}{\mathbf{n} \cdot \mathbf{k}} \cdot \mathbf{P}(\mathbf{r}) \qquad \qquad \mathbf{i} := \mathbf{0} \dots \mathbf{10} \qquad \mathbf{r}_{\mathbf{i}} := \frac{\mathbf{i}}{\mathbf{10}} \cdot \mathbf{R}_{\mathbf{sun}}$$



Convection continued

The **maximum** adiabatic gradient is 0.4

- Any additional heat capacity will reduce this
 - Reducing the gradient toward zero
 - Forcing convection
 - Zero gradient means no radiative flux
- Sources of heat capacity
 - □ H ionization 6-10,000 K
 - He ionization 20-50,000 K
 - 13.6 eV needed to ionize
 - Plus (3/2)kT = 1.5 eV for the K.E. of the electron

Adiabatic gradient reduced to 0.1

Convective zones in Main Sequence stars

- H, He ionization create convective zone just below the photosphere for sun
 - □ The convection generates magnetic fields
 - Leading to sunspots, flares, active chromosphere, and x-rays
 - Extends down to 0.8 of solar radius
- Hotter stars, convection zone shrinks
 - Above 8000 K (F-stars) fully radiative
- cooler stars, the convection zone deepens
 Stars below 0.3 solar masses fully convective
- Above 0.3 solar masses, Luminosity determined by radiation

Convection crucial in early stellar evolution

Figure 9.10 shows interior $\kappa \sim T^{-3.5}$

- \Box But <T> ~ M/R
 - Virial theorem

Increasingly large |dT/dr| for larger stars
 Convection sets in

Stars < 5 solar mass start fully convective
 Sun at 30 solar radii was "fully convective"
 Major blockage to luminosity is photosphere
 L = 4πR²σT(τ=2/3)⁴

Fully convective stars nearly constant effective T, H- opacity

- The dominant opacity at low T's is HFree-free and free-bound
- Very strong T-dependence (Fig. 9.10)
 - □ H- needs electrons
 - Electrons come from ionized metals
 - Saha dictates

$$\kappa = \kappa_0 \cdot P^{0.7} \cdot T^{5.3} = \kappa_0 \cdot P^a \cdot T^b$$

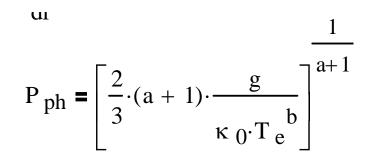
Luminosity determined by transition between convection and radiative photosphere

 \Box i.e. T_e = T at τ = 2/3 level

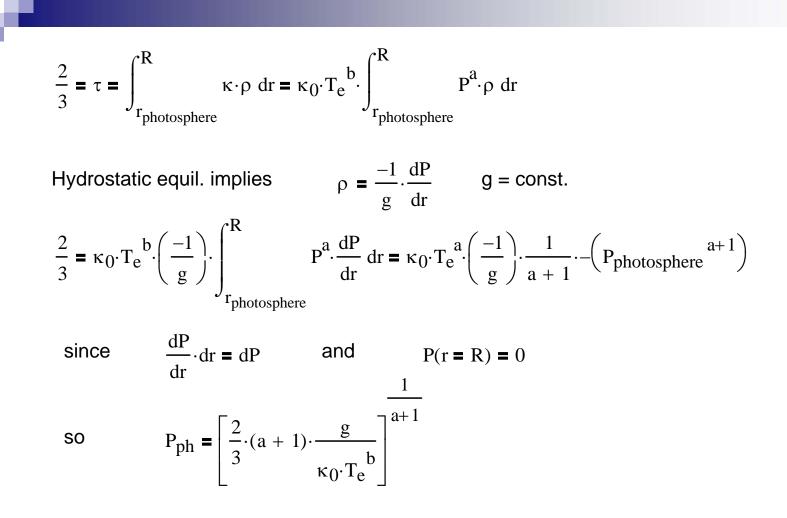
Solve for P at $\tau = 2/3$

• As in homework, solve for $P(\tau=2/3)$

- \square κ not constant, need to do integral
- \Box Weak dependence of T on τ ,
 - T can be taken out of integral
 - Solve for P (see next slide):



Photospheric P (*i.e.* $\tau = 2/3$)



Integrate adiabatic gradient from center of star to photosphere

 $\frac{\gamma}{\gamma - 1} \cdot \int_{T_e}^{T_c} 1 \, d\ln(T) = \int_{P_{\text{photosphere}}}^{r_c} 1 \, d\ln(P)$ $\frac{\gamma}{\gamma-1} \cdot \left(\ln(T_c) - \ln(T_e) \right) = \left(\ln(P_c) - \ln(P_{ph}) \right)$ exponentiate, and solve for P at the tau = 2/3 level $P_{ph} = K' \cdot T_e^{\frac{\gamma}{\gamma - 1}} \qquad \text{where} \qquad K' = \frac{P_c}{\frac{\gamma}{T_c^{\gamma - 1}}} \frac{1}{\frac{1}{b + \frac{\gamma}{\gamma - 1} \cdot (1 + a)}}$ solve for eff. T $T_e = \left[\frac{2}{3} \cdot (1 + a) \cdot \frac{G M}{\kappa_0 \cdot R^2} \cdot K'^{-(1 + a)}\right]^{\frac{1}{\beta + \frac{\gamma}{\gamma - 1} \cdot (1 + a)}}$ solve for eff. T

Vertical, Hayashi tracks on the H-R diagram

Insert appropriate values $\Box \text{ Note: } T_c \sim M/R, P_c \sim (M/R^3)T_c$ $\Box T_e \sim R^{0.06}$ $= L \sim R^2 T_e^4 \sim T_e^{36},$ $= T_e \sim L^{0.03}$ = Tracks nearly vertical on H-R diagram (draw) = Hayashi figured this out in 1961

$$\frac{\gamma}{\gamma - 1} = 2.5 \qquad \text{K'} = \text{const} \cdot \text{M}^{-0.5} \cdot \text{R}^{-1.5}$$
$$\frac{1}{9.55} = \text{const} \cdot \text{R}^{0.06}$$