Handout 16: Nature of a Star

R/Rsun	<t></t>	t	
10	10 ⁶ K	t _{K-H} ~ 10 ⁴ y	
5	2 10 ⁶ K	t _{K-H} ∼ 10 ⁵ y	Nucl. Reactions start
2	5 10 ⁶ K	t _{к-н} ~ 10 ⁶ у	Nucl. Reactions dominate
1	10 ⁷ K	t _{nucl} ~ 10 ¹⁰ y	Main Sequence

The contraction stops when d(Enucl)/dt in the interior exactly equals the Luminosity radiated into outer space. The \$64 dollar question, then, is what determines the Luminosity? From the perspective of the stellar atmosphere, it is given by the T at the $\tau = 1$ level in the atmosphere. The question is, what determines this?

Luminosity governed by Thermodynamics

- Consider the T structure of a star • $<T> = 10^7 \text{ K}$
 - $= \langle 1 \rangle = 10^{7} \text{ K}$
 - $T_{surface} = 10^4$ K, i.e. nearly zero
 - □ How does T depend on r?
- 2nd law of Thermo: energy always flows from hotter region to cooler
 - □ Since L(r) is always outwards
 - → T increases inwards
 - $T_{center} > \langle T \rangle$, i.e. 1.5 10⁷ K for the sun

Think in terms of a voltage potential, and the flow of electrical current

Flow of energy ~ electrical current

- Break up interior into 3 regions
 Electrical resistances R1, R2, R3
 Voltage drop from V_{center} to zero
 Current flow governed by biggest resistor
 i.e. if R1 = 1 Ω = R3
 - But R2 = 100 Ω
 - \blacksquare I ~ V_{center} /R2
- Therefore we seek the biggest roadblock to E-flow in the interior regions

Electrical current analogy, parallel and series resistors

Also note

If in one interior zone there are 2 competing modes of Energy transport

Like 2 parallel resistors R1 and R2

• Net resistance 1/R = 1/R1 + 1/R2

■ If R1 << R2, R ~ R1

□ i.e. the **least-resistive** mode dominates

Key to Luminosity is energy transport

There are 3 ways to transport energy

- Radiation
 - Net flow of photons from hotter region to cooler
- - Gas flows from hotter to cooler, carrying heat energy

- Neighboring atoms bump into each other, transferring some of their energy like a bucketbrigade
- Only important in dense stars (i.e. White Dwarf)

Energy transport via radiation

We've already done this for the atmosphere

- □ Intensity given by integral of source function
 - "see" to optical depth 1
- □ Flux given by integral of Intensity over angle
 - Average of vertical optical depths is 2/3
- □ The interior is optically thick in both directions

Exact, radiative luminosity

$$\begin{split} F_{down} &= \pi \cdot B \left(\tau_{v} - \frac{2}{3} \right) & F_{up} = \pi \cdot B \left(\tau_{v} + \frac{2}{3} \right) \\ F &= F_{up} - F_{down} = \pi \cdot \frac{dB}{d\tau} \cdot \frac{4}{3} & \text{net flux upward} = \text{outward} \\ B &= \frac{\sigma}{\pi} \cdot T^{4} \\ \frac{dB}{d\tau} &= \frac{-1}{\kappa \cdot \rho} \cdot \frac{dB}{dr} = \frac{-1}{\kappa \cdot \rho} \cdot \frac{\sigma}{\pi} \cdot 4 \cdot T^{3} \cdot \frac{dT}{dr} \\ F &= \frac{-16}{3} \cdot \frac{\sigma}{\kappa \cdot \rho} \cdot T^{3} \cdot \frac{dT}{dr} & \text{radiative flux} \\ L_{r} &= 4 \cdot \pi \cdot r^{2} \cdot F = \frac{-64 \cdot \pi}{3} \cdot \frac{\sigma}{\kappa \cdot \rho} \cdot r^{2} \cdot T^{3} \cdot \frac{dT}{dr} & \text{radiative luminosity} \end{split}$$

Notes on radiative luminosity

Note

L ~ |dT/dr|, the temperature gradient And

- \Box L ~ 1/ κ , opacitive blockage of energy flow
 - κ is analogous to electrical resistivity
- Also, if energy x-port is radiative

The L_r equation can be inverted to give the T gradiant dT/dr

- i.e. a Luminosity implies a temperature gradiant
- Larger $\kappa \rightarrow$ larger temperature gradiant |dT/dr|

Luminosity governed by radiation transport, not nuclear reactions

- Very important,
 - The typical temperature gradient is governed by the Virial Theorem
 - i.e. <T> ~ M/R, about 10⁷ K for sun
 - $dT/dr \sim -\langle T \rangle /R \sim M/R^2$
 - \Box The opacity κ comes from atomic physics
 - See Fig. 9.10
 - Sum of free-free, free-bound, bound-bound, and escattering for all species
 - □ Averaged over the Planck function

Fig. 9.10 C&O Rosseland mean opacity vs. T and ρ (curves labelled with log(ρ)) for the Sun

For interiors, T above log(T) = 5 are appropriate

Note the steep drop-off in opacity with T Caused by ionization of trace 'metals' They are supplying opacity through b-free and free-free (**Kramer's** opacity law)

Note the opacity bottoms out at about 0.4 $\rm cm^2/gm$

When all atoms are totally ionized, no more bound-free opacity. Electron scattering opacity dominates

Independent of wavelength and T

The steep rise with T below 10,000 K leads to vertical convective Hayashi tracks describing the evolution of young stars on the H-R diagram