Handout 15: Virial Theorem E = P.E. + K.E = (1/2)P.E. = -K.E.

- The virial theorem is crucial for an overview of the stellar interior
 - □ See discussion Chap. 2 of C&O
- Holds when P.E. is from a force $\sim 1/r^2$
 - □ i.e. gravity and electrostatic forces
- Consider orbit of satellite around Earth

$$\frac{\mathbf{m} \cdot \mathbf{v}^2}{\mathbf{r}} = \mathbf{F}_{\text{gravity}} = \frac{\mathbf{G} \cdot \mathbf{m} \cdot \mathbf{M}}{\frac{2}{\mathbf{r}^2}}$$
$$\mathbf{KE} = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}^2 = \frac{1}{2} \cdot \frac{\mathbf{G} \cdot \mathbf{m} \cdot \mathbf{M}}{\mathbf{r}} = \frac{-1}{2} \cdot \mathbf{PE}.$$

Drag causes increase in speed

- Non-intuitive consequences
 - □ Atmospheric drag causes r to decrease
 - □ P.E. decreases
 - □ |P.E.| increases
 - □K.E. increases
 - Satellite speeds up!
 - Gas drag causes speed to increase
 - Half the decrease in P.E. goes into heating up the atmosphere

Virial theorem in globular clusters, clusters of galaxies

- Assuming equilibrium has been reached
 - □ High K.E. → high total mass
 - Missing mass discovered in galaxy clusters
 - Zwicky, 1930's
- For the stellar interior, a virial theorem results if
 - \Box Hydrostatic equilibrium dP/dr = -g ρ
 - Pressure from ideal gas E.O.S P = nkT
 - And <K.E.> = (3/2)kT
 - □ Massive particles, non-relativistic speeds

Derivation of Virial Theorem for stars

$$\frac{d}{dr}P = -\rho \cdot \frac{G \cdot M_r}{\frac{2}{r}}$$

multiply by $4\pi r^3$ and integrate from r = 0 to R Right Hand Side $RHS = -\int_{0}^{R} \rho \cdot \frac{G \cdot M_r}{r} \cdot 4 \cdot \pi \cdot r^2 dr$ $4 \cdot \pi \cdot r^2 \cdot \rho \cdot dr = dm$ $-dm \cdot \frac{G \cdot M_r}{r} = dPE$

RHS = Gravitational_PE_of_star

The virial theorem for stars

LHS =
$$\int_{0}^{R} \frac{d}{dr} P \cdot 4 \cdot \pi \cdot r^{3} dr$$

integrate by parts
$$\frac{d}{dr} \left(P \cdot 4 \cdot \pi \cdot r^{3} \right) = \frac{d}{dr} P \cdot 4 \cdot \pi \cdot r^{3} + P \cdot 12 \cdot \pi \cdot r^{2}$$
$$P(r = R) = 0 \qquad \text{and} \qquad r(r = 0) = 0 \qquad \text{so}$$

LHS =
$$-3 \cdot \int_0^K \mathbf{P} \cdot 4 \cdot \pi \cdot \mathbf{r}^2 \, d\mathbf{r} = -3 \cdot \int_0^K \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{T} \cdot 4 \cdot \pi \cdot \mathbf{r}^2 \, d\mathbf{r} = -3 \cdot \frac{2}{3} \cdot \int_0^K \mathbf{n} \cdot \frac{3}{2} \cdot \mathbf{k} \cdot \mathbf{T} \cdot 4 \cdot \pi \cdot \mathbf{r}^2 \, d\mathbf{r} = -2 \cdot KE$$

 $KE = \frac{-1}{2} \cdot PE$ the virial theorem

Consequences for stellar evolution

Consider collapse of a star
 As R decreases, PE decreases

$$PE = -\int_{0}^{R} \frac{G \cdot M_{r}}{r} \cdot (4 \cdot \pi \cdot r^{2} \cdot \rho) dr$$

$$PE \text{ will be of order} \qquad \frac{-G \cdot M^{2}}{R}$$
i.e. for constant density
$$PE = \frac{-3}{5} \cdot \frac{G \cdot M^{2}}{R}$$

For a star, gas is compressible, therefore density increases as r decreases Therefore more tightly bound than constant density Therefore PE is more negative than this

Kelvin-Helmholtz contraction

Contract from 100 to 1 R_{sun}

- \square PE goes from near zero to $-GM_{sun}^2/R_{sun}$
 - KE increases by $-(1/2)\Delta PE$
 - Star gets hotter inside
 - Where did the other half of the PE go?
 - It was radiated away as photon luminosity
- Kelvin-Helmholtz timescale = -P.E./2*L

• For the sun at $R = R_{sun}$, timescale = 10⁷ yr

This is

- Timescale for contraction to the Main Sequence
- Age of the sun if only gravitational energy available

Nuclear energy sources

Life on earth is at least 3 to 4 billion years old

- □ Age of sun much longer than 10 million years
- Nuclear energy sources crucial

Thermal equilibrium

- Energy flux radiated from the surface exactly equal to the energy generated by nuclear fusion reactions in the interior
- This condition defines the locus of the Main Sequence on the H-R diagram
- $\Box \epsilon(\rho,T)$ is the rate of energy generation, **power/mass**

Thermal equilibrium

$$L_{\text{radiant}} = \int_{0}^{R} 4 \cdot \pi \cdot r^{2} \cdot \rho \cdot \varepsilon \, dr_{\dots}$$

Temperature in the sun

The virial theorem gives the average temperature of the sun

$$\frac{3}{2} \cdot k \cdot T \cdot N = \frac{-1}{2} \cdot PE = G \cdot \frac{M_{sun}^2}{R_{sun}}$$

$$N = \frac{M_{sun}}{\mu \cdot m_H} \qquad \mu = 0.6$$

$$T_{ave} = \frac{2}{3} \cdot \frac{\mu \cdot m_H \cdot G}{k} \cdot \left(\frac{M_{sun}}{R_{sun}}\right) = 10^7 \cdot K \qquad \text{amazing}$$

Just by looking at the sun for \sim 1 hour \rightarrow hydrostatic equilibrium \rightarrow Virial theorem \rightarrow interior is 10 million K!

Sun temperatures of 10 million K → nuclear fusion reactions

- High velocities necessary to overcome coulomb barrier
- 4 H \rightarrow eventually, He + energy
 - □ And energy ~ 1% mc²
 - Very significant, c.f. (1/2)PE
 - \Box 1% Mc² = 10⁵² ergs
 - $\Box GM^{2}/2R = 10^{48} ergs$
 - Rather than the K-H time of 10⁷ yr, we have 10¹¹ years for nuclear, Main Sequence lifetime

□ Stellar evolution \rightarrow only 10% of H burnt on M.S.