Handout 14: Stellar interiors

- The theory of stellar interiors has been a triumph of 20th century Astrophysics
 - □ It explains the basic nature of stars, including the sun
 - It shows how such stars came to be
 - Stellar evolution
 - □ It quantifies how long stars can live
 - Fuel supply
 - □ It explains what happens after fuel runs out
 - Stellar evolution
- Theory is guided by accurate observations

Start by explaining the sun

Facts

□ Mass 2 10³³ gm

70% H, 28% He, 2% "metals" by mass

□ Radius 7 10¹⁰ cm

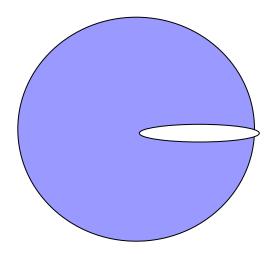
~ 2 light seconds

Subtends 0.5 degrees at 1 A.U.

- □ Shape = nearly perfect sphere
- □ Luminosity 4 10³³ erg/s
 - → effective T 5800 K
 - High temperature demands <u>gas</u>eous sun

Free-fall timescale

- Spherical shape and large mass → gravity hold sun together
 - Need an equal opposing force, otherwise sun would collapse on free-fall timescale.
 - Consider test-mass orbit
 - Very eccentric
 - □ Start at aphelion = solar radius
 - End at perhelion = center of sun
 - □ Free-fall time = P/2
 - Rest of sun collapses to center



Sun's free-fall timescale = 1/2 hr

Kepler/Newton III:	$\frac{G}{4 \cdot \pi^2} \cdot M \cdot P^2 = a^3 \qquad a = \frac{1}{2} \cdot R$
$t = \frac{P}{2} = \frac{1}{2} \cdot \sqrt{\frac{4 \cdot \pi^2 \cdot a^3}{G \cdot M}}$	
$\frac{M}{a^3} = \frac{M}{\left(\frac{1}{2}\right)^3 \cdot R^3} = \frac{4}{3} \cdot \pi \cdot 2^3 \cdot \rho$	ρ = average_density
$t := \sqrt{\frac{3 \cdot \pi}{32}} \cdot \frac{1}{\sqrt{G \cdot \rho}} \qquad \rho \equiv$	$t \cdot 4 \cdot \frac{\text{gm}}{\text{cm}^3}$ $t = 0.493 \text{hr}$

Hydrostatic equilibrium

- Watch the sun for 30 minutes
 - □ It doesn't contract (or expand)
 - There must be an **outward** force **exactly** balancing gravity
 - → pressure gradient in sun
 - → hydrostatic equilibrium
 - Same force keeps earth's atmosphere from collapsing
 - Given the scale height of 9 km, what is the free-fall timescale for our atmosphere?

$dP/dr = -g\rho$ (hydrostatic equil.)

define

mass interior to r

Using the calculus, Newton showed that the mass interior to r acts as if all the mass were at the center. Likewise, the mass exterior to r exerts zero net force.

Consider a small element of mass dm in the form of a disk of area A and thickness dr. By symmetry, the net force will be in the radial direction. There are 3 forces on the disk:

$$F_{\text{graviy}} = -dm \cdot \frac{G \cdot M_r}{r^2}$$
 $\frac{G \cdot M_r}{r^2} = g(r)$

pressure on top $-A \cdot P(r + dr)$

 $M_r = \int_0^r 4 \cdot \pi \cdot r^2 \cdot \rho \, dr$

pressure on bottom $A \cdot P(r)$

net_force =
$$-A \cdot \rho dr \cdot g - A \cdot P(r + dr) + A \cdot P(r) = 0$$

$$\frac{P(r+dr) - P(r)}{dr} = -\rho \cdot g \qquad \qquad \frac{d}{dr}P(r) = -\rho (r) \cdot g(r)$$

Pressure

Must hold throughout interior of star

- Pressure is force/unit area
 - □ Force is d(momentum)/dt
 - Pressure is momentum flux d(momentum)/dAdt
- Two sources, gas and photons
 P_{rad} = (1/3)u = (1/3)aT⁴
 Only important in hottest stars
 Concentrate on gas pressure

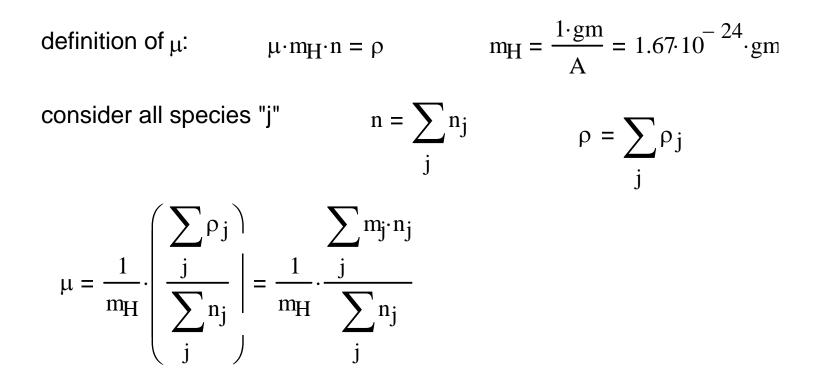
Gas pressure

To calculate momentum transport (flux)

- Need distribution n(p) in momentum space
- □ Certainly we can assume T.E.
 - Collisional m.f.p. very small
 - Velocities equilibrated very quickly
- In general, distribution will be
 - Fermi-Dirac for fermions
 - Bose-Einstein for bosons
- □ At high T and low density, these both → Maxwell-Boltzman
 - **P** = **nkT**, ideal gas pressure

Mean molecular weight µ

The connection between mass density ρ and number density n is the mean molecular weight μ



μ of order 1 for normal stars

- Neutral H
 - $\square \mu = 1$
- Ionized H

 $\Box \, \mu = \frac{1}{2}$

- He atoms 10% of H atoms, neutral
 \[\mu \mu = (1+0.4)/(1+0.1) ~ 1.3\]
- Stellar interior strongly depends on μ
 P ~ T/μ, a small μ requires a large T
 Energy generation rate ~ T⁴⁻¹⁰