Handout 12: Limb darkening, absorption lines

- When $\tau_v = 2/3$
 - \Box T = effective temperature
 - We "see" to $\tau = 1$ at each θ
 - This corresponds to $\tau_v < 1$
 - Average over all θ gives $<\tau_v> = 2/3$
- With the source function, we can calculate limb darkening $s = \frac{\sigma}{2} \cdot \frac{3}{2} \cdot T_{e}^{4} \cdot (\tau_{v} + \frac{2}{2}) = \frac{\sigma}{2} \cdot \frac{3}{2} \cdot T_{e}^{4} \cdot (\tau_{v} \cos(\theta) + \frac{2}{2})$

$$S = \frac{\sigma}{\pi} \cdot \frac{3}{4} \cdot T_e^4 \cdot \left(\tau_v + \frac{2}{3}\right) = \frac{\sigma}{\pi} \cdot \frac{3}{4} \cdot T_e^4 \cdot \left(\tau \cdot \cos\left(\theta\right) + \frac{2}{3}\right)$$

Use eqn. of radiative transfer

 \Box Go to deep enough layers so $I_0 e^{-\tau} \rightarrow 0$

Limb darkening

 $I(\theta, \tau = 0) = \int_{0}^{\infty} S \cdot e^{-\tau} d\tau$ $\int_{0}^{\infty} e^{-\tau} d\tau = 1 \qquad \int_{0}^{\infty} \tau \cdot e^{-\tau} d\tau = \int_{0}^{\infty} e^{-\tau} d\tau - \int_{0}^{\infty} \frac{d}{d\tau} \tau e^{-\tau} d\tau = 1 - 0$ $I(\theta) = \frac{\sigma}{\pi} \cdot \frac{3}{4} \cdot T_{e}^{4} \cdot \left(\cos(\theta) + \frac{2}{3}\right)$ $\frac{I(\theta)}{I(0)} = \frac{\cos(\theta) + \frac{2}{3}}{\frac{5}{4}} = \frac{2}{5} + \frac{3}{5} \cdot \cos(\theta)$

Note that $I = S(\tau = 1)$

□We "see" to optical depth 1

 \blacksquare True when source fct. Linear in τ

□ i.e. S = a + bτ

Approximately true for more complex dependence

• At θ = 90 degrees

 \Box Minimum I = (1/2)(σ/π)T_e⁴

• At θ = 48 degrees

$$\Box \operatorname{Cos}(\theta) = 2/3, I = (\sigma/\pi)T_e^4$$

• i.e. we see the effective T at this angle

Fig. 9-17 Carroll and Ostlie

Compare measured limb darkening of sun (points) to the Eddington approximation (line)

Absorption lines, equivalent widths

- The overall strength of a line is judged by its "Equivalent Width" W
 - Width of a perfectly black line that removes the same amount of energy from the spectrum
 - Combination of width times depth
 - Larger W implies higher abundance

defined as
$$W \cdot F_{\text{continuum}} = \int_{\text{line}}^{\bullet} (F_{\text{coninuum.}} - F_{\text{line}}) d\lambda$$

Equivalent widths and abundances

- Stronger lines (larger W) \rightarrow more opacity More atoms/cm² above the $\tau_{\text{continuum}} = 1$ level
 - $\square \rightarrow$ abundance i.e. of Call, etc.
 - Strengths of absorption lines used to measure abundances of all the elements
 - In sun log values, H=12, He=11, C=8.5, N=8, O=8.8, Ca=6.3, etc.
 - □ Sun representative of present solar neighborhood
 - Some stars have much weaker lines cf. H
 - \Box Globular clusters metals 10⁻² or less *cf*. sun
 - → nucleosynthesis after the big bang

Line widths

- An important component of W is the width of a line
 - Defining the width as the Full Width at Half Maximum FWHM
 - W = area ~ (fractional depth) x FWHM
 - □ Fractional depth is limited to 1 (100% absorption)
 - W increases because FWHM increases
- First learn about optically thin line shapes
 - □ Natural, thermal doppler, turbulence, pressure

Natural line width

The narrowest possible line

- Governed by the uncertainty principle
- Uncertainty in time and energy related
 - $\Delta E \Delta t$ at least h/2 π
 - $\Box \Delta t = lifetime of energy level$
 - $\Delta E = h \Delta v$
 - $\Delta v = (2\pi \Delta t)^{-1}$
 - $\Delta\lambda/\lambda = \Delta\nu/\nu$

□ Typical ∆t very small

• H α ~ 10⁻⁸ s, $\Delta\lambda$ ~ 10⁻³ Angstrom

Other broadening mechanisms dominate

Thermal doppler line width

In T.E., velocities are Maxwellian

 $\frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{v}_z^2 = \frac{1}{2} \cdot \mathbf{k} \cdot \mathbf{T}$ on average, z is along line of sight $\frac{\frac{-1}{2} \cdot \mathbf{m} \cdot \mathbf{v}_{z}^{2}}{\mathbf{k} \cdot \mathbf{T}}$ $n(v_z) = const \cdot e$ Maxwellian distribution Gaussian $\lambda = \lambda_0 \cdot \left(1 + \frac{\mathbf{v}_z}{c} \right)$ each velocity gives a different wavelength through $e^{\frac{-1}{2} \cdot \mathbf{m} \cdot \mathbf{v}_{z}^{2}} = \frac{1}{2}$ If line optically thin, FWHM at v such that $|V_z| = \sqrt{\frac{\ln(2) \cdot 2 \cdot k \cdot T}{m}}$ FWHM = $2 \cdot \sqrt{\frac{\ln(2) \cdot 2 \cdot k \cdot T}{m} \cdot \frac{\lambda_0}{c}}$

Line widths, Turbulence

For $m = m_H$, T = 5800 K (sun), H α line

$\Box \Delta \lambda = 0.4$ Angstrom

1000 times wider than natural width

- \Box Even for Ca m = 40 m_H
 - Velocities sqrt(40) = 6 times smaller
 - Thermal Doppler width 6 times narrower

Still 100 times the natural width

- Turbulence velocities usually gaussian
 - □ Will add to Thermal Doppler width
 - Velocity widths added in quadrature

Pressure/collisional broadening

Close encounters disturb atom

- Make excited state decay faster
- $\Box \rightarrow \Delta t \text{ reduced } \rightarrow \Delta E \text{ increase } \rightarrow \Delta \lambda \text{ increased}$

$$\Delta t = \frac{L}{v} = \frac{1}{n \cdot \sigma} \cdot \sqrt{\frac{m}{3 \cdot k \cdot T}}$$

- ΔE increases ~ $n\sigma$ sqrt(T/m)
- □ Why H lines broader in dwarf stars than giants
 - Higher g → higher n → larger width
 - In detail, atomic physics is complex
- Line profile like natural width
 - "damped oscillator" → Lorentzian profile