
Handout 11: Solutions to equation 
of Radiative Transfer

Consider the case where the source function S is 
constant in space

i.e. T.E. and T = const.
First approximation

Solution

If S = 0, 
merely extinction, Intensity attenuated by exp(-τλ)

If I(0) = 0, i.e. emission from the box
I = S(1 - exp(-τλ) )
Take case τ 0
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Special solutions

τ 0, Iλ = τλSλ
Linearly proportional to τλ

Optically thin hot gas gives emission lines
Kirchoff law #1

as τ infinity
Iλ = Sλ

Filament of incadescent lamp will give a Planck, black-body 
spectrum

Kirchoff law #2
In T.E., nothing radiates better than a blackbody

Important!



“Reversing layer” model for stellar 
atmosphere

T << Te, Iλ = Bλ(Te)exp (-τλ)
Absorption lines in spectrum

T >> Te
i.e. corona,  T ~ 1,000,000 K

Where optical depth small, Iλ Bλ(Te)
Optical depth large, Iλ Sλ = Bλ(T)

Emission lines when T is increasing outward

Optically thick, T = Te
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Definition of optical depth into a 
plane-parallel atmosphere

We use optical depth as a surrogate for 
physical depth in the atmosphere

dτλ’ = dτλ/cos(θ)
dτλ = - κλρdz

Optical depth increases into the atmosphere
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Xfer eq’n becomes dI λ

dτ λ'
cos θ( ) dI λ

dτ λ
⋅ I λ S λ−

Assume radiation flow through atmosphere is represented by a mean
opacity, i.e. the Rosseland Mean.  This is exact if the opacity is independent
of wavelength, which is called a grey atmosphere.  This is a fair approximation
for the sun, because of the broad nature of the H- opacity that dominates
the continuous opacity.  It is really accurate for hot stars, where electron
scattering is the dominant opacity, and does not depend on wavelength.

First, integrate equation of transfer over 4π ster, giving moments.
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Relationship between 1st and 0th

moments: d(Frad)/dτ = 4π(<I> - S)
Very important!

Since there are no sources or sinks of energy 
in the atmosphere in the steady state

Frad= constant = σTe
4 as a fct. of τ

<I> = S, the Source function equals the average 
intensity

Assuming L.T.E., S = B(T), so <I> = (σ/π)T4

Relates T to <I>

Solution of <I> vs. τ gives temperature structure
in the atmosphere



2nd moment 

Multiply by cos(θ), integrate over 4π ster
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Solution of const. C requires an 
approximation – Eddington 2-stream

Intensity has 2 values
Iout is const., θ = 0 π/2
Iin (< Iout) is const., θ = π/2 π

At top of atmosphere (τ = 0)
Iin = 0
π Iout = Frad

Inside the atmosphere ( τ > 0)
Frad = π Iout - π Iin = const. with τ

A constant difference



Eddington (2-stream) 
approximation

Calculate the average intensity, and the 
radiation pressure

<I> = (1/2)(Iout + Iin)
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Temperature structure in 
atmosphere

Use Frad = σTe
4 and Prad = (4π/3c)<I>

<I> = (3σ/4π)(τ + 2/3) Te
4

But source fct. S = <I>
And in L.T.E., S = B = (σ/π)T4

So T4(τ) = (3/4) Te
4(τ + 2/3)

Eddington approx. to T vs. depth in atmos.
At τ=0, T4(0) = (1/2) Te

4, not zero
i.e. dust grain at blackbody aperture gets half
the heating


