### Ast 241 Stellar Atmospheres and Interiors

- Goal: basic understanding of the nature of stars
  - Very important for astronomers
    - Most of (known) mass and luminosity from stars
      - Normal galaxies
      - To understand galaxies (and universe), need to understand stars
    - Elements heavier than H and He created inside stars
      - Spewed out into space to form new stars
      - Planets, people made from this 'stardust'
    - Our Sun is crucial for life
      - Primary source of energy
      - Lifetime must be billions of years to permit life to arise

## Cradle-to-grave understanding of stars

- Where/how/why do stars form?
  - Trapezium stars of Orion Nebula  $< 10^6$  years old
  - Why are most stars on "main sequence"?
    - What determines their position in H-R diagram?
      - Answer: mass
  - Source of energy of stars
    - Lifetime of stars
  - What happens after fuel runs out?
  - What determines 0.1-100 M<sub>sun</sub> mass range of stars?

#### Stellar Atmospheres & Interiors

- We must decode the light (E-M radiation) from stars
  - Light comes from an extremely thin layer (the photosphere) at the surface of a star
    - Need to know how light is created and modified as it passes through the outer layers
    - Need to use this info to learn as much as possible about the star
      - Temperature, Luminosity, gas Pressure, gas density, composition
  - 99.99% of star is not seen
    - Need theory to understand the stellar interior

### Physics required

- Mechanics
  - Mechanical structure of star
- Thermodynamics/Stat Mech
  - Excitation, ionization of atoms
  - Black body radiation
- Quantum Mechanics
  - Atomic energy levels, transition probabilities, line strengths
- Electricity and Magnetism
  - Radiation, photons

## Back of envelope considerations

- Stars are giant gas balls held together by gravity
  - Why are stars (and planets) spherical?
    - Minimum energy configuration
  - Why don't stars collapse?
    - Pressure (gradient)
  - What is source of pressure
    - Most stars, ideal gas PV = NkT
      - N = # atoms, ~  $10^{57}$  for sun
      - $V = (4/3)\pi R^3$
    - Therefore P implies T (i.e. thermal pressure)
      - $T \sim 5 \ 10^6 \text{ K}$  for sun

#### Consequences of extremely high Interior temperature

- 2<sup>nd</sup> law of Thermodynamics
  - E flows from hotter (interior of sun) to colder (interstellar space is 3 K)
  - $L_{sun} = (3/2)NkT/time$ 
    - Time = time it takes for energy to leak out,  $\sim 10^7$  y for sun
- How is surface T ( $<< 5 \ 10^6 \text{ K}$ ) determined?
  - Blackbody:  $L_{sun} = 4\pi R^2 \sigma T^4$ 
    - T here is "effective temperature"

# Start with Chap. 3 Carroll and Ostlie

- Basic ideas needed to measure/understand stars
  - Distance stellar parallax
  - Needed to know sizes of stars and intrinsic brightness (luminosity)
    - We measure the radiant flux at earth
      - The wavelength integral is the bolometric flux
      - The luminosity depends on the distance
    - We measure the angular size of a star  $\boldsymbol{\theta}$ 
      - The physical size R depends on the distance r
        - $R = r\theta$  (2 light seconds for the sun)

At earth we can measure the radiant flux:

$$F_{\lambda} = \frac{Power}{area \cdot \Delta \lambda} = \frac{W}{m^2 \cdot nm}$$
 'monochromatic flux'

Taking the integral over wavelength gives flux:

$$F = \int_0^\infty F_\lambda \, d\lambda \qquad \text{'bolometric flux'}$$

For the sun, this is called the 'solar constant' = 1.4 kW/m  $^{2}$ 

To determine the luminosity L, we need the distance r

$$F = \frac{L}{4 \cdot \pi \cdot r^2}$$

i.e. the 1/r<sup>2</sup> law of apparent brightness



#### Fundamental distance measurement Trigonometric parallax

- Uses trig and the largest baseline available the earth's orbit
  - Same geometry as angular size consideration
    - R = 1 AU, r = d (distance),  $\theta = p$  (parallax)
    - d = 1 AU/p
      - Since 1 rad =  $(360*60*60)/2\pi = 2.06 \ 10^5 \ \text{arcsec}$
    - $d = 2.06 \ 10^5 \ AU/p[arcsec]$ 
      - $2.06 \ 10^5 \ \text{AU} = \text{parsec} = \text{pc}$
  - So distance in pc is given by 1/p[arcsec]
    - The angle p is called the parallax
      - Note parallax using two eyes as baseline and finger held 1.5 and 3 ft away

#### Closest stars very distant

- Largest parallax 1"
  - Galaxy mostly empty space between stars
  - Angular size of stars extremely small
    - Calculate for sun at 1 pc
  - Planets 10-100 times smaller than stars
    - Very challenging to detect, much less resolve
- Most accurate parallax Hipparchos space experiment
  - Bright stars to p = 0.001" accuracy
    - Nearby environs of sun
    - Note: Galactic center 8 kpc distant

#### Magnitudes

- Convenient measure of brightness
  - Logarithmic
    - Like dB's for sound power/area
  - Relative
    - Brightness ratio of unknown star to hypothetical zero magnitude star
      - Vega close to zero mag at all wavelengths
  - Used in UV-visible-near IR
    - i.e. where stars dominate
  - Comes from Greeks (Hipparchus)

Greeks (Hipparchus) using naked eyes: brightest stars: m=1 dimmest stars: m=6

In 19th century, photometers used to measure monochromatic flux at visible wavelengths, call this  $F_V$ .

$$F_{V} = \frac{\int_{500 \cdot \text{nm}}^{600 \cdot \text{nm}} F_{\lambda} d\lambda}{100 \text{ nm}}$$

Found the m=1 stars were 100 times as bright as the m=6 stars

therefore  $\Delta m = 5$  implies  $\frac{F_1}{F_2} = 100$ and larger magnitudes are dimmer. In general

Absolute mag M - all stars at a common distance d of 10 pc

since 
$$F = \frac{L}{4 \cdot \pi \cdot d^2}$$
  
 $F = F_{10pc} \cdot \left(\frac{10 \cdot pc}{d}\right)^2$   
therefore  $10^{\frac{m-M}{2.5}} = \left(\frac{d}{10 \cdot pc}\right)^2$ 

gives the correspondence between apparent mag m, absolute mag M, and distance d

Handy rule of thumb, #mag(brightness) = 2 #mag(distance), i.e. take log of equation:

$$m - M = 2 \cdot \left( 2.5 \log \left( \frac{d}{10 \cdot pc} \right) \right)$$
  
Example, :  $m_{sun} = -26.8$   $d = 1 \cdot AU$   $\rightarrow$   $M = 5$   
At galactic center (d ~ 10 kpc)  
 $\frac{d}{10 \cdot pc} = 10^3$  i.e.  $3 \times 2.5 = 7.5$  mags of distance  
therefore 15 mags of brightness  
therefore m ~ +20

i.e. we could detect solar type stars at the galactic center if it weren't for the 30 mag of extinction which gives m' = +50, too faint even for HST (dimmest m = 29)

Check out the Andromeda galaxy at 1 Mpc.  $m_{sun} = 30$