
PHY411. PROBLEM SET 2

September 28, 2023

1. The leap-frog integrator

The leap frog integrator is a commonly used second order integrator. It operates
on dynamical systems that can be written in terms of a Hamiltonian in the form
H(q, p) = T (p) + V (q). The kinetic term only depends upon momentum and the
potential term only depends on the coordinate. We will take T (p) = p2/2. The
equations of motion are

ẋ = p

ṗ = −∂V (q)

∂x
(1)

A second order integrator for this system is the following

qn+
1
2 = qn +

τ

2
pn

pn+1 = pn − τ ∂V (qn+
1
2 )

∂q

qn+1 = qn+
1
2 +

τ

2
pn+1 (2)

First a half step is taken to update q. Then a full step is taken to update p. Then
another half step is taken to update q. The indices refer to the time-step and are
not powers and the time-step is τ .

a) Show that the transformation

qn, pn → qn+1, pn+1

is area preserving. You could compute the Jacobian matrix J with

J =

(
∂qn+1

∂qn
∂qn+1

∂pn

∂pn+1

∂qn
∂pn+1

∂pn

)
1
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and show that its determinant is 1. You could also divide the steps into three
pieces

qn, pn → qn+
1
2 , pn+1

qn+
1
2 , pn+1 → qn+

1
2 , pn+1

qn+
1
2 , pn+1 → qn+1, pn+1

and show that the Jacobian for each piece has determinant of 1.

b) Show that the transformation

qn, pn → qn+1, pn+1

is a canonical transformation. This means that the Poisson bracket

{qn+1, pn+1} = 1.

2. The leap frog integrator, continued

Code examples for a,b are available here https://astro.pas.rochester.edu/

~aquillen/phy411/lectures.html

a) Carry out a numerical integration of the harmonic oscillator using the leap
frog integrator (which is second order).

b) Carry out a numerical integration of the same dynamical system with the
same initial conditions but using a second order Runge-Kutta integrator.

c) Plot the energy error as a function of time. Show that the energy error for
leap-frog integrator does not continue to grow with time, but the error in energy
for the Runge-Kutta continues to grow.

d) Try choosing a slightly different duration for each timestep to see what
happens with the error.

No matter how long you integrate with the leap-frog integrator, the numerically
integrated orbit should not continue to diverge in energy from from the original
value. The error in energy should oscillate but should not continually grow or
shrink. This is because a type of energy is conserved, even if the actual energy
is not conserved. This is a handy property of time reversible and symplectic
integrators. Note that if you are varying the time step during the integration,
you would lose this nice property of the integrator.

https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html
https://astro.pas.rochester.edu/~aquillen/phy411/lectures.html
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3. Two-forms

A two-form is a function of two vectors. When a two-form is applied to two
vectors you get a function. The function depends on coordinates. At the point
x = (x1, x2, x3) = (2, 0, 0) calculate the values of the two forms ω1, ω2, ω3 on the
two vectors ξ,η. Here are the two forms:

ω1 = dx2 ∧ dx3,
ω2 = x1dx3 ∧ dx2
ω3 = dx3 ∧ dr2 (3)

with r2 = x21 + x22 + x23. Here are the two vectors

ξ = (1, 1, 1) and η = (1, 2, 3)

Answer: ω1 gives 1, ω2 gives -2, ω3 gives -8. This problem is from Arnold’s
book.

4. Cartan’s magic formula

The Lie derivative of a differential form ω satisfies

LXω = iXdω + d(iXω)

This is known as Cartan’s magic formula. Here X is a vector, d is the exterior
derivative and iX gives a contraction. For example iXω = 〈X,ω〉 = X iωi if ω is
a one-form and X a vector.

Show that

dLXω = LX(dω)

Hint: d2 of anything is zero. Use Cartan’s formula on both sides of the equation.

5. Distance to resonance

Consider a pendulum-like Hamiltonian

H(p, φ) =
1

2
ap2 + bp+ ε cosφ

(a) Assuming that φ is an angle, show that the coefficient b is a frequency. (This
is a question of dimensional analysis).
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(b) Find a canonical transformation and new coordinates that transform the
Hamiltonian into the form

K(p′, φ′) =
1

2
a′p′2 + ε′ cosφ′

Remarks: The coefficient b shifts the level curves vertically (in the p di-
rection) on a plot of level curves of H(p, φ). Only with b = 0 are the fixed
points located along p = 0. If you subtract a constant from a Hamiltonian,
Hamilton’s equations are unchanged.

We can consider ap2 + bp as the expansion of an integrable system around a
particular value of p. The term ε cosφ can be considered a perturbation. We
sometimes refer to b as a frequency that sets the distance to resonance.

6. First order canonical transformations

(a) Consider a Hamiltonian with a time dependent perturbation

H(I, θ, t) = Iω + εI1/2 cos(Ωpt)

Find new variables J, φ such that the Hamiltonian becomes

K(J, φ) = Jω

and so is in action angle variables and is time independent.

Hint: Try a generating function in the form

S2(θ, J) = θJ + f(J)g(Ωpt)

with functions f() and g() to be determined.

(b) Show that the system (prior to canonical transformation) is equivalent to a
time independent Hamiltonian system K(I, θ, J, α) in 4-dimensional phase
space with new coordinate angle α with α̇ = Ωp and new momentum J that
is conjugate to α.

7. Shearing Sheet

The shearing sheet approximation gives equations of motion near a circular
orbit in an axisymmetric potential. An approximate Hamiltonian (in units of
angular rotation rate and radius equal 1).

H(x, y; px, py) ≈
p2y
2

+
p2x
2
− 2pxy +

κ2y2

2
(4)
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With epicyclic frequency κ = 1 (for the Keplerian setting) we can recover Hill’s
equations.

Show that px is a conserved quantity.

As there is a fixed point at x = 0, y = 0, px = 0, py = 0 and the Hamiltonian is
quadratic, this Hamiltonian can be written in the form

H =
1

2
xMx

with M the Hessian matrix and x = (x, y, px, py). Equations of motion are

ẋ = ωMx

where ω is a symplectic type of identity matrix.

Find M .

Eigenvalues of (ωM)2 are the oscillation frequencies.

Find a set of canonical coordinates that give action angle variables. One way
to do this is to use a generating function that looks like

F (y, φ, px, X) =
κ

2
(y − apx)2 tanφ+ pxX

and to look for a suitable value of a.

8. Complex notation and polynomial expansions

It is sometimes convenent to define

z = q + ip

z̄ = q − ip

Show that

{z, z̄} = −2i

These are not canonical coordinates.

If H(p, q) is written as H(z, z̄) using Poisson brackets show that

ż = −i∂H
∂z̄

˙̄z = i
∂H

∂z
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Define an operator

D ≡ q
∂

∂p
− p ∂

∂q

Show that

Dzaz̄b = i(a− b)zaz̄b

for integers a, b. Define a pseudo inverse operator

D−1zaz̄b ≡ 1

i(a− b)
zaz̄b

D and D−1 do not change the order of a polynomial.

Compute Dz2z̄ and D−1z2z̄.

Let I(p, q) = 1
2
(p2 + q2). Show that D(I(p, q)n) = 0 for any integer n > 0. Here

n is the exponent of I.

We look at a Hamiltonian that is a harmonic oscillator plus an additional higher
order term

H(p, q) = I(p, q) +H3(p, q) (5)

where Hs is a polynomial in p, q that is degree three (contains terms like q2p and
p3 so that when you sum the exponents of p, q you get 3).

Choose a function w(p, q) = D−1H3. What is the degree of w?

We make a canonical transformation with generating function

S(q, P ) = qP + w(q, P )

Show that to second order in the polynomials of p, q,

p = P +
∂w

∂q

q = Q− ∂w

∂P

Insert these into equation 5 and show that you can remove H3 with the canonical
transformation (to the next order).

Remarks. As long as there are no resonances this procedure can be used to
transform a Hamiltonian expanded near a fixed point into action angle coordi-
nates. The theory of Birkhoff normal forms is tersely introduced in Appendix 7
by Arnold in his book on Math Methods of Classical Mechanics.
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9. On the small divisor problem with a single resonant perturbation

(a) Consider a Hamiltonian with a small perturbation term

H(I, θ) = g(I) + εh(I) cos θ

where ε is small. Using a generating function in the form

S2(θ, J) = θJ + εf(θ, J)

show that the Hamiltonian can be put via canonical transformation into a
form K(J, φ) = g(J) + O(ε2)... that to first order only depends on action
variables.

Hint: Assume that f(θ, J) is separable and either proportional to sin θ or
cos θ.

(b) Consider the multidimensional Hamiltonian

H(I,θ) = g(I) + ε cos(k · θ)

where k is a vector ofN integers. Momenta and angles I,θ areN dimensional.
The frequencies

ω(I) = ∇g(I)

What condition on k and ω allows the Hamiltonian to be put via canonical
transformation into the form K(J,φ) = f(J) + O(ε2) using the canonical
transformation in the form of part a)?

Remark: As long as there is no commensurability (the angle φ = k · θ is
not slow), then it is possible to remove the perturbation term to first order
from the Hamiltonian with a first order canonical transformation. Near the
commensurability or resonance, to first order, the new coordinates diverge.

(c) Consider the possibility that φ is a slow angle. We can transfer to a new
canonical coordinate system with new angle φ = k · θ. Use the generating
function of old angles (θ) and new momenta (J1, J2, J3...JN)

F2 = J1(k · θ) +
∑
i=2..N

Jiθi

to show that this Hamiltonian hasN conserved quantities and so is integrable.

Hints: Energy can be a conserved quantity. If the Hamiltonian lacks a coor-
dinate then the momentum conjugate to the coordinate is conserved.

Remark: In this coordinate system there are no divergences.
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(d) Are there fixed points in the Hamiltonian that you find in part c)?

(e) Consider initial values for the momenta I0 and k = (2, 5) so that φ = 2θ1+5θ2
and frequencies such that

k · ω(I0) = 0

The system has initial angles θ0 where θ is the vector of angles. Denote the
frequency vector as ω(I0) = (ω1, ω2). Assume that ε is extremely small (like
zero).

In terms of period P = 2π
ω1

how long does it take the system to return to the
initial values of all its angles θ0?

Remark: In this setting a fixed point in the transformed Hamiltonian is
equivalent to a periodic orbit in the original Hamiltonian.

10. Canonical Transformation to a frame in a Rotating Coordinate System

Consider the following Hamiltonian that has been used to represent a fourth
order epicyclic approximation near a Lindblad resonance with a spiral or bar
pattern in a galaxy disk that is moving with pattern speed Ωp

H(I1, θ1; I2, θ2; t) = ΩI2 + κI1 + aI21 + bI22 + cI1I2 + εI
1/2
1 cos(θ1 −m(θ2 − Ωpt))

where m is an integer. Here Ω and κ are the angular rotation rate and epicyclic
frequency and both are approximately functions of orbital radius. Coefficients
a, b, c are also approximately functions of radius in the galaxy. Here I2 is related to
the angular momentum of the orbit and I1 the epicyclic amplitude. The parameter
ε depends on the bar or spiral perturbation strength.

Consider the following generating function

F2(θ1, θ2; J1, J2) = [θ1 −m(θ2 − Ωpt)]J1 + θ2J2

that is a function of old coordinates and new momenta.

(a) Following a canonical transformation find the form of the Hamiltonian in new
coordinates and show that I2 +mI1 is a conserved quantity. Is energy in the
new coordinate system conserved?

(b) In what way is [(c − 2bm)(I2 + mI1) + κ −m(Ω − Ωp)] the distance to the
resonance?

Hint: After transformation, the system is only a function of a single mo-
mentum and coordinate (as the other momentum is conserved). It may be
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possible to group terms so that the Hamiltonian resembles a lower dimen-
sional one, in the form H(p, φ) = ap2 + bp+ f(p) cosφ, with constants a, b.

(c) Is there a small divisor problem with this coordinate transformation?

11. On Constraints – Variational equations

Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz

with constraint

yẋ− xẏ = 0 (6)

The problem seems to conserve angular momentum about the origin in z while
being under the influence of gravity.

A holonomic constraint is a function of coordinates f(q1, q2..., t) = 0.

(a) Is the constraint holonomic or non-holonomic?

(b) Using the Lagrange-d’Alembert equations of motion, find the equations of
motion. These assume that an action is minimized only over paths that
satisfy the constraint. You don’t need to solve for x, y, z as a function of
time.

Writing the constraint in the form axẋ + ayẏ = 0, the Lagrange-d’Alembert
equations of motion are

d

dt

∂L

∂ẋ
=
∂L

∂x
+ λax

d

dt

∂L

∂ẏ
=
∂L

∂y
+ λay

(c) Use the Lagrangian with Lagrange multipliers

L̃(x, ẋ, λ) = L(x, ẋ) + λ(yẋ− xẏ)

to find the equations of motion. These are known as the variational non-
holonomic or vakonomic equations of motion.

(d) Compare the two different sets of equations of motion. Are they the same?
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Consider the Lagrangian

L(x, y, z, ẋ, ẏ, ż) =
1

2
m(ẋ2 + ẏ2 + ż2)

with constraint
ż − yẋ = 0

These problems are from the book by A. M. Block. The second problem is
by Rosenberg 1977.

(e) Again find the two sets of equations of motion and compare them.

Notes: I find it hard to work with the vaganomic constraints as λ(t) making

the solutions depend on λ and λ̇. Seems like there is a variety of solutions.

12. Propose and work on your own problem!


