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1 What is active matter?

Active matter consists of some kind of distributed stuff, like particles, that consume energy.
The locally expended energy is converted into something like motion or forces or shape
changes and not all the locally consumed energy is recovered by the distributed stuff. The
systems are described as being out of equilibrium. Non-equilibrium active systems usually
lack a simple free energy integral or an equation of state.

As energy is locally consumed, active matter systems are different from systems where
energy is injected into the system from a particular location. For example, a heat source
or a flapping boundary.

Active systems can display self organized behavior that is not present in equilibrium
settings. Examples include flocking, synchronization, organization of metachronal waves
(think cilia) and spontaneous flow in active neumatic gels. Active matter includes organi-
zation and growth of cells in tissue or even constituents of cells.

2 Self-propelled particles

Self-propelled particles are a type of dry active matter. The ambient medium through
which the particles move is neglected.

Two related models are the Boid model (Reynolds 87)1 https://dl.acm.org/doi/

pdf/10.1145/37401.37406 and the Vicsek model (Vicsek+95)2 https://arxiv.org/abs/
cond-mat/0611743. In both models each particle strives to move at a fixed speed, v0.

We take ri(t) to be the i-th particle’s position at time t.
The original paper by Reynolds is more descriptive rather than specific, referring to

updates of the velocity vector in terms of ‘steering’. But we could also describe variations
in a velocity vector as an acceleration that is derived from forces. In the Boid model each
particle (or boid) feels a bunch of forces that cause the boid to accelerate

mir̈i = Fi,propel + Fi,steer + Fi,attract + Fi,repel. (1)

The index i is used to make it clear that the forces are different for each boid. Each boid
has a mass mi. In the above equation r̈ = d2r

dt2
. The velocity v = dr

dt = ṙ.
The propel force keeps the boid moving at the same speed

Fi,propel ∝ −(vi − v0v̂i) (2)

1Reynolds, Craig (1987). Flocks, herds and schools: A distributed behavioral model. Proceedings of
the 14th annual conference on Computer graphics and interactive techniques. Association for Computing
Machinery. pp. 25-34.

2Vicsek, Tamás; Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer (1995-08-07). Novel
Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters. 75 (6): 1226-1229.
arXiv:cond-mat/0611743
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where vi is the i-th boid’s velocity and v̂i = vi/|vi| is a unit vector with the same direction
as the velocity. The boid speeds up if it is moving slower than v0 and it slows down if its
speed is faster than v0. As the propel force depends upon velocity, it is not a conservative
force.

The steer force depends on the average of the headings (directions of motion) of nearby
boids. The boid adjusts its heading direction to be closer to that of its neighbors. Reynolds
referred to the steer force as velocity matching.

Boids repel each other if they get too close to each other but they also exhibit some
cohesion and will steer towards groups of other boids. Reynolds referred to these forces as
collision avoidance and flock centering. The repel and attract force could be implemented
with conservative forces that are derived from a position dependent potential energy func-
tion.

Each boid has a velocity vi(t). To integrate a boid model, boid positions and velocities
are updated on a time-step ∆t using a low order integration scheme (often first order
Eulerian). At each time step, each boid position is updated using its current velocity
vector

rn+1
i = rni +∆tvn

i . (3)

Here the upper index n refers to a discrete value of time, in intervals of the time-step. the
above equation is consistent with

vn
i ∼ drni

dt
∼

rn+1
i − rni

∆t
. (4)

The forces are computed from the positions and velocities of nearby boids. The velocity
is updated by applying an acceleration

vn+1
i = vn

i +
∆t

mi
(Fi,attract + Fi,repel + Fi,steer + Fi,propel) (5)

The forces are computed from the particle velocities and positions at timestep n and I have
neglected the super script for time on the right hand side of the equation in the description
of the forces. The steer force can be something like

Fi,steer ∝ ⟨v̂⟩nn,i − v̂i (6)

where ⟨v̂⟩nn,i is the average heading of nearest neighbors to boid i. The steer force steers
the boid to match the headings of its neighbors. The attraction and repel forces can be
similar to that of a conventional N-body or molecular dynamics model

Fi,attract/repel ∝
∑
j ̸=i

−dU(rij)

drij
r̂ij (7)
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where rij is the vector between particle i and particle j, and U(rij) is a pairwise potential
that is a function of distance between a pair of particles. The sign of U determines whether
two boids attract or repel each other.

The Vicsek model is similar to the Boid model except the particle velocity is maintained
a particular speed and only particle position and heading are adjusted each time-step. Each
time-step the heading (direction of motion) of each boid is set to the average value of its
neighbors with the addition of noise;

v̂n+1
i = ⟨v̂⟩nn,i + noise. (8)

The noise can be drawn from a probability distribution that has a mean of zero and a
desired variance.

In the original Vicsek model, particles do not attract or repel. A characteristic number
density of particles is used to describe the system. Confinement can cause behavior similar
to that of attraction (e.g., 3). Noise tends to cause gas-like rather than fluid-like or solid-
like behavior. Because the boids can’t rest (birds fall out of the air if they stop flying)
self-organized states involve motion. A school of fish can swim in a circle forming something
like a vortex. A flock can move together in one direction, breaking rotational symmetry.

N-body models are often chaotic. A boid model without the addition of noise can act
as if it is noisy. After a series of pair-wise encounters, memory of the initial conditions is
lost. By adding noise to a boid model one could control the level of ‘ergodic’-like behavior.
If the self-propelled particle system contains a noise term, it can be called ‘Brownian’.

Figure 1: A series of simulations showing gas like behavior on the left and crystalline
behavior on the right with more fluid-like circulating behavior in the middle. Here con-
finement of the flock by a flexible loop gives behavior similar to attraction. The series
of particle based simulations from has similar parameters except the extent of the align-
ment force is increased on the right compared to simulations on the left. From Quillen+20
https://arxiv.org/abs/2002.00536

3Quillen, Smucker, Peshkov, 2020, Boids in a loop: Self-propelled particles within a flexible boundary,
Phys Rev E 101, 052618, https://arxiv.org/abs/2002.00536
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3 The simplest continuum models (PDEs)

3.1 Advection

We start with a field ψ(x, t) ∈ R with x, t ∈ R (in 1 dimension) and we assume that
dynamics can be described with a single time derivative

∂tψ = −a∂xψ. (9)

Here we use short hand ∂t = ∂
∂t . This partial differential equation is advective. Waves

travel in one direction at a speed a. For example ψ(x, t) = f(x− at) is a solution because
∂tψ = −af ′ and ∂xψ = f ′. In more than one dimension (x ∈ Rd for dimension d with
ψ(x, t))

∂tψ = −a · ∇ψ. (10)

has solution ψ(x, t) = f(x−at). This follows as ∂tψ = −(ax∂xf +ay∂yf +az∂zf) and this
is equal to −a · ∇ψ.

To model a wave equation where waves can travel in both directions, you can use two
fields instead of one; ∂tu = a∂xv, ∂tv = −a∂xu giving ∂ttu = −a2∂xxu which is the wave
equation. Solutions include f(x± at).

If the field itself is advecting the flow then in 1d we would get Burger’s equation

∂tu+ u∂xu = 0 (11)

The field is u and it is acting like a velocity that advects itself. However, this is a non-linear
equation.

In three dimensions, if the field is to act like a velocity it must be three dimensional.
That means a velocity vector u should have the same dimensions as the domain points x.
Burger’s equation becomes

∂tu+ u · ∇u = 0. (12)

The Euler equation and Navier-Stokes equations for hydrodynamics have these advective
terms in them.

3.2 Diffusion

The diffusion (or heat) equation in 1 dimension is

∂tu = D∂xxu (13)

for u(x, t) and diffusion coefficient D which has units of x2/t. A solution is

u(x, t) =
1√
4πDt

e−
x2

4Dt . (14)
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Notice that the solution spreads out but its integral over space is conserved
∫∞
−∞ u(x, t)dx =

1.
In Rd, the diffusion equation is

∂tu = D∆u (15)

where the Laplacian operator ∆ = ∇·∇ is the divergence of the gradient. In 3D Cartesian
coordinates

∆ = ∂xx + ∂yy + ∂zz. (16)

If the diffusion coefficient D < 0 the model is unstable! For a negative D, we rescale
space or/and time to get rid of the diffusion coefficient, giving ∂tu = −∂xxu. Sup-
pose we start with an initial condition near zero, and with a very small perturbation
u(x, t) = ϵeσt+ikx which is exponential in time and wave-like in space. We plug this into
the differential equation, finding σ = k2. The parameter σ > 0 for all k ̸= 0. This im-
plies that the amplitude of the perturbation would exponentially grow with growth rate σ.
Sometimes active materials can give diffusive terms that cause instability, and to stabilize
the system you would need to take into account additional derivatives or/and non-linear
terms.

3.3 Conservation laws

A conservation law for a quantity, say density ρ(x, t) looks like

∂tρ = −∇ · F (17)

where F(x, t) is the mass flux. If I choose a small area element, A, and a normal to this
small area element n̂, I can construct a vector dA = An̂. The amount of mass passing
through this area element per unit time is Ṁ = F · dA.

Consider a blob with volume V which has a surface S. The amount of mass that is
leaving that volume is

dM

dt
= Ṁ =

∫
S
F · dA (18)

where we integrate over the surface of volume V . To conserve mass∫
V
∂tρ dV = −

∫
S
F · dA (19)

We apply Gaus’ law ∫
S
F · dA =

∫
V
∇ · F dV (20)
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The previous two equations together give equation 17.
Question: Can the diffusion equation be written as a conservation law?
Answer: Yes. This follows because the Laplacian operator is the divergence of a gradient

operator. The heat equation can be described as energy transport. Heat flux depends on
the gradient of temperature and the diffusion coefficient is proportional to the thermal
conductivity and inversely proportional to the density and specific heat.

Mass flux in a fluid is F = ρv giving mass conservation

∂tρ = −∇ · (ρv). (21)

If density ρ remains constant then ∇·v = 0 and the system is said to be incompressible.

4 Continuum models for active matter

Suppose instead of describing a self-propelled particle system with particle positions and
headings, we describe the system with fields, the number density of particles ρ(x, t) (the
number of particles per unit area or volume) and a velocity field v(x, t).

If the system behaves as if it were incompressible we can ignore ρ, though in some
regimes some models predict large fluctuations in density and so are definitely not incom-
pressible.

How do we relate a particle system to a system described with fields? A field can be
constructed from a sum of delta functions, where each delta function is contributed by a
single particle. Alternatively, we can compute the average of a quantity such as velocity of
a population of self-propelled particles in a small volume element. This is like smoothing
over the sum of delta functions within a volume element. The density is the number of
particles per volume element.

What size volume element (or smoothing length) is used? The length scale should be
larger than the typical distance between particles. The length should be large enough that
the fluctuations due to different numbers of particles within each volume element are not
significant.

Kinetic theory involves describing a particle system with a distribution function f(x,v, t)
that is a function of position and velocity (and possibly other quantities such as ionization
state). The pressure in a fluid arises from the distribution of velocities in a particular
volume element. In the limit of large particle number, the equations for hydrodynamics
can be derived from the Boltzmann equation (often used in plasma physics) which can look
something like this

Df

Dt
= ∂tf +∇f · v −∇vf · ∇U =

df

dt collisions
. (22)
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4.1 Toner and Tu’s continuum model for self-propelled particles

Toner and Tu4 proposed a continuum model for self-propelled particles. The model de-
scribes density ρ(x, t) and velocity v(x, t) which are as a function of position and time,
and gives PDEs that contain a large number of terms

∂tρ+∇ · (ρv) = 0 (23)

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇v2 = (α− βv2)v −∇P + noise

+D0∇2v +D1∇(∇ · v) +D2(v · ∇)2v.
(24)

Toner and Tu motivated the collection of terms using symmetry arguments.
The noise, averaged over a particular volume element, could be a Wiener process https:

//en.wikipedia.org/wiki/Wiener_process. With the addition of noise, the coupled
PDEs are stochastic equations.

The λ1 > 0 term is the velocity v advecting itself. If λ1 < 1 then the advection is not
very strong. This is when there is a drag or friction force with an external medium?

The parameter D0 > 0 is like a shear viscosity.
The parameter D1 is like a bulk viscosity that dissipates energy if compression or

expansion takes place.
The α, β > 0 term gives a self-propel force which strives to maintain a constant speed

v0 =
√
α/β.

The pressure can be related to density via an equation of state. If an incompressible
system is desired, a very stiff equation of state can be chosen.

If the system behaves as if it were incompressible, we can neglect the λ2, λ3, D1 terms.
If λ1 > 1, particles speed up where the flow is divergent.
The λ3 > 0 term, pushes particles to regions where the velocity is lower.
I don’t have a nice intuitive feel for the D2 term! It seems advective of the advection.
The terms that are non-linear are those with λ1, λ2, λ3, β and D2. This is relevant

when implementing a numerical model.

4.2 Wet vs Dry

Active materials consume energy. By definition energy is not conserved. If they conserve
momentum (which implies interactions by equal and opposite forces) then they are usually
called ‘dry’. If many but not all of the forces in a particle based model are applied in an
equal and opposite manner then the active material can still be described as dry. Steer
forces for boids don’t necessarily conserve momentum, but self-propelled particle systems
are usually described as dry. Note a particle based model could still experience a strong
drag force (and would not conserve momentum) and it still would be described as dry.

4Toner, John; Tu, Yuhai (1995). Long-Range Order in a Two-Dimensional Dynamical XY Model: How
Birds Fly Together. Physical Review Letters. 75 (23): 4326–4329.
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Particle based simulations are usually dry.
Wet models are usually modeled with PDEs because the particles are embedded in a

fluid which is described with a velocity field.
In the continuum model, if you see the density as a field that evolves, then the system

is dry.
In continuum wet systems, the particle density is usually neglected. Instead the order

parameter is advected by a fluid which is described with only a velocity. I think the models
described as active gels by Marcetti+12 are just wet continuum models.

4.3 Polarization as an order parameter

The Toner and Tu model describes two fields density ρ and velocity, v, which are functions
of position and time x, t. How do we relate a system of moving point particles to these
fields? As mentioned above the density is the number of particles per unit volume and
the velocity can be the average particle velocity in a volume element. Neither of these
quantities describe how ordered the system is. For example, the average velocity could be
much lower than the individual velocities of each particle within a volume element.

An order parameter describes how ordered the system is locally. If all the particles are
moving in the same direction, then the order parameter is high. If the particles are moving
randomly, then the order parameter should be low.

Order parameters are often used in the context of phase transitions. The transition
between ordered and disordered states or between states with different types of order can
be temperature dependent. For example, consider a collection of spins that can take one
of two values, up or down. This is also called the Ising model. At high temperature the
spins are essentially random and the average spin (also called the magnetization in this
context) is zero. Below a particular temperature interactions cause all the spins to align.
In this case the order parameter is a binary digit that is a function of position.

In liquid crystals, elongated molecules are not arranged in a crystalline lattice so are
not ordered in position, but they can be ordered in terms of their orientation. In this case
an order parameter would describe statistics of alignment.

One way to create an order parameter for a self-propelled particle system is to define
a polarization vector from the velocities. However, instead of simply taking the average
velocity we take an average of the particle heading directions. We take v̂i to be a unit
vector of particle i such that its velocity vi = |v|iv̂i. A polarization vector can be defined
as the average value of v̂ computed within a volume element;

p = ⟨v̂j⟩. (25)

If all particles are moving at the same velocity but in different directions, then the sum
of their velocity headings (the unit vector v̂) would be low. The polarization would be low.
If all the particles are moving in the same direction, then the polarization is equal to 1 and
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has the same direction as their velocity An order parameter is a measure of the degree of
order.

Look again at the term (α − βv2)v in the equation 24. This term can also be written
in terms of a potential a gradient ∇U(v) where

U(v) = −α
2
v2 +

β

4
v4 (26)

−∇U(v) = αv − βv2v. (27)

If we only consider the time dependent term and the potential term then,

∂tv ∼ −∇U(v). (28)

Assuming that α, β > 0, a steady state is reached at the potential minimum which is where
|v| =

√
α/β. The potential minimum has a direction. If we interpret the velocity field as

the average of particle velocities in a particular region the non-zero static state implies that
there is order in the system. Most particles in a particular region are moving together. For
example, microorganisms could exhibit head-tail asymmetries and associated interactions
that favor alignment. The self-propel force and the alignment forces in the boid model are
mimicked by the (α− βv2)v term in equation 24.

The boid/Vicsek/Toner-Tu model is said to describe polar particles as each particle
has a particular direction for its motion.

Figure 2: Polar particles move in a particular direction. Polar particles with polar order
align their direction of motion with their neighbors, as shown on the left. Repulsive and
attractive interactions between particles only depend on particle position, not particle
orientation. The Vicsek/Toner-Tu/Boid model of self-propelled particles is in this class. A
particle could also have an ellipse or rod shape. Nearby particles could orient their shapes
so that their long axes are parallel to each other. In this case, the particles are said to
have neumatic order, as shown in in the middle and right panels. Repulsive and attractive
interactions depend upon particle orientation. The middle panel shows self-propelled rods
and the right panel shows an apolar active rod. The apolar particle can move in both
directions along its long axis.
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4.4 Free energy

According to the second law of thermodynamics, conventional systems are likely to mini-
mize a function called the free energy. Thermodynamic equilibrium is equivalent to min-
imization of free energy. The phenomenological Landau theory of phase transitions has
three steps: (1) finding a proper order parameter; (2) expanding the free energy in the
vicinity of the transition with respect to the (small) order parameter; and (3) finding the
minima of the free energy at each temperature, pressure, and so on, as functions of the
order parameter.

Even though they are out of equilibrium, sometimes active matter systems are de-
scribed, in part, using a free energy functional that might be used to describe a related
non-active statistical system. Many of the terms in the PDEs describing the dynamics of
the active system are computed using a functional derivative of a free energy functional
that depends on an order parameter.

Following the review by Marchetti+125, PDEs describing a system of active polar
particles depends on density ρ and polarization vector p

∂tρ+∇ · (ρp) = 0 (29)

∂tp+ λ1(p · ∇)p = −δFp

δp
+ noise (30)

are written in terms of the free energy functional

Fp[p] =

∫
dV
(
− α

2
p2 +

β

4
p4

+
K

2

∑
jk

(∂jpk)(∂jpk)− v1∇ · pρ− ρ0
ρ0

+
λ

2
p2∇ · p

)
. (31)

In Equation 30 The derivative
δFp

δp is a functional derivative (see https://en.wikipedia.
org/wiki/Functional_derivative).

With coefficients for the terms that depend upon temperature and setting
δFp

δp = 0, we
could describe a conventional material that would display phase transitions.

As we will show below, this model generates a PDE that looks similar to the Toner-Tu
model, but describing evolution of the polarization vector p instead of the average particle
velocity. In this continuum model p simultaneously plays the role of the orientational order
parameter of the system and the particle velocity field.

5M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, Madan Rao, and R. Aditi
Simha, Hydrodynamics of soft active matter, , Reviews of Modern Physics, vol. 85, Issue 3, pp. 1143-1189,
https://arxiv.org/abs/1207.2929
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4.5 A quick note on functional derivatives

Consider the function q(x) and the integral

L[q] =

∫ b

a
L(x, q(x), q′(x))dx (32)

where L is a function of x and the function q(x) and its derivative q′ = dq
dx at x. We vary

the function q by taking q → q + δq.

δL[q] =

∫ b

a
L
(
x, q + δq,

d

dx
(q + δq)

)
dx− L[q]

=

∫ b

a

∂L
∂q
δq dx+

∫ b

a

∂L
∂q′

d

dx
δq dx. (33)

We integrate the right hand term by parts and assume that everything vanishes on the
boundary

δL[q] =

∫ b

a

(
∂L
∂q

− d

dx

∂L
∂q′

)
δq dx. (34)

We associate

δL[q]

δq(x)
=
∂L
∂q

− d

dx

∂L
∂q′

(35)

where the derivatives on the right hand side are evaluated at x. If δL[q]
δq(x) = 0 then the free

energy is minimized.
Armed with this quick introduction, we attempt to compute the functional derivative

of the free energy function of equation 4.4. Equation 4.4 is an equation that would be
obeyed if the kinetic energy subtracted by the free energy (the Lagrangian) is a minimum.
The difference is used so that total energy is a conserved quantity.

First we compute some derivatives. With

L(p,∇p) = −α
2
p2 +

β

4
p4 +

K

2

∑
jk

(∂jpk)(∂jpk)− v1∇ · pρ− ρ0
ρ0

+
λ

2
p2∇ · p (36)

we compute

∂L
∂pk

= −αpk + βp2pk + λpk∇ · p (37)

∂L
∂(∂jpk)

= K∂jpk − v1
(ρ− ρ0)

ρ0
δjk +

λ

2
p2δjk (38)

d

dxj

∂L
∂(∂jpk)

= K∂jjpk − (∂jρ)
v1
ρ0
δjk +

λ

2
∂jp

2δjk (39)
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δFd

δp
= (−α+ βp2)p−K∇2p+ v1

∇ρ
ρ0

− λ

2
∇p2 + λp∇ · p (40)

Inserting this into equation 30 we find

∂tp+ λ1(p · ∇)p = (α− βp2)p+K∇2p+ v1
∇ρ
ρ0

+
λ

2
∇p2 − λp∇ · p (41)

Except for some constants that can be absorbed into units, this is essentially consistent
with equation 5 by Marchetti+12 and contains terms similar to those in the Toner+Tu
model.

Is there any advantage to writing the equations of motion in terms of a free energy
functional? Sometimes it helps to think about the equations of motion in terms of energy
and minimizing energy. For example, the quadratic function −αp2 + βp4 looks like the
potential energy function we discussed in the previous section.

In using the free energy to compute functional derivatives, we dropped boundary terms,
as is conventionally done with the assumption that most things go to zero at infinity.
⟨!#*#!⟩. If our focus is confined systems, then we are striving to pay attention to the
boundary terms and we don’t want to discard them!

4.6 Terms in the free energy that are important on the boundary

Suppose that the free energy of a 1d system contains a term that can be written as a
derivative of some function

LB = ∂xf. (42)

The contribution of this term to free energy is the integral of this term over the domain,
and in 1dimension

L[q]B =

∫ b

a
dx LB = f(b)− f(a). (43)

This is only sensitive to the function f on the boundary. In 2 or 3 dimensions if

LB = ∇ · f (44)

then we can use Stokes theorem to write the contribution in terms of an integral over the
boundary. In three dimensions

L[q]B =

∫
Ω
∇ · f dv =

∫
∂Ω

f · dA. (45)

In two dimensions

L[q]B =

∫
Ω
∇ · f dA =

∫
∂Ω

f · ds. (46)

13



4.7 More complicated polar systems

Polar materials can have extra terms in the free energy

Fp[p] =

∫
dV

(
K1

2
(∇ · p)2 + K2

2
(p · (∇× p))2 +

K3

2
(p× (∇× p))2

+
K4

2
∇ · [(p · ∇)p− p(∇ · p)] + v∇ · p+

h∥

2
(p2 − 1)

)
(47)

The K1 term is the free energy of splay deformation (think of a fan).
The K2 term is the free energy of twist deformation (only in 3d).
The K3 term is the free energy of bend deformation.
The K4 term is a divergence, known as ‘saddle-splay’ (?) and is associated with the

surface.
The h∥ term is a Lagrange multiplier and there to ensure that the polarization vector

remains at or near length 1. I have made the term look like a Lagrange multiplier, though
in equation 32 by Marcetti+12, the term was h∥p

2/2. When you take the functional
derivative, the constant term drops out so maybe it does not matter which way you write
it.

TheK coefficients are called Frank constants https://en.wikipedia.org/wiki/Distortion_
free_energy_density

TheK coefficients describe all possible low order derivative terms that obey the n → −n
neumatic symmetry. Terms with a single gradient don’t obey this symmetry and so are
lacking. This probably means that it is possible to equivalently write the gradient terms
in terms of the Q order parameter.

Sometimes people set the K1,K2,K3 Frank constants to be identical and lump them
together in one term, as in the free energy of equation 4.4. In this case the sum of the
three terms simplifies to

K

2
[(∇ · p)2 + (∇× p)2]. (48)

So far the free energy terms only have a single gradient operator of the order parameter
(with the exception o the K4 term which is a divergence). When taking the functional
derivative, this gives PDEs with a Laplacian or second order spatial derivatives in them.
The coupled fields can have diffusive terms and non-linear potential terms so we could
imagine similarities to reaction diffusion equations. We would have to expand the free
energy to higher order derivatives to pick up fourth order derivatives, such as appear in
the Swift-Hohenberg pattern formation model. If the diffusive terms cause instability, (a
negative viscosity), then terms with higher order derivatives are needed to stabilize the
model.
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Figure 3: Relevant for the Frank constants for neumatic materials.

5 Active neumatics

An active neumatic system can resemble a liquid crystal but can exhibit behavior such as
spontaneous flow that is not seen in an equilibrium system.

5.1 The neumatic order parameter

A neumatic system is not polar, so instead of choosing an order parameter that is a vector,
the order parameter is a symmetric tensor (with two indices), similar to a quadrupole
moment or a moment of inertia tensor.

The neumatic order parameter Q depends on the local orientation vector which is
described with a unit vector n̂(x, t) that is a function of position and time. The order
parameter is a two index, traceless and symmetric tensor

Q = s(nn− 1

d
I)

Qij = s(ninj −
1

d
δij) (49)

where d = 2 in two dimensions and d = 3 in three dimensions (so that trQ =
∑

j Qjj = 0).
In the above equation I is the identity matrix. The definition for Q has the

n → −n

nematic symmetry built-in.
The parameter s, called the scalar order parameter, describes the degree of alignment

and depends on an average of the orientations of particles in a local volume element. We
take z aligned with the director n̂ and take θ to be a co-latitude. The scalar order parameter

s = ⟨1
2
(3 cos2 θ − 1)⟩, (50)

where the average is over the particle angles and it is integrated over solid angle. The
function is designed so that an isotropic distribution f(θ, ϕ) = 1

4π gives s = 0. The scalar
order parameter s ∈ [−1/2, 1] in 3D with the value of -1/2 for θ = π/2 and when particles
are perpendicular to n̂.
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5.2 Free energy

For a generic uniaxial neumatic material (uniaxial means the order parameter only depends
on n̂ and not on an additional direction) the free energy typically contains terms like

Fp[Q] = constant +
A

2

∑
ij

QijQij +
B

3

∑
ijk

QijQjkQki +
C

4

∑
ijkl

QijQjkQklQli + ...

+KQ

∑
ijk

∂iQij∂kQkj +K ′
Q

∑
ijk

∂iQjk∂iQjk +K ′′
Q

∑
ijk

∂iQjk∂kQji + ....

+BQ

∑
ij

(∂iQijQji + ∂iQjjQji + ∂iQiiQjj ....)? (51)

where coefficients depend upon temperature or/and density.
The term with coefficient A is sometimes written Q : Q = tr Q2.
The term with coefficient B could be written as tr Q3.
The terms with coefficients K might be written confusingly as (∇Q)2.
A model lacking the gradient terms can be used to model the nematic to isotropic phase

transition.

∂Fp[Q]

∂(∂aQbc)
= KQδiaδbiδcjδkQkj + .....

= 2KQδab
∑
k

∂kQkc + 2K ′
Q∂aQbc + 2K ′′

Q∂cQba (52)

These terms might be related to the terms previously discussed in terms of polarization.

5.3 Dry active nematics

Models are often classified as a dry active neumatic or as an active neumatic gel, depending
upon the role of the background fluid.

In a particle based model, the particle is equally likely to move in either direction
along its long axis. Often the direction of motion (along the particle’s long axis) is simply
occasionally reversed. For example, a coin can be flipped every once in a while to randomly
choose the direction of motion (for example, Henke+176 did this in their paper on dry active
neumatics on a sphere).

A continuum model can be constructed for the free energy containing terms with both
polarization and neumatic order tensor (Q).

6Dynamical patterns in active nematics on a sphere, Silke Henkes, M. Cristina Marchetti and Rastko
Sknepnek, 2017, Phys. Rev. E 97, 042605, https://arxiv.org/abs/1705.05166
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∂tQ = −Γ
δFp(Q, ρ)

δQ
+ noise (53)

If coupled to the density the model can exhibit particle fluctuations and propagation of
defects. This equation along with one describing evolution of the density is described as a
dry model.

I found this useful to discuss both models and numerics https://journals.aps.org/
prl/abstract/10.1103/PhysRevLett.129.258001#supplemental

5.4 Active neumatic gels

These are in the category of wet models.
The thing called an active neumatic gel is I think just two equations, one for the velocity

and consistent with a fluid and the second advecting the order parameter, Q.
Active gels can exhibit spontaneous flow and generate turbulence (and there is a real

system based on actin filaments that actually does this).

6 Active fluid systems

The setting is suspensions of active rodlike or elongated objects (e.g. swimming organ-
isms, cytoskeleton, or tissues) embedded in a momentum-conserving solvent that generate
stresses on the fluid.

In a wet system, we use the equations for hydrodynamics (conservation of mass and mo-
mentum) which depend on density ρ and velocity v. Many models adopt a incompressible
fluid so there only an equation for the velocity, with the constraint that ∇ · v = 0.

To conservation of momentum for the fluid we add a term in the stress tensor that
depends on the active particles. The active particles push the fluid.

We add a third equation for the evolution of an order parameter describing the orien-
tation of the active particles. The order parameter is advected by the fluid. Its equation
of motion takes into account interactions between active particles.

Firstly the fluid equations, in general

Du

dt
= ∂t + (v · ∇)u = −∇p

ρ
+∇σ (54)

Here the stress tensor depends upon velocity u and the order paremeter of the active
material Q,

σ(u,Q).

An example is called an active neumatic gel at low Reynold’s number. Starting with
Stokes flow

∇p = ∇ · σ + noise (55)
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we add an equation for evolution of an order parameter Q

(∂t + v · ∇)Q = S(∇v)− δFp

δQ
(56)

where S is a function that depends on the gradient of the velocity, possibly including the
vorticity.

6.1 Advecting a tensor

Ordinarily in a fluid, one does not keep track of the vorticity when advecting a quantity.
However, if that quantity has orientation, the vorticity (fluid circulation) causes the ad-
vected quantity to rotate. If Q is the neumatic order parameter (a tensor) then when
advected by the fluid

DQ

Dt
= ∂tQ+ (v · ∇)Q+Ω ·Q−Q ·Ω (57)

where

Ω =
1

2
(∇v −∇vT ) (58)

The derivative in equation 57 is sometimes called the co-moving co-rotational derivative of
the Q-tensor. Let’s be specific about the indexing.

Ωij =
1

2
(∂ivj − ∂jvi) (59)

Ω ·Q =
∑
ij

ΩijQij . (60)

7 Active oscillating materials

Many systems consist of individual oscillating elements. For example cilia, heart muscle,
fire flies. Collective behavior leads to synchronization or wave-like phenomena.

Swarmallators are self propelled particles that also oscillate. O’Keefe.
Brato’s paper!

8 Active scalar model

The active scalar model advects an active scalar quantity ϕ.
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