
Homework # 6. Physics 265

Topic: On quantum algorithms

Due date: Tuesday April 29, 2025 (midnight)
Choose a subset of about 5 problems to work on.
You can also create and share your own problems
or work on problems from previous problem sets.

1. Quantum Fingerprinting

Figure 1: The referee performs a measurement to
determine if Alice’s state |ϕx⟩ is similar to Bob’s
state |ϕy⟩.

Alice holds an n-bit string x (consisting of
1s and 0s) and Bob holds an n bit string
y. A referee’s goal is to find out if x is the
same as y. Instead of sending the referee the
strings themselves, Alice and Bob encode
the information. Using x, Alice encodes an
m qubit state |ϕx⟩ (with m ∼ log(n)) and
Bob encodes an m qubit state |ϕy⟩. Alice
and Bob have arranged to use the same en-
coding function and the states themselves
are called fingerprints. The idea is that the
number of qubits sent is much less than n.
The two quantum states are not necessarily
exactly the same nor are they necessarily or-
thogonal.

Alice and Bob send their quantum states
(aka fingerprints) to the referee who per-
forms the circuit in Figure 1. The initial
state is

|ψ⟩init = |0⟩ ⊗ |ϕx⟩ ⊗ |ϕy⟩ .

The SWAP operation performs

|ϕx⟩ ⊗ |ϕy⟩ → |ϕy⟩ ⊗ |ϕx⟩

on Alice and Bob’s quantum states. The
SWAP operation is controlled by the ref-
eree’s single qubit.

Show that the probability that the referee
measures a 1 is

p1 =
1

2
(1− | ⟨ϕx|ϕy⟩ |2)

and is small if Alice and Bob’s states are
similar. The referee can accurately tell if
the states are similar or not, particularly if
a series of measurements are made. A pa-
per on this topic here https://arxiv.org/
pdf/quant-ph/0102001.pdf.

2. On the Quantum Fourier Transform
for 3 qubits

In the above figure we show a circuit that
computes the Quantum Fourier transform
for three qubits.

The rightmost gate is a swap operation
where the top and bottom bits are swapped.
The single bit versions of the gates used in
the transform are

H =
1√
2

(
1 1
1 −1

)
Pπ

2
=

(
1 0
0 i

)
Pπ

4
=

(
1 0

0 e
iπ
4

)
.
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Create a circuit that does the inverse Fourier
transform for 3 qubits.

I used the inverse of

P−1
π
4

= P−π
4
= ZPπ

2
Pπ

4

and a similar inverse for Pπ
2
.

3. An eigenstate of the Quantum Fourier
Transform

Consider a finite dimensional Hilbert space
with basis |n⟩ and n ∈ ZN . We create a
basis using a discrete Fourier transform via
|k⟩F = 1√

N

∑
n ω

kn |n⟩ where ω = e2πi/N is

a complex root of unity. The QFT operator

Q̂FT =
1√
N

∑
jk

ωjk |j⟩ ⟨k| .

We construct operators that look like Pauli
operators

X̂ =

N−1∑
n=0

|n+ 1⟩ ⟨n| (1)

Ẑ =

N−1∑
n=0

ωn |n⟩ ⟨n| (2)

In the above expression for X̂, addition for
|n+ 1⟩ is modulo N .

a) Find expressions for X̂, Ẑ in the |k⟩F ba-
sis.

Hints: use the identity I =
∑

k |k⟩F ⟨k|F , the
relations ⟨n|k⟩F = ωnk

√
N
, F ⟨k|n⟩ = ω−nk

√
N

and∑
j ω

jk = Nδk0. Sums are from 0 to N − 1.

b) Show that

Q̂FT X̂Q
†
FT = Ẑ and Q̂†

FT ẐQFT = X̂.

Suppose you have a state vector |η̃⟩ that
is an eigenfunction of the discrete Fourier

transform with eigenvalue 1. It satisfies
Q̂FT |η̃⟩ = |η̃⟩.
c) Show that |η̃⟩ is also an eigenfunction of

Q†
FT .

Given a particular state, |ψ⟩, let a variance

σ of an operator f̂ be

σ(f̂) =
〈
f̂2

〉
−
〈
f̂
〉2

= ⟨ψ| f̂2 |ψ⟩−(⟨ψ| f̂ |ψ⟩)2.

d) Show that σ(X̂ + X̂†) = σ(Ẑ + Ẑ†) and
that σ(X̂ − X̂†) = σ(Ẑ − Ẑ†) where the ex-
pectation values are computed for the state
|η̃⟩.
The state |η̃⟩ can be a state of minimum
uncertainty. This discrete setting is relevant
for computing discrete versions of Wigner
or Husimi functions which are phase space
analogs for quantum systems.

4. Kitaev’s phase estimation algorithm

Suppose we can prepare |u⟩, an eigenstate
of the unitary operation U with eigenvalue
e2πiϕ,

U |u⟩ = e2πiϕ |u⟩ .

Our goal is to estimate the phase ϕ.

Consider the circuit in the following figure:

The eigenstate |u⟩ could be in a multiple
qubit space (that’s what the slanted bar in
the figure means).

a) Show that the probability of measuring 0
is p0 = cos2(πϕ).

b) Suppose that instead of applying the con-
trolled U once, it is applied k times. What
is the probability of measuring a zero?
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Notes:

By repeating the measurements, it is possi-
ble to accurately measure the phase ϕ using
the fraction of measurements that is mea-
sured 0 and 1.

If you remove the second Hadamard and in-
sert a quantum Fourier transform operation
on the lower qubits, then you can directly
measure the phase by measuring these lower
bits.

5. Accuracy of measurement in phase es-
timation

In the previous problem, the probability of
measuring 1 after running the circuit 1 time
is

p1 = 1− p0 = sin2(πϕ). (3)

Suppose you run the circuit k times and
make k measurements of the top qubit. The
i-th measurement gives you zi where zi ∈
{0, 1} as either 0 or 1 is measured.

You estimate the probability p1 of measur-
ing a 1 by computing the mean value of your
measurements

µ ∼ 1

k

k∑
i=1

zi. (4)

The error of each individual measurement is
about the difference between a measurement
of 0 and 1 which is about σi ∼ 1 (where σi is
the standard deviation of the i-th measure-
ment).

a) Show that the uncertainty (or standard
deviation) in your estimate for p1 after run-
ning the circuit k times is

σp1 ∼ 1√
k
.

(Hint: propagate the error in equation 4.)

The accuracy of the measurement is usually
written as O(1/

√
k) where k is the number

of queries of the unitary transformation or
equivalently the number of times the circuit
is run.

b) Equation 3 can be used to estimate ϕ
from p1. Explain why the accuracy of the
estimated value for ϕ is also O(1/

√
k).

6. On the order of an integer modulo an-
other integer

Consider positive integers a,M, r such that

ar = 1 mod M

Show that akr = 1 mod M for any positive
integer k.

This problem is relevant for the Shor factor-
ing algorithm that relates period finding to
order finding.

7. Quantum circuits for modular multi-
plication

Consider the operation

f(x) = ax mod M

where x, a,M are integers; 0 ≤ x < 2n and
0 < M < 2n and 0 < a < M .

a) Show that if a,M are relatively prime,

|x⟩ →
{

|f(x)⟩ for 0 ≤ x < M
|x⟩ for x ≥M

gives a permutation of basis states and so
can be implemented with a set of NOT and
CNOT gates.

b) What is the set of values {f(x)}, if a,M
are not relatively prime?

This is relevant for the Shor factoring algo-
rithm.
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Hints: If a,M are relatively prime, their
greatest common divisor is 1. In part a)
you can show that f(x) = f(y) implies that
x = y. Then via the pigeon-hole principle
the different f(x) values are unique and you
have a permutation. In part b), the set gen-
erated by f(x) depends on the greatest com-
mon divisor of a,M .

Some examples.

a = 2,M = 4. We compute the sequence
ia mod M for i = 0, 1, ..... The sequence
ia = 0, 2, 0, ... period = 2. Here a is prime.

a = 3,M = 4. ia = 0, 3, 2, 1, 0... period =4
=M . Here a is prime.

a = 3,M = 5. ia = 0, 3, 1, 4, 2, 0.. period =5
=M . Here a,M are prime.

a = 6,M = 15. ia = 0, 6, 12, 3, 9, 0, .... pe-
riod =5.

a = 10,M = 15. ia = 0, 10, 5, 0, ... period
=3.

Hint: find the greatest common divisor of
a,M .

8. On bit-wise phase shifts

A phase gate on a single qubit is defined as

Rk =

(
1 0

0 e2πi/2
k

)
Consider a system with n qubits and the
accompanying quantum circuit in Figure 2.

a) Show that this circuit performs a phase
shift on the basis states

|x⟩ → e2πix/2
n

|x⟩

where natural number x is treated as an in-
teger in the exponential and labels the quan-
tum state via a bit string.

b) What transformation occurs if the circuit
is repeated?

Figure 2: A circuit with phase gates applied to
each qubit.

9. Quantum circuit for modular addition

Consider the task of constructing a quantum
circuit to compute

|x⟩ → |(x+ y) mod 2n⟩

where y is a fixed integer constant, 0 ≤ x <
2n and 1 ≤ y < 2n.

a) Show that an efficient way to do this, for
a value of y = 1, is to first perform a quan-
tum Fourier transform, then to apply single
qubit phase shifts (as in the previous prob-
lem), then apply an inverse Fourier trans-
form.

b) How many operations are required?

c) What values of y can be implemented this
way?

This is Problem 5.6 by Nielson and Chuang.

Hints: Order n2 operations are required for
the QFT.

I am not 100% sure about c, guessing that
the operation in the previous problem at
best works for n− 1 iterations.

10. Measuring the trace of a unitary
transformation with a noisy quantum
computer

In a previous problem we showed how to
estimate the phase of an eigenvalue of an
n× n unitary matrix U.
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Instead of using an eigenstate as input, we
give the circuit a density matrix

ρn =
I

2n

which is that of a maximally noisy or mixed
state. Here n is the number of bits in the
bottom part of the circuit.

The input density matrix is

ρn+1 = |0⟩ ⟨0| ⊗ ρn

= |0⟩ ⟨0| ⊗ 1

2n

2n−1∑
x=0

|x⟩ ⟨x|

a) Show that if a 0 is measured the density
matrix becomes

ρ′n+1,0 = |0⟩ ⟨0| ⊗
[
(I+U)

2
ρn

(I+U†)

2

]
b) Show that the probability that a 0 is mea-
sured is

p0 =
1

2
+

1

2n+2
tr
(
U+U†)

If the circuit is repeated you will get an in-
creasingly accurate estimate for p0.

c) Find Re(trU) (the real part of the trace
of U) in terms of p0.

Hint: tr(U) =
∑

j ujj , tr
(
U†) =

∑
j u

∗
jj .

Compute tr
(
U+U†) and write it in terms

of Re(tr{U}).
Based on the first problem in Preskill’s 2020
problem set 4.

While the first bit in the circuit must be
clean, the remaining n bits can be noisy. In
this setting, noise may help the calculation!

11. Estimating the trace of a unitary
transformation – continued

a) Modify the circuit in the previous prob-
lem so that you can measure the imaginary
part of the trace of U, which is Im(trU).

Hint: I used a phase gate S = diag(1, i).

b) Show that with k queries of U it is possi-
ble to estimate both real and complex parts
of the normalized trace tr(U/2n) to an ac-
curacy of O(1/

√
k).

Hint: Use the previous problem in this prob-
lem set.

12. Measuring trace of an operator

Figure 3: A series of measurements on average
gives p0 − p1 = 1

2 tr
(
ρ(U† +U)

)
where p0 is the

probability that the top qubit is in the |0⟩ state
and p1 is the probability that the top qubit is in
the |1⟩ state. If U is Hermitian then the mea-
surement gives tr(ρU).

Assume that the measurement is done with
measurement operator σz. A series of mea-
surements ⟨σz⟩ on the top qubit gives p0−p1
where p0 is the probability that the first
qubit is in the |0⟩ state and p1 is the proba-
bility that the first qubit is the in |1⟩ state.
Show that

⟨σz⟩ = p0 − p1 =
1

2
tr
(
ρ(U+U†)

)
.

13. Exponential error suppression
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Figure 4: The unitary operator U operates on k
systems. Input on the left are k copies of the
same density operator ρ. They are swapped,
then the Hermitian and unitary operator A is
applied to the top system.

We consider a variant of the circuit in the
previous problem with operator U shown in
Figure 4.

The input on the left is

ρinput = ρ1 ⊗ ρ2 ⊗ ...⊗ ρk

where each of the density operators ρi is a
copy of the same density operator ρ.

a) Show that

tr(Uρinput) = tr
(
ρkA

)
Inserting the unitary operator shown in Fig-
ure 4 into Figure 3 gives a circuit shown in
Figure 5.

This is known as exponential error
suppression, as proposed by Bálint
Koczor: https://arxiv.org/pdf/2011.

05942.pdf.

As a density operator can be diagonalized,
we can write

ρ =
∑
i

pi |ϕi⟩ ⟨ϕi| . (5)

where |ϕi⟩ is an orthogonal basis of ρ’s
eigenvectors. In this basis

ρk =
∑
i

pki |ϕi⟩ ⟨ϕi| . (6)

A setting is where

ρ = λ |ϕ⟩ ⟨ϕ|+ (1− λ) |ϕN ⟩ ⟨ϕN | (7)

where λ ∼ 1 corresponds to a desired com-
putation output associated with state |ϕ⟩
and (1−λ) is small and corresponds to noise
giving an undesired state |ϕN ⟩. The density
matrix to the k-th power is

ρk = λk |ϕ⟩ ⟨ϕ|+ (1− λ)k |ϕN ⟩ ⟨ϕN | . (8)

If λ ∼ 1 then (1 − λ)k is really small. If
tr
(
ρkA

)
is measured instead of tr(ρA), then

the noise has been suppressed.

b) Does this circuit require the density op-
erator ρ to be a single qubit system or could
it describe a multi qubit system?

Hints: We illustrate how to calculate the
system for k = 2, Consider a short version
of U where k = 2 and only two density op-
erators are swapped. The input density op-
erator

ρinput =
∑
i

pi |ϕi⟩ ⟨ϕi| ⊗
∑
j

pj |ϕj⟩ ⟨ϕj | .

The operation of the swap is

SWAPρinput=
∑
ij

pipj |ϕj⟩A ⟨ϕi|A |ϕi⟩B ⟨ϕj |B

=
∑
ij

pipj |ϕj⟩A |ϕi⟩B ⟨ϕi|A ⟨ϕj |B .

Notice that the indices of the kets have
flipped and the resulting state is entangled.
We write operator

A =
∑
kl

akl |ϕk⟩A ⟨ϕl|A

in the basis of ρ’s eigenvectors.
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Figure 5: On the left we input k copies of a density operator ρ that includes some noise. The
measurement ⟨σz⟩ = tr

(
ρkA

)
suppresses the noise. Here A is assumed to be Hermitian. The

operator within the green box is the same as shown in Figure 4.

The operation of U

Uρinput=(A⊗ I)SWAPρinput

=
∑
kl

akl |ϕk⟩A ⟨ϕl|A ×∑
ij

pipj |ϕj⟩A |ϕi⟩B⟨ϕi|A⟨ϕj |B

=
∑
kl

∑
ij

aklδljpipj×

|ϕk⟩A |ϕi⟩B ⟨ϕi|A ⟨ϕj |B
=
∑
ijk

akjpipj |ϕk⟩A |ϕi⟩B ⟨ϕi|A ⟨ϕj |B

We take the trace of both sub-systems

tr(Uρinput)=
∑
ijk

akjpipj |ϕk⟩A|ϕi⟩B⟨ϕi|A⟨ϕj |B

× δkiδij

=
∑
j

ajjp
2
j . (9)

We also compute

tr
(
Aρ2

)
=tr

∑
ij

aij |ϕi⟩⟨ϕj |
∑
k

p2k |ϕk⟩⟨ϕk|


= tr

∑
ijk

aijp
2
k |ϕi⟩ δjk |ϕk⟩


= tr

∑
ij

aijp
2
j |ϕi⟩ |ϕj⟩


=

∑
j

ajjp
2
j . (10)

Notice that equation 9 looks like equation
10. This implies that tr(Uρ) = tr

(
Aρ2

)
for

the case with k = 2. Your goal is to gener-
alize this computation for k > 2.

14. Using Grover’s algorithm to solve a
3SAT problem

3SAT satisfiability problems are in the class
of NP-Complete (P=can be verified in poly-
nomial time; NP=nondeterministic polyno-
mial time to solve; complete= other prob-
lems in NP can be reduced in polynomial
time to 3SAT).

Let x = (x1, x2, x3) where each xi ∈ {0, 1}
are Boolean variables. A function that re-
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turns either 0 or 1 is

f(x) =(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3)∧
(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3)

(11)

Our goal is use the Grover algorithm to find
solutions to the above problem. That means
we would like to use the Grover algorithm
to help us find one or more strings for x that
satisfy f(x) = 1. This is a decision problem
in 3-SAT.

To construct the Grover iterator we require
a unitary transformation Uf that is a func-
tion of the Boolean function f(x). The op-
erator

Uf |x, q⟩ → |x, f(x) + q⟩ (12)

where x ∈ {0, 1}n and q ∈ {0, 1}. Equiva-
lently

Uf |x,−⟩ → (−1)f(x) |x,−⟩ . (13)

a) Design a circuit that performs Uf for the
3SAT problem with f(x) given in equation
11.

Hint: It may be handy to use the relation

(a ∨ b ∨ c) = ā ∧ b̄ ∧ c̄

I found this relation helped to construct the
logical function f() with gates.

15. On Fourier transforms for qutrits

This problem is related to the hidden sub-
group problem. We consider a problem sim-
ilar to that of Simon’s problem but with
qutrits instead of qubits.

Consider a string of numbers x =
(x1x2x3...xn) with n digits and where each
digit xi ∈ {0, 1, 2}. With group opera-
tion (+ mod 3)n operating on each digit,
the strings are the elements of the group

G = Z⊗n
3 . For example the group opera-

tion is x+y = z and each digit individually
satisfies zi = (xi + yi) mod 3.

a) Characterize the group Ĝ of 1d represen-
tations of G.

b) What is a Fourier basis {|χk⟩} for
the group in terms of qutrit basis states
|x1x2...xn⟩?
Consider a subgroup H ⊂ G generated by
an n-bit string s = (s1s2...sn). The sub-
group H has elements {0, s, 2s} where 0
refers to a string of zeros.

c) Consider the subgroup H generated by

s = (1, 0, 2, 1).

The element

s+ s = (2, 0, 1, 2)

is also in the subgroup. The subgroup H
contains three elements,

H = {(0, 0, 0, 0), (1, 0, 2, 1), (2, 0, 1, 2)}.

Find all the elements of H⊥, the group of
representations in Ĝ that act like the iden-
tity when restricted to members of H.

Hints: Show that you need to find values of
k = (k1k2k3k4) that satisfy

k·s=0 mod 3 and k·(s+s)=0 mod 3.

Then find values of k that satisfy both re-
lations. The order of H⊥ should divide the
order of the group G.

16. On Quadratization of Boolean func-
tions and the Ising model

Consider the following optimization func-
tion

f(x1, x2, x3, x4, x5)=αx1x3x4x5−βx1x2x3x4x5

with α, β positive real coefficients. The
variables are Boolean xi ∈ {0, 1} for i =
1, 2, 3, 4, 5.
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a) With some extra variables, construct a
quadratic optimization minimization func-
tion that has the same minima as f().

b) Suppose your quadratic optimization
function g() has two minima x∗ and y∗ and
they have the same value, g(x∗) = g(y∗).
Here x∗,y∗ are Boolean strings. Using your
related Ising model Hamiltonian, you run
an adiabatic algorithm to find the ground
state. You perform a measurement of the fi-
nal resulting ground state. You can run the
algorithm multiple times and measure the
resulting ground state multiple times. What
are the results of these measurements?

Hints: The ground state would be degener-
ate. During the adiabatic evolution, the two
lowest energy levels would approach each
each until they are equal.

17. Propose and solve your own problem
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