
Homework # 6. Physics 265, Spring 2023

Topic: On Error Correction

Due date: Thursday April 13, 2023. This prob-
lem set may be long. If so choose a subset of
problems to work on. You can also create your
own problem and share it.

1. Identities

a) Show that HXH = Z.

b) Show that HZH = X.

c) Show that HXZH = −XZ.

d) Find a similar identity for Y .

Here H is the Hadamard operator and
X,Y, Z are the Pauli matrices.

2. On Measuring X1X2X3X4X5X6 which
is used in Shor’s 9-bit code

Figure 1: A circuit that computes the parity of
6 bits using an ancilla bit.

In Figure 1 we show a circuit that computes
the parity of 6 bits. The bottom bit is an
ancilla bit that is measured at the end. A 1
is measured if there is an odd number of 1s
in the 6 qubit state, which are in the top 6
lines in the circuit.

Consider the operator Z1Z2Z3Z4Z5Z6.
Here Z1 = Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I and the
other operators are defined similarly so the
index tells you which qubit the Z operates

on. The operator Z1Z2Z3Z4Z5Z6 has eigen-
values 1, -1.

In the circuit in Figure 1, a 1 is measured
if the input in the first 6 qubits is an eigen-
state of Z1Z2Z3Z4Z5Z6 with eigenvalue 1.
In the circuit a 0 is measured if the in-
put in the first 6 qubits is an eigenstate of
Z1Z2Z3Z4Z5Z6 with eigenvalue 0.

Because a different value is measured for
each eigenstate of Z1Z2Z3Z4Z5Z6, the cir-
cuit in Figure 1 essentially measures this op-
erator.

a) Design a circuit that measures the oper-
ator X1X2X3X4X5X6.

Hint: The states |+〉 , |−〉 are eigenstates of
X and you can transfer to the |+〉 , |−〉 basis
using a Hadamard operator.

b) Design a circuit for a 9 bit system
that uses two extra ancilla bits to measure
X1X2X3X4X5X6 and X4X5X6X7X8X9.

3. On correcting errors without measure-
ment

We consider the 3-bit phase-flip error cor-
rection code that encodes

|0〉 → |+ + +〉 and |1〉 → |− −−〉

A circuit that performs error detection is
shown in Figure 2.

a) Design a circuit that corrects the errors
after measurement.

b) Design a circuit that corrects the errors
without measurement.

4. Creating a projection operator for the
encoding space
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Figure 2: Detecting errors in the 3-bit phase-flip
error correction code. The bottom two ancilla
bits are measured to detect a single phase flip
error in the top three bits.

Consider the stabilizer group S generated
by 〈X1X2, X2X3〉 that gives the 3-bit phase-
flip quantum error correcting code.

The encoded or stabilized space C contains
vectors |v〉 such that g |v〉 = |v〉 for all g ∈ S.

Show that

P =
1

4
(I + X1X2)(I + X2X3) (1)

is a projection operator in the 3 qubit space
that projects to the encoding subspace C.

In other words show that

P = |+ + +〉 〈+ + +|+ |− − −〉 〈− − −| .

It may be useful to write

X = |+〉 〈+| − |−〉 〈−|
I = |+〉 〈+|+ |−〉 〈−|

Notice that X1X2 has eigenvalues ±1 and
(I + X1X2)/2 has eigenvalues 0, 1.

5. Creating a projection operator for the
stabilized space

Consider the stabilizer group S generated
by k independent generators 〈g1, g2, ....gk〉.
with generators in the generalized Pauli
group Gn.

Show that a projector giving the stabilized
or encoding space C can be constructed by

P =
1

2k

k∏
j=1

(I + gj). (2)

A vector |v〉 that is stabilized by stabilizer
group S satisfies

g |v〉 = |v〉 for all g ∈ S.

The coding subspace C is the vector sub-
space stabilized by S.

A vector |w〉 that is perpendicular to sub-
space C satisfies 〈w|v〉 = 0 for all |v〉 ∈ C.

This can be done in two parts.

a) Show that for any |v〉 ∈ C, the projection
P |v〉 = |v〉.
b) Show that for any |w〉 ⊥ C, the projec-
tion P |w〉 = 0.

Stabilizer groups contain operators that are
in the generalized Pauli group Gn. Stabi-
lizer groups cannot contain −I so all ele-
ments commute and all elements are Hermi-
tian. The eigenvalues of any operator in Gn
has eigenvalues ±1. Consequently, the ma-
trices (I + gj)/2 have eigenvalues 0, 1. As
all members of S must commute, all mem-
bers of {(I +gj)} must also commute. A set
of matrices that commute are all simultane-
ously diagonalizable. That means that the
eigenvalues of P must be ∈ {0, 1}.

6. The 5-bit stabilizer code

What is the minimum size for a quantum
code which encodes a single qubit so that
any error on a single qubit in the encoded
state can be detected and corrected? The
answer is 5-bits.

The stabilizer group S for the five bit error
correcting code is generated by these four
operators

〈XZZXI, IXZZX,XIXZZ,ZXIXZ〉
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that are also shown in Table 1. These could
also be written as

〈X1Z2Z3X4, X2Z3Z4X5, X1X3Z4Z5, Z1X2X4Z5〉

or as

〈X ⊗ Z ⊗ Z ⊗X ⊗ I, I ⊗X ⊗ Z ⊗ Z ⊗X,

X ⊗ I ⊗X ⊗ Z ⊗ Z,Z ⊗X ⊗ I ⊗X ⊗ Z〉

Table 1
Generators

g1 X Z Z X I
g2 I X Z Z X
g3 X I X Z Z
g4 Z X I X Z

Notice that the generators are cyclic permu-
tations of each other.

Verify that the five qubit code can protect
against an arbitrary single qubit error.

In other words check that the set

SE ={X1, X2, X3, X4, X5, Z1, Z2, Z3, Z4, Z5}

is a correctible set of errors.

A correctable set of errors satisfies the fol-
lowing: For every pair Ei, Ej of errors in

the set SE , the operator E†iEj either is in
stabilizer group S or anticommutes with a
generator of S. You will need to show that
this is true for the set SE and using the sta-
bilizer generators in the table.

We don’t need to include Y errors as if X
and Z errors can be corrected and the prod-
uct XZ for single qubits can be corrected,
then the Y errors can also be corrected.
This then means that any single qubit error
can be corrected as any unitary transforma-
tion for a single qubit can be written as a
linear combination of I,X, Y, Z operators.

7. The 5-bit stabilizer error correcting
code syndrome

Describe a syndrome that allows correction
of errors in the set

SE ={X1, X2, X3, X4, X5, Z1, Z2, Z3, Z4, Z5}

for the 5 bit stabilizer code generated by the
generators in Table 1.

You need to fill in the following table with 1s
and -1s that represent measurements of the
stabilizer generators. Elements that com-
mute give 1.

XZZXI IXZZX XIXZZ ZXIXZ
X1

X2

X3

X4

X5

Z1

Z2

Z3

Z4

Z5

Does the syndrome allow you to also
correct for additional errors in the set
{Y1, Y2, Y3, Y4, Y5}?

8. The Quantum Hamming Bound

Any non-degenerate quantum [[n, k]] code
that corrects all errors with weight t or less
must satisfy the quantum Hamming bound

t∑
i=0

3i
(
n
i

)
≤ 2n−k (3)

Suppose the number of qubits you want to
encode is k = 1, but you want to be able
to correct for all errors with weight t = 2 or
less. That means you could correct all errors
that affect 1 and 2 qubits. How many qubits
n would you need in your error correction
code?
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You need to compute both sides of the equa-
tion 3 for various values of n and see for
what n the inequality becomes satisfied.

9. A fault tolerant and transversal phase
gate for the 3 bit bit flip error correct-
ing code

The phase gate

S = Pπ
2

=

(
1 0
0 i

)
= diag(1, i)

Consider the 3-bit code with basis for its
encoded states ∣∣0̃〉 = |000〉∣∣1̃〉 = |111〉

We would like to find a way to apply the
phase gate transversally so that an opera-
tion is performed on each encoded qubit sep-
arately. The desired operation would give
the same result as the phase gate but would
be fault tolerant.

The operation we desire looks like Q1 ⊗
Q2⊗Q3 where each operation is on a single
qubit and it should send |000〉 → |000〉 and
|111〉 → i |111〉.
a) Show that S̄ = S⊗S⊗S in the encoded 3
bit space does not carry out the single qubit
phase gate.

b) Find a different gate Q such that Q̄ =
Q⊗Q⊗Q does give the phase gate.

c) Suppose a single bit flip error occurs prior
to applying Q̄. Show that the single bit flip
error would still be corrected by the syn-
drome associated with this code, up to a
global phase. Note that a phase flip error
would be introduced and this would be a
problem.

10. Your Problem here
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