
Homework # 5. Physics 265, Spring 2025

Topic: On the density matrix, generalized mea-
surement, entropy and quantum channels.

Due date: Thursday April 8, 2025. Choose a
subset of about 7 problems to work on. You can
also create and share your own problems or do
problems from a different problem set or from a
book.

1. On 2× 2 density matrices

A density matrix ρ of a 2 state system is
a 2x2 Hermitian matrix ρ that is positive
definite and has trace 1.

A Hermitian matrix satisfies H = H† where
† is the complex transpose. With

H =

(
a00 a01
a10 a11

)
H† =

(
a∗00 a∗10
a∗01 a∗11

)
(a) Show that any 2x2 Hermitian matrix

with trace 1 can be written in the fol-
lowing form

ρ =
1

2
(I+ p · σ)

where p is a vector of real numbers
p = (px, py, pz) and I is the identity
matrix. The vector of Pauli spin ma-
trices σ = (σx,σy,σz). The vector p
is sometimes called a polarization.

The Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
The Pauli spin matrices obey

σ2
x = σ2

y = σ2
z = I.

The Pauli spin matrices obey

trσx = trσy = trσz = 0.

(b) Show that

ρ2 =
1

4

(
(1 + p2)I+ 2p · σ

)
Note that the Pauli matrices do not
commute: σxσz ̸= σzσx

(c) Show that

tr(ρ2) =
1

2

(
1 + p2

)
(d) With ρ =

(
ρ00 ρ01
ρ∗01 ρ11

)
show that

ρ00 =
1

2
(1 + pz)

ρ11 =
1

2
(1− pz)

ρ01 =
1

2
(px − ipy)

(e) Show that

detρ =
1

4

(
1− p2

)
.

2. On eigenvalues of 2×2 density matri-
ces and meaning of positive definite

(a) The eigenvalues of a 2 × 2 matrix A
can be written in terms the trace and
determinant of the matrix;

λ± =
1

2

(
trA±

√
(trA)2 − 4detA

)
.

Compute the eigenvalues of a density
matrix ρ with polarization p.

(b) A matrix ρ is positive semidefinite
if for all possible |ψ⟩ state vectors,
⟨ψ|ρ |ψ⟩ ≥ 0.

Show that for a 2× 2 density matrix ρ
to be positive semidefinite, the polar-
ization |p| ≤ 1.
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3. On pure and mixed states for a two
state system

An example of a pure state is

|ψ⟩ = a |0⟩+ b |1⟩

with aa∗ + bb∗ = 1.

The density matrix of this pure state
is

ρ = |ψ⟩ ⟨ψ|
= aa∗ |0⟩ ⟨0|+ ab∗ |0⟩ ⟨1|

+ a∗b |0⟩ ⟨1|+ bb∗ |1⟩ ⟨1|

=

(
aa∗ ab∗

a∗b bb∗

)
(a) Show that the eigenvalues of the den-

sity matrix for a pure state are 1, 0.

(b) Show that the polarization p of the
density matrix for a pure state satisfies
|p| = 1 and so lies on the unit sphere
(the Bloch sphere!)

An example of a mixed state is one
with probability p0 that it is in state
|0⟩ and p1 = 1 − p0 that it is in state
|1⟩. The density matrix is weighted by
the probabilities

ρ = p0 |0⟩ ⟨0|+ p1 |1⟩ ⟨1| .

The density matrix of a mixed state
with probability p0 that it is in state
|ψ0⟩ and probability p1 that it is in
state |ψ1⟩ is

ρ = p0 |ψ0⟩ ⟨ψ0|+ p1 |ψ1⟩ ⟨ψ1| .

(c) Compute the density matrix for a
mixed state that has probability p0 =
1/2 that it is in state |ψ0⟩ = 1√

2
(|0⟩ +

|1⟩) and probability p1 = 1/2 that it is
in state |ψ1⟩ = 1√

2
(|0⟩ − |1⟩).

(d) Find the polarization and the eigenval-
ues of this density matrix.

4. On distinguishability of pure state de-
compositions

Consider a system that has probability pi of
being in pure state with density operator ρi.
Here i is an integer index and

∑N
i=1 pi = 1.

We have a set of N probabilities {pi} and a
set of pure state density operators {ρi}. We
assume ρi ̸= ρj for all i ̸= j.

The density matrix for the full system is de-
scribed by the sum ρ =

∑N
i=1 piρi.

If we have a density matrix, ρ, a sum ρ =∑N
i=1 piρi, where {ρi} are pure states, and

{pi} are a set of probabilities, is a decompo-
sition of the density matrix in terms of pure
states. The decomposition is non-trivial if
ρi ̸= ρj for all pairs i, j.

a) Is a non-trivial decomposition of a density
matrix into a sum of pure states unique?

b) If not, find an example of two systems
that have the same density matrix but have
different decompositions in terms of a sum
of pure states.

Hints: It is enough to consider 2 state sys-
tems, and sums that contain only two terms
(N = 2).

This has some bizarre implications for any
non-linear model for quantum evolution.

5. On traced density matrices

Consider the Bell state

|ψ⟩AB =
1√
2
(|01⟩+ |10⟩)

a) What is the density matrix ρAB for the
full 2-qubit system?

b) Compute the density matrix

ρA = trB ρAB .

This is the reduced density matrix for the
first qubit.
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c) Compute the density matrix

ρB = trA ρAB .

This is the reduced density matrix for the
second qubit.

6. On von Neumann entropy

The von Neumann entropy of a
density matrix ρ is

S(ρ) = −tr(ρ log2 ρ) = −
∑
i

λi log2 λi

where λi are the eigenvalues. (Note
instead of log2 often people define
this with the natural log, giving S =
tr(ρ ln ρ). You can use whichever you
prefer).

(a) What is the maximum possible von
Neumann entropy for a 2 × 2 density
matrix? Find a 2 × 2 density matrix
that has the maximum possible von
Neumann entropy.

Note: the eigenvalues are constrained
by

∑
i λi = 1.

(b) What are the eigenvalues of an N ×
N density matrix with the maximum
possible von Neumann entropy?

(c) Show that a 2× 2 density matrix that
has the maximum possible von Neu-
mann entropy also has the mimimum
possible value of trρ2 and minimum
possible polarization amplitude |p|.

(d) What is the von Neumann entropy of
a pure state (in any dimension)?

(e) A system starts in a pure state ψ =
1√
2
(|0⟩+ |1⟩). Its density matrix is

ρinit =
1

2

(
1 1
1 1

)
What are the eigenvalues of the initial
density matrix, what is the von Neu-
mann entropy and what is the polar-
ization p?

The state is then measured in the |0⟩,
|1⟩ basis but the result of the measure-
ment is not recorded. The proba-
bility that |0⟩ is measured is 1/2 and
the probability that |1⟩ is measured is
1/2. After measurement the state has
p0 = 1/2 that it is in state |0⟩ and
p1 = 1/2 that it is in state |1⟩. The
density matrix after measurement is

ρafter = p0 |0⟩ ⟨0|+p1 |1⟩ ⟨1| =
(

1
2 0
0 1

2

)
What are the eigenvalues of the new
density matrix, what is the von Neu-
mann entropy and what is the polar-
ization?

The entropy should have increased due
to uncertainty introduced by measure-
ment. We say quantum interference in-
formation is ‘erased’.

(f) What happens to the entropy if the
measurement value is recorded?

7. Comparison between Shannon and
von Neumann entropy

Consider a density matrix that is a mixture
of two states |0⟩ and |+⟩ = 1√

2
(|0⟩ + |1⟩)

where the probability the qubit is in the |0⟩
state is p ∈ [0, 1] and the probability it is in
the |+⟩ state is 1− p. The density matrix is

ρ(p) = p |0⟩ ⟨0|+(1−p)1
2
(|0⟩+ |1⟩)(⟨0|+⟨1|)

a) Compute the von Neumann entropy
S(ρ(p)) for this density operator. Plot
S(ρ(p)) as a function of p.

b) Compute the Shannon entropyH(p) for a
system with probability distribution p, 1−p.
Plot H(p) as a function of p.

Hints: I found analytical formulas for both
and plotted them as a function of probabil-
ity p ∈ [0, 1]. The shapes are similar but the
peak values are different.
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8. On a generalized measurement
(POVM)

Consider the following five states:

|ek⟩ = cos(2πk/5) |0⟩+ sin(2πk/5) |1⟩

where k ∈ {0, ..., 4}. These five states form
a pentagon on the XZ-plane of the Bloch
sphere. Consider the operators

Ek =
2

5
|ek⟩ ⟨ek|

a) show that

Ek =
2

5
|ek⟩ ⟨ek|

=
1

5

(
1 + cos(4πk/5) sin(4πk/5)
sin(4πk/5) 1− cos(4πk/5)

)
b) Show that the operators Ek are all posi-
tive semi-definite.

c) Show that the set of operators {Ek} for
k ∈ {0, ..., 4} forms a valid POVM.

Elements of a POVM must satisfy
∑

k Ek =
I and they must be positive semi-definite.

Hints: It is useful to write sin a cos a =
1
2 sin(2a) and use similar relations for the
square of cosines and sines.

It is useful to know that the sum of complex
roots of unity is zero.

4∑
k=0

ei2πk/5 = 0

Also the real and imaginary parts of this
sum also sum to zero. Also

4∑
k=0

ei4πk/5 = 0

A positive semi-definite Hermitian operator
has non-negative eigenvalues.

Figure 1: Dephasing channels.

9. Some dephasing channels

Two quantum channels are shown a single
qubit (the top one in each circuit) in Figure
1. The two channels are the same except
the second qubit is initialized to a different
state.

Contrast the behavior of these two quantum
channels.

10. The amplitude damping channel

Figure 2: A circuit model for amplitude damp-
ing.

A circuit model for amplitude damping is
shown in Figure 2. The rotation

Ry(θ) = e−iθσy/2 = cos(θ/2)I− iY sin(θ/2)

= cos(θ/2)I+ sin(θ/2)

(
0 −1
1 0

)
=

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

The input into the top qubit bit is a density
matrix which can be described with a set of
probabilities and pure states. Measurement
of the bottom qubit is not necessary.
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a) What is the unitary transformation U
performed by the two controlled gates? This
unitary transformation acts on the full 2
qubit space HA ⊗ HB where HA is the
Hilbert space for the top qubit and HB is
the Hilbert space for the bottom qubit. You
can write this as a matrix or in a ket/bra
form.

b) Assume the first qubit is described with
pure state

|ϕ⟩A = a |0⟩+ b |1⟩ .

Show that the final density matrix

ρ′A =

(
aa∗ + bb∗γ ab∗

√
1− γ

a∗b
√
1− γ bb∗(1− γ)

)
with γ = sin2(θ/2).

c) Suppose that a 0 is measured in the sec-
ond qubit in the circuit in Figure 2. Com-
pute the matrix

M0 =
∑
ij

M0,ij |i⟩A ⟨j|A

that acts on vectors in HA and has compo-
nents

M0,ij = ⟨i|A ⟨0|B U |j⟩A |0⟩B .

d) Suppose that a 1 is measured in the sec-
ond qubit. Compute the matrix

M1 =
∑
ij

M0,ij |i⟩A ⟨j|A

with components

M1,ij = ⟨i|A ⟨1|B U |j⟩A |0⟩B .

e) Show that the amplitude damping chan-
nel can be described with

ρ′A = M0ρAM
†
0 +M1ρAM

†
1.

f) Show that the set {M0,M1} are Kraus
operators giving a POVM generalized mea-
surement. (Show that the operators

M†
0M0,M

†
1M1 are positive semi-definite

and that the set is complete).

11. More on amplitude damping channels

In the previous problem, the bottom qubit is
initialized at |0⟩. What if we set the bottom
qubit in the state |1⟩ at the beginning of the
circuit?

a) Using the unitary operation we computed
in the previous problem, compute two more
operators

M2 = ⟨0|B U |1⟩B and M3 = ⟨1|B U |1⟩B .

The set {M2,M3} also are Kraus operators
that form a POVM measurement.

Hint: I find that

M2 =

(
0 0
0 −√

γ

)
M3 =

(
0

√
1− γ

1 0

)
with γ = sin2 θ

2 .

b) Show that the four operators

N0 =
√
p

(
1 0
0

√
1− γ

)
=

√
p M0

N1 =
√
p

(
0

√
γ

0 0

)
=

√
p M1

N2 =
√

1− p M2

N3 =
√
1− p M3 (1)

also are a set of Kraus operators that form
a POVM measurement.

c) Does the circuit in Figure 3 describe a
POVM measurement on the first qubit, that
is associated with the four Krauss operators
N0,N1,N2,N3? If so explain why.

d) At the end of the circuit there are two
measurements. Which measurement values
are associated with each Kraus operator?
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Figure 3: A proposed circuit to perform a POVM
measurement on the first qubit that is described
by the four Kraus operators in equation 1. The
last qubit measures whether the second qubit is
in the 1 or 0 state.

12. Orthogonality of operators via the
Frobenius (trace) inner product

The Frobenius inner product is the trace of
the product of two complex matrices;

⟨A,B⟩F = tr
(
A†B

)
Using this inner product we can find an or-
thonormal basis in which to decompose 2×2
complex matrices.

a) Show that the set

{I,σx,σy,σz} (2)

forms an orthogonal basis with respect to
the Frobenius inner product for 2 × 2 di-
mensional operators. Here σx,σy,σz are
the Pauli matrices and I is the identity op-
erator.

b) This basis of equation 2 is not orthonor-
mal. Modify it so that it is normalized. We

would like tr
(
AA†

)
= 1 for each operator

A in the basis set.

c) Is the basis from part b large enough to
span the entire space of 2 × 2 complex ma-
trices?

d) How would you describe traceless 2 × 2
complex matrices in terms of your basis in
part b? (Show how would you write a ma-
trix as a sum of coefficients times basis ele-
ments).

e) How would you describe Hermitian 2× 2
complex matrices in terms of your basis in
part b?

f) How would you describe Hermitian 2× 2
complex matrices with trace of 1 in terms of
your basis in part b?

g) Find an orthonormal basis with respect
to the Frobenius inner product for 3×3 com-
plex matrices.

13. On constructing unitary operators in
bipartite systems

Consider a tensor product space H1 ⊗ H2

that is comprised of two finite dimensional
Hilbert spaces. The space H1 has a projec-
tive measurement consisting of a complete
set of n orthogonal Hermitian projection op-
erators {P0, P1, P2....}. We also have a set
of n unitary operators {U0, U1, U2, ...} oper-
ating on H2.

We construct an operator

V =

n−1∑
i=0

Pi ⊗ Ui

a) Show that V is unitary.

b) Can a similar unitary operator be con-
structed from operators of a POVM mea-
surement?

This problem is relevant for construction of
unitary operators used in quantum random
walks.

14. The number of Kraus operators in
the operator sum decomposition of a
quantum channel

a) A density operator ρ is constructed for
a 4 qubit system. The system is not in a
pure state. The density matrix is written as
a sum

ρ =
∑
i

piρi
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where pure states |ai⟩ give ρi = |ai⟩ ⟨ai|
and pi are probabilities that sum to 1. The
pure states are not necessarily orthogonal
but they are linearly independent.

What is the maximum number of terms in
the sum?

b) Consider a quantum channel E that op-
erates on density operator σ describing a 2
qubit system.

What is the maximum number of Kraus op-
erators needed to describe the channel?

Hint: Channel-state duality states that a
channel operating in a Hilbert space of di-
mension d can be mapped to a ‘state’ (or
actually a density matrix) ρAB in a Hilbert
space of dimension d2. The maximum num-
ber of Kraus operators in the operator sum
decomposition of the channel is equal to the
maximum number of pure states needed to
describe ρAB .

15. On The Quantum Zeno effect

Consider a near identity single qubit unitary
transformation

U = eiϵH ∼ I+ iϵH

where H is Hermitian and ϵ is real, positive
and small.

Our goal is to contrast the behavior of the
two circuits shown in Figures 4 and 5.

Figure 4: A unitary operation is done 6 times on
the first qubit.

Figure 5: After each unitary transformation on
the first qubit a CNOT is applied with control
bit the first qubit. After each CNOT is applied,
the target qubit is left untouched.

Consider the limit of n operations, either n
unitary transformations as shown in Figure
4 or n unitary transformations with alter-
nating CNOT gates as shown in Figure 5.

a) Estimate the probability p1 that |1⟩ is
measured in the first qubit at the end of the
circuit in Figure 4 and as a function of n the
number of iteractions. You can do the com-
putation approximately to first order in ϵ,
assuming ϵ is small; (though the probability
should scale with ϵ2).

b) Estimate the probability p1 that |1⟩ is
measured in the first qubit at the end of the
two circuit in Figure 5 as a function of n.

From p1 you can compute the probability
p0 = 1− p1 that the first qubit is measured
to be in the |0⟩ state. If p0 is near 1 then the
system acts like it is frozen in the |0⟩ state.
The CNOTs in Figure 5 give the effect of
measuring the top qubit between each of the
unitary operations on the top qubit. The
first qubit is more likely to be measured to
be in the |0⟩ state at the end of the circuit
in Figure 5 than at the end of the circuit in
Figure 4. This is in analogy to the Quan-
tum Zeno effect where measurements freeze
a state. Here the state is frozen because in-
formation is transferred to other parts of the
system.

This example was inspired by a blog by
Cameron Calcluth.
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16. The dephasing (or phase-damping)
channel

We consider a bipartite system HA ⊗ HE

where HA is a single qubit and the environ-
ment HE has more than two states. The de-
phasing channel operates on the density op-
erator ρA for the single qubit. The dephas-
ing channel can be described with a unitary
transformation U that transforms

|0⟩A |0⟩E →
√

1− q |0⟩A |0⟩E +
√
q |0⟩A |1⟩E

|1⟩A |0⟩E →
√

1− q |1⟩A |0⟩E +
√
q |1⟩A |2⟩E

Assumed is that the environment starts in
the state ρE = |0⟩E ⟨0|E . Note that the
qubit A does not change state via the uni-
tary transformation. Instead it ‘scatters’ off
the environment with probability q. A pre-
ferred basis |0⟩A , |1⟩A is set by this chan-
nel as it is the only basis in which bit flips
do not occur in the qubit due to interaction
with the environment.

To ensure that U is unitary we complete the
transformations of the other basis vectors

|0⟩A |1⟩E →
√

1− q |0⟩A |1⟩E −√
q |0⟩A |0⟩E

|1⟩A |2⟩E →
√

1− q |1⟩A |2⟩E −√
q |1⟩A |0⟩E

|0⟩A |2⟩E → |0⟩A |2⟩E
|1⟩A |1⟩E → |1⟩A |1⟩E .

a) Show that the unitary transformation in-
duces a channel E operating on ρA that is
described with the following three Kraus op-

erators

M0 =
√

1− qI

M1 =
√
q

(
1 0
0 0

)
M2 =

√
q

(
0 0
0 1

)
You will need to assume that the environ-
ment is initially in the ρenv = |0⟩E ⟨0|E
state.

b) Show that the dephasing channel can be
written as

E(ρA) =
∑
a

MaρAMa

=
(
1− q

2

)
ρA +

q

2
σzρAσz.

The density operator ρA can be written
in terms of a polarization vector p =
(px, py, pz), and

ρA =
1

2
(I+ p · σ).

c) Show that the dephasing channel gives
new polarization

p′ = (p′x, p
′
y, p

′
z)

= ((1− q)px, (1− q)py, pz).

The z component of the polarization is not
affected.

The Bloch sphere shrinks to a prolate
spheroid aligned with the z axis. The po-
larization in z is associated with the diago-
nal elements of the density operator. As the
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x and y polarization decreases, the density
matrix becomes increasingly diagonal.

The dephasing channel picks out a preferred
basis for decoherence. A possible physical
setting might be interactions of a dust grain
with the microwave background radiation.
In this case the preferred basis is somewhat
mysterious, but might be related to the spa-
tial locality of the interaction.

17. The Lindblad master equation consis-
tent with the dephasing channel

Neglecting unitary evolution from a Hamil-
tonian, the Lindblad master equation if gov-
erned by a single operator gives

dρ

dt
= Γ

(
LρL† − 1

2
L†Lρ− 1

2
ρL†L

)
.

The dephasing channel on a single qubit

E(ρ) =
(
1− q

2

)
ρ+

q

2
σzρσz.

Show that for L = σz, small probability q,
and q ∝ Γt, the dephasing channel is consis-
tent with evolution via the Lindblad master
equation on a single qubit

dρ

dt
= Γ

(
σzρσ

†
z −

1

2
σ†
zσzρ−

1

2
ρσ†

zσz

)
.

18. Ways to make new quantum channels

A quantum channel E is described with a
set of nK Kraus operators {Kj}, giving the

map E(ρ) =
∑

j KjρK
†
j .

a) Consider a set of nK unitary operators
{Vj}.

Show that the set {K̃j} with K̃j = VjKj for
every j is a set of Kraus operators that also
gives a quantum channel.

Hint: Show that
∑

j K̃
†
j K̃j = I.

b) Show that Eb where

Eb(ρ) = α(tr ρ)ρ0 + (1− α)E(ρ)

is a quantum channel, for any channel E ,
any density operator ρ0 and α ∈ [0, 1].

Hint: Note that ρ → (tr ρ)ρ0 is a CPTP
map. It might be useful to recall that every
CPTP linear map from the space of opera-
tors onto itself has a Kraus representation
and vice versa, every Kraus representation
gives a CPTP linear map. Use a composi-
tion to show that the resulting combination
is a channel. I did not find it very easy to
find a set of Kraus operators for ρ→ ρ0, but
you need not find one if you can show that
one exists.

19. An initialization/reset channel

An initialization or reset channel is one
that puts a system into a particular state.
Here we use basis states |j⟩ with j =
{0, 1, ....., N−1} for anN dimensional quan-
tum space,

In an N dimensional quantum space, con-
sider the channel described with a set of N
Kraus operators {Kreset,j} with

Kreset,j = |0⟩⟨j| .

The operation of the channel

Ereset(ρ) =
N−1∑
j=0

Kreset,jρK
†
reset,j .

The linear operator Ereset(ρ) is a map from
the space of density operators to the same
space.

a) Show that this reset channel returns the
|0⟩ state, when applied to any pure quantum
state. More specifically the channel returns
|0⟩ ⟨0| for any input density operator.

Consider a bipartite system HA ⊗HB . The
density matrix is initially ρAB for the full
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system. The dimension of HA we denote
nA.

A channel Ereset,A that resets only the HA

sub-system is described by nA Kraus oper-
ators {Kreset,j} with j ∈ {0, ...., N − 1} and

Kreset,j = |0⟩⟨j| ⊗ IB

where IB is the identity in the HB subspace.

b) Show that this channel is equivalent to
the map (from the space of density operators
on HA ⊗HB to the same space)

Ereset,A(ρAB) = |0⟩⟨0| ⊗ ρB

where ρB = trA ρAB . This is a quantum
channel operating on the full bipartite sys-
tem.

20. Bob’s POVM for quantum communi-
cation between Alice and Bob

Alice sends Bob a series of qubits. Each
qubit is either |0⟩ or |+⟩, and with each state
equally likely. Here |+⟩ = 1√

2
(|0⟩+ |1⟩)

Bob chooses to make measurements with the
following three POVM operators

E1 = a |1⟩ ⟨1|
E− = a |−⟩ ⟨−|
EN = I−E1 −E0.

Note that the set of measurement operators
is complete as E1 + E− + EN = I. The
coefficient a > 0 is positive and real. Here
|−⟩ = 1√

2
(|0⟩ − |1⟩).

If Bob gets a measurement associated with
E1 then he knows that Alice did not send |0⟩
and so she must have sent him a |+⟩ state.
Bob is then 100% sure that Alice sent him
a |+⟩ state.
If Bob gets a measurement with E− then he
knows that Alice did not send |+⟩ and so

she must have sent a |0⟩ state. Bob is then
100% sure that Alice sent him a |0⟩ state.
If Bob gets a measurement with EN then he
is not sure which state Alice sent.

a) What is the probability that Bob mea-
sures E1 or E− and so knows exactly what
Alice sent?

b) What value of a maximizes Bob’s ability
to get as much information as possible from
Alice’s transmitted qubits?

Hints: In the |0⟩ , |1⟩ basis

EN =

(
1− a/2 a/2
a/2 1− 3a/2

)
. (3)

For the POVM measurement to be good,
EN must be a positive operator and that
means that both its eigenvalues must be
positive. This means that a cannot be too
large.

The eigenvalues of EN are

λ± =
1

2
(±

√
2a− 2a+ 2)

(I typed the following into wolfram alpha:
eigenvalues [[1-x/2,x/2],[x/2,1-3x/2]]

c) Is this POVM measurement optimal ac-
cording to the Holevo bound?

Hints: The Holevo bound is

H(X : Y ) ≤ S(ρ)

because Alice sends pure states, each which
have entropy of zero. On the left we have
mutual information (what Bob can learn
from his measurements about Alice’s sent
information) and on the right we have the
von-Neumann entropy of Alice’s mixture,
ρ = 1

2 |0⟩ ⟨0| +
1
2 |+⟩ ⟨+|. The eigenval-

ues of this density operator are cos2
(
π
8

)
and sin2

(
π
8

)
, and the entropy S(ρ) =

0.6008760366928562.
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21. On how noise causes contraction in a
quantum channel

Consider Ea, a quantum channel which is
a trace preserving and completely positive
map ρ → ρ′ from the space of operators
to the space of operators in a d-dimensional
quantum space.

A small amount of noise is added giving a
new channel Eb. The noise is represented by
the depolarization channel

Edepol(ρ) = α
I

d
+ (1− α)ρ,

with α ∈ [0, 1). The new channel Eb is de-
fined by

Eb(ρ) = Edepol(Ea(ρ))

= α
I

d
+ (1− α)Ea(ρ).

With α small, only a small amount of noise
is added.

Show that no matter what the properties of
Ea, no matter how small α > 0, the noisy
channel Eb has a unique fixed point and all
orbits converge onto it. The noisy channel
is called ergodic and mixing.

In other words show that

lim
t→∞

||Et
b(ρ)− ρ∗|| = 0

for all density operators ρ. Here ρ∗ is the
fixed point of Eb which satisfies Eb(ρ∗) =
ρ∗. By Et

b(ρ) we mean Eb(Eb(Eb(.....Eb(ρ))))
where Eb is applied t times. Here ||A|| =

tr
(√

AA†
)
is the trace norm.

Hints: It helps to know the following:

Any quantum channel has at least one fixed
point, ρ∗ satisfying E(ρ∗) = ρ∗.

All quantum channels are contractive in the
sense that

||E(ρ)− E(σ)|| ≤ ||ρ− σ||

for any two density operators ρ, σ.

22. On eigenmatrices of a quantum chan-
nel

We have a quantum channel E . You can
think of the channel as a linear operator L
that operates on a vectorized version of a
density operator, or any operator. The lin-
ear operator L is not necessarily normal or
Hermitian, so it may not be diagonalizable.

We can find eigenvalues for L. For exam-
ple, a fixed point satisfies E(ρ) = ρ. Here
the density operator ρ is an eigenvector of
L with an eigenvalue of 1.

Take the operator x to be an a right eigen-
vector of L with eigenvalue λ. It satisfies

E(x) = λx.

a) Show that λ∗ is also an eigenvalue of L.
This implies that right-eigenvalues of L,
come in pairs, if they are complex.

b) Show that eigenvectors of L are traceless
unless their associated eigenvalue is 1. In
other words show that tr(x) = 0 if E(x) =
λx and λ ̸= 1.

Hints: For (a) use an operator sum decom-
position with a set of Kraus operators and
take the adjoint. For (b) use the fact that
channels are trace preserving.

23. A Pauli Twirl

Twirls are often used to characterize the
properties of errors.

The twirl of a quantum channel E is the
quantum channel WE,G generated by av-
eraging over the effect of transformations
caused by elements of a finite group G,

WE,G(ρ) =
1

|G|
∑
U∈G

U†E(UρU†)U (4)
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Here the channelsWE,G and E both operator
on density operator ρ.

Consider the quantum channel on a single
qubit that looks like this

Ep(ρ) = (1− p)ρ+ pYρY (5)

where ρ is the density operator of the qubit,
Y is the Pauli-Y operator and p is the prob-
ability that a Y error occurs.

Compute the twirl over the generalized
Pauli group of this quantum channel.

Hints: The generalized Pauli group for a sin-
gle qubit is the set of operators {αU} where
α ∈ {1,−1, i,−i} and U ∈ {I,X,Y,Z}.
When computing a twirl over the general-
ized Pauli group the factors α are not im-
portant so the sum can be reduced to

WE(ρ) =
1

4

∑
U∈{I,X,Y,Z}

U†E(UρU†)U (6)

24. A Clifford Twirl

Consider the bit-flip quantum channel on a
single qubit

Ebitflip(ρ) = (1− p)ρ+ pXρX (7)

where ρ is the density operator of the qubit,
p is the probability that a bit flip occurs and
X is the Pauli-X operator.

a) Compute the twirl of the bit-flip channel
over the Clifford group.

The Clifford group for a single qubit is
generated by the set {S,H} where S =
diag(1, i) and H is the Hadamard operator.
It is not an Abelian group.

Ignoring a global phase (which is
not important in a twirl) the Clif-
ford group is the set of elements AB
where A ∈ {I,H, S,HS, SH,HSH} and
B ∈ {I,X, Y, Z} which is 24 elements.

Ignoring a global phase and remov-
ing the Pauli subgroup, a reduced
Clifford group is the set of elements
{I,H, S,HS, SH,HSH}.
It is enough to compute the twirl over only
the 6 elements {I,H, S,HS, SH,HSH} us-
ing equation 4. (This follows as reversing
the order of one of these and a Pauli opera-
tor gives only a factor of ±1).

It is helpful to have these identities handy

HXH = Z HZH = X HYH = −Y
SXS† = Y SZS† = Z SY S† = −X
S†XS = −Y S†ZS = Z S†Y S = X

(note that H† = H).

The result should be the depolarization
channel. This type of averaging is used in
the procedure called random benchmarking
for estimating average errors in an operator.

25. Your problem here!
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