
Homework # 4. Physics 265, Spring 2023

Topic: On Error Correction

Due date: Tuesday March 25, 2025. Choose
a subset of about 7 problems to work on. You
can also create your own problem or do problems
from the previous problem sets.

1. Identities

a) Show that HXH = Z.

b) Show that HZH = X.

c) Show that HXZH = −XZ.

d) Find a similar identity for Y .

Here H is the Hadamard operator and
X,Y, Z are the Pauli matrices.

2. On Measuring X1X2X3X4X5X6 which
is used in Shor’s 9-bit code

Figure 1: A circuit that computes the parity of
6 bits using an ancilla qubit.

In Figure 1 we show a circuit that computes
the parity of 6 bits. The bottom bit is an
ancilla (or ancillary) qubit that is measured
at the end. A 1 is measured if there is an
odd number of 1s in the 6 qubit state, which
are in the top 6 lines in the circuit.

Consider the operator Z1Z2Z3Z4Z5Z6.
Here Z1 = Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I and the
other operators are defined similarly so the
index tells you which qubit the Z operates

on. The operator Z1Z2Z3Z4Z5Z6 has eigen-
values 1, -1.

In the circuit in Figure 1, a 1 is measured
if the input in the first 6 qubits is an eigen-
state of Z1Z2Z3Z4Z5Z6 with eigenvalue 1.
In the circuit a 0 is measured if the in-
put in the first 6 qubits is an eigenstate of
Z1Z2Z3Z4Z5Z6 with eigenvalue -1.

Because a different value is measured for
each eigenstate of Z1Z2Z3Z4Z5Z6, the cir-
cuit in Figure 1 essentially measures this op-
erator.

a) Design a circuit that measures the oper-
ator X1X2X3X4X5X6.

Hint: The states |+⟩ , |−⟩ are eigenstates of
X and you can transfer to the |+⟩ , |−⟩ basis
using a Hadamard operator.

b) Design a circuit for a 9 bit system
that uses two extra ancilla bits to measure
X1X2X3X4X5X6 and X4X5X6X7X8X9.

3. On correcting errors without measure-
ment and on initializing ancillas

We consider the 3-bit phase-flip error cor-
rection code that encodes

|0⟩ → |+++⟩ and |1⟩ → |− −−⟩ .

The encoding subspace consists of states in
the form

a |+++⟩+ b |− − −⟩ .

If the state we would like to encode is
a |0⟩+b |1⟩, (with complex numbers a, b, nor-
malized so that aa∗ + bb∗ = 1) then the en-
coded state would be

a |+++⟩+ b |− − −⟩ .

A circuit that performs error detection is
shown in Figure 2. Including two ancilla
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qubits, the initial state (if error free) would
be

(a |+++⟩+ b |− − −⟩)⊗ |00⟩ .

However a phase flip error in one of the first
3 qubits could have affected the initial state.
A phase flip error sends |+⟩ → |−⟩ and vice
versa and is equivalent to applying the Pauli
Z to one of the qubits.

Figure 2: Detecting errors in the 3-bit phase-
flip error correction code. The bottom two an-
cilla bits are measured to detect a single phase
flip error in the top three bits. We can think
of the first three Hadamards as a basis change.
The CNOTs resemble the syndrome for the 3-bit
bit-flip error correcting code. The measurements
give the detected errors.

a) Modify the the circuit shown in Figure 2
so that phase flip errors are corrected after
the measurement.

b) Design a circuit that corrects the errors
without measurement.

c) Consider the possibility that the initial
state has not been properly reset and has
ancilla qubits in a state other than |00⟩, such
as |01⟩. Show that if no error occurs, the
final state, after error correction, is not in
the encoding subspace.

This problem illustrates that error correc-
tion relies on accurate ancilla initialization.

4. On the Generalized Pauli group Gn

Consider the set of 2×2 matrices or opera-
tors

{±I,±iI,±X,±Y,±Z,

±iX,±iY,±iZ}

where X,Y,Z are the Pauli spin matrices
and I is the identity. The set has 16 ele-
ments (here ± gives pairs of elements).

a) Show that every element in the set has
an inverse in the set.

b) Show that any product of two elements
in the set gives an element that is also in the
set.

This set of operators is known as the Pauli
group and it is a discrete subgroup of U(2).

Consider an N qubit system. We denote
X1 = X ⊗ I × I.... as the Pauli X operator
operating on the first qubit, likewise Y2 is
a tensor product Y2 = I⊗Y ⊗ I⊗ ..... We
denote Xj as a tensor product of identities
and a Pauli X operator that operates on the
j-th qubit.

A discrete subgroup of U(2n) (correspond-
ing to n qubits), known as the generalized
Pauli group Gn is generated from the set

⟨X1,Y1,Z1,X2,Y2,Z2, ...Xn,Yn,Zn⟩.

By generated, we mean that any element in
the group can be written as a product of
elements in the generating set.

c) How many elements does the generalized
Pauli group Gn contain? (as a function of
n)

5. Also on the Generalized Pauli group
Gn

Any element in the Generalized Pauli group
can be written as

g = µE1E2E3....

where µ ∈ {1,−1, i,−i} and E1 is a mem-
ber of {I,X, Y, Z} and operates on the first
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qubit. The index i tells you which opera-
tor the element operates on. The operator
Ei is similarly a Pauli matrix ∈ {I,X, Y, Z}
working on the i-th qubit.

a) Consider two elements g, h ∈ Gn where
Gn is the Generalized Pauli group. Show
that they either commute or anticommute.
In other words show that either gh = hg or
gh = −hg.

b) Show that elements of Gn that are not the
identity have order 2 or 4. Give examples
for each possibility. An element g of order 4
satisfies g4 = I.

c) Show that if S is a subgroup of Gn that
does not contain −I, then S is abelian. An
abelian group is one where all pairs of ele-
ments commute.

6. Creating a projection operator for the
encoding space

Consider the stabilizer group S generated
by ⟨X1X2, X2X3⟩ that gives the 3-bit phase-
flip quantum error correcting code.

The encoded or stabilized space C contains
vectors |v⟩ such that g |v⟩ = |v⟩ for all g ∈ S.

Show that

P =
1

4
(I +X1X2)(I +X2X3) (1)

is a projection operator in the 3 qubit space
that projects to the encoding subspace C.

In other words show that

P = |+++⟩ ⟨+++|+ |− − −⟩ ⟨− − −| .

It may be useful to write

X = |+⟩ ⟨+| − |−⟩ ⟨−|
I = |+⟩ ⟨+|+ |−⟩ ⟨−|

Notice that X1X2 has eigenvalues ±1 and
(I +X1X2)/2 has eigenvalues 0, 1.

7. Creating a projection operator for the
stabilized space

Consider the stabilizer group S generated
by k independent generators ⟨g1, g2, ....gk⟩.
with generators in the generalized Pauli
group Gn.

Show that a projector giving the stabilized
or encoding space C can be constructed by

P =
1

2k

k∏
j=1

(I + gj). (2)

A vector |v⟩ that is stabilized by stabilizer
group S satisfies

g |v⟩ = |v⟩ for all g ∈ S.

The coding subspace C is the vector sub-
space stabilized by S.

A vector |w⟩ that is perpendicular to sub-
space C satisfies ⟨w|v⟩ = 0 for all |v⟩ ∈ C.

This can be done in two parts.

a) Show that for any |v⟩ ∈ C, the projection
P |v⟩ = |v⟩.
b) Show that for any |w⟩ ⊥ C, the projec-
tion P |w⟩ = 0.

Stabilizer groups contain operators that are
in the generalized Pauli group Gn. Stabi-
lizer groups cannot contain −I so all ele-
ments commute and all elements are Hermi-
tian. The eigenvalues of any operator in Gn

has eigenvalues ±1. Consequently, the ma-
trices (I + gj)/2 have eigenvalues 0, 1. As
all members of S must commute, all mem-
bers of {(I+gj)} must also commute. A set
of matrices that commute are all simultane-
ously diagonalizable. That means that the
eigenvalues of P must be ∈ {0, 1}.

8. The 5-bit stabilizer code

What is the minimum size for a quantum
code which encodes a single qubit so that
any error on a single qubit in the encoded
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state can be detected and corrected? The
answer is 5-bits.

The stabilizer group S for the five bit error
correcting code is generated by these four
operators

⟨XZZXI, IXZZX,XIXZZ,ZXIXZ⟩

that are also shown in Table 1. These could
also be written as

⟨X1Z2Z3X4, X2Z3Z4X5, X1X3Z4Z5, Z1X2X4Z5⟩

or as

⟨X ⊗ Z ⊗ Z ⊗X ⊗ I, I ⊗X ⊗ Z ⊗ Z ⊗X,

X ⊗ I ⊗X ⊗ Z ⊗ Z,Z ⊗X ⊗ I ⊗X ⊗ Z⟩

Table 1
Generators

g1 X Z Z X I
g2 I X Z Z X
g3 X I X Z Z
g4 Z X I X Z

Notice that the generators are cyclic permu-
tations of each other.

Verify that the five qubit code can protect
against an arbitrary single qubit error.

In other words check that the set

SE={X1, X2, X3, X4, X5, Z1, Z2, Z3, Z4, Z5}

is a correctible set of errors.

A correctable set of errors satisfies the fol-
lowing: For every pair Ei, Ej of errors in

the set SE , the operator E†
iEj either is in

stabilizer group S or anticommutes with a
generator of S. You will need to show that
this is true for the set SE and using the sta-
bilizer generators in the table.

We don’t need to include Y errors as if X
and Z errors can be corrected and the prod-
uct XZ for single qubits can be corrected,

then the Y errors can also be corrected.
This then means that any single qubit error
can be corrected as any unitary transforma-
tion for a single qubit can be written as a
linear combination of I,X, Y, Z operators.

9. The 5-bit stabilizer error correcting
code syndrome

Describe a syndrome that allows correction
of errors in the set

SE={X1, X2, X3, X4, X5, Z1, Z2, Z3, Z4, Z5}

for the 5 bit stabilizer code generated by the
generators in Table 1.

You need to fill in the following table with 1s
and -1s that represent measurements of the
stabilizer generators. Elements that com-
mute give 1.

XZZXI IXZZX XIXZZ ZXIXZ
X1

X2

X3

X4

X5

Z1

Z2

Z3

Z4

Z5

Does the syndrome allow you to also
correct for additional errors in the set
{Y1, Y2, Y3, Y4, Y5}?

10. The Quantum Hamming Bound

Any non-degenerate quantum [[n, k]] code
that corrects all errors with weight t or less
must satisfy the quantum Hamming bound

t∑
i=0

3i
(
n
i

)
≤ 2n−k (3)
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Suppose the number of qubits you want to
encode is k = 1, but you want to be able
to correct for all errors with weight t = 2 or
less. That means you could correct all errors
that affect 1 and 2 qubits. How many qubits
n would you need in your error correction
code?

You need to compute both sides of the equa-
tion 3 for various values of n and see for
what n the inequality becomes satisfied.

11. On a stabilizer group

The stabilizer group for Shor’s 9-bit code is
generated by the following set of operators

⟨Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6, X4X5X6X7X8X9⟩ (4)

The order of a group is the number of unique
elements in a group, including the identity
element.

a) What is the order of the group that is
generated by the operators Z1Z2, Z2Z3?

b) What is the order of the group
that is generated by the operators
Z1Z2, Z2Z3, Z4Z5, Z5Z6?

c) What is the order of the group
that is generated by the operators
Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9?

d) What is the order of the group that is
generated by the operators

X1X2X3X4X5X6, X4X5X6X7X8X9?

e) What is the order of the stabilizer group
for Shor’s 9-bit code?

Hints:

The stabilizer group is an abelian group be-
cause all the generators commute.

All elements in these groups are their own
inverse.

An element in the stabilizer group with m
generators can be written g = gi11 gi22 ...gimm

where gk are generators and ik are powers
which are either 0 or 1.

12. A fault tolerant and transversal phase
gate for the 3 bit bit flip error correct-
ing code

The phase gate

S = Pπ
2
=

(
1 0
0 i

)
= diag(1, i)

Consider the 3-bit code with basis for its
encoded states ∣∣0̃〉 = |000⟩∣∣1̃〉 = |111⟩

We would like to find a way to apply the
phase gate transversally so that an opera-
tion is performed on each encoded qubit sep-
arately. The desired operation would give
the same result as the phase gate but would
be fault tolerant.

The operation we desire looks like Q1 ⊗
Q2 ⊗Q3 where each operation is on a single
qubit and it should send |000⟩ → |000⟩ and
|111⟩ → i |111⟩.
a) Show that S̄ = S⊗S⊗S in the encoded 3
bit space does not carry out the single qubit
phase gate.

b) Find a different gate Q such that Q̄ =
Q⊗Q⊗Q does give the phase gate.

Hint: Try a different phase.

c) Suppose a single bit flip error occurs prior
to applying Q̄ (which effectively implements
the phase gate but on the encoded system).
Show that the single bit flip error would
still be corrected by the syndrome associ-
ated with this code, up to a global phase.
Note that a phase flip error would be intro-
duced and this would be a problem.
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13. The 9-bit surface code - part 1

A 9-qubit surface code (which is also a sta-
bilizer code) is shown in Figure 3.

Each ancilla qubit measures with a stabilizer
generator. The blue diamond ancillas (la-
belled A1 through A4) are associated with
Z gates on neighboring qubits and the red
diamond ancillas (labelled A5 through A8)
are associated with X gates. The figure can
be used to find the stabilizer generator that
is measured with each ancilla qubit.

For example A1 is associated with Z2Z3.
and A7 is associated with X4X5X7X8.

Figure 3: A nine qubit surface code is shown on
the right. The code is related to the piece of the
lattice on the left.

a) Use Figure 3 to find a generating set of
stabilizers. Show that they commute so that
they can form a stabilizing group.

b) How many logical qubits does this error
correction system encode?

c) Show that any single qubit X or any sin-
gle qubit Z anticommutes with at least one
of the stabilizer generators.

14. A 9-bit surface code - part-2

a) Look to see (in your answer to the previ-
ous problem) if there are pairs of two single
qubit errors that have the same syndrome.
Explain why both errors in the pair are still
corrected by the code.

b) Explain why part a and part c of the
previous problem imply that all single qubit
errors are corrected by this code.

Hint: products of errors either anti-
commute with at least one member of the
stabilizer or have to be in the stabilizer for
a set of errors to be correctible.

15. A 9-bit surface code - part-3

a) Show that all two qubit errors are cor-
rected by this code.

Hint: If the errors occur on two qubits
that are not nearby, then both errors would
be individually detected by separate sets of
syndrome operators (or equivalently gener-
ators). So you don’t need to explicitly check
that they anticommute with at least one
generator. For two errors on neighboring
qubits you can reduce the number of pairs
you need to check by exploiting rotational
symmetry and the duality between X and
Z operators (they are on dual lattices).

A basis for the encoding subspace (the sta-
bilized subspace) is∣∣0̃〉 =

1√
28

∑
gi∈S

g |000000000⟩

∣∣1̃〉 =
1√
28

∑
gi∈S

g |111111111⟩

where gi are elements in the stabilizer group
S. The states

∣∣0̃〉 , ∣∣1̃〉 are eigenstates of
Z̄ = Z1Z2Z3Z4Z5Z6Z7Z8Z9 which com-
mutes with S but is not a member of S.

We similarly define

X̄ = X1X2X3X4X5X6X7X8X9.
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b) Show that X̄
∣∣0̃〉 =

∣∣1̃〉 so X̄ can be used
to transversally generate the NOT gate.

Hint: show that X̄ commutes with S.

16. Your Problem here
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