Homework # 1. Physics 265, Spring 2024

Topic: On linear algebra and notation commonly used in quantum mechanics and quantum computing

Due date: Thursday Feb. 1, 2024. Choose a subset of about 8 problems to work on. Please upload your solutions to blackboard.

A unitary matrix is a square complex matrix that satisfies $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$. A unitary matrix transforms one orthonormal basis to another. A Hermitian matrix is self-adjoint; $\mathbf{A} = \mathbf{A}^{\dagger}$.

1. On the definitions of unitary and Hermitian

Find an example of a non-identity 2x2 matrix that is both unitary and Hermitian.

2. On the rows and columns of a unitary matrix

- a) Explain why each row of a unitary matrix is orthogonal to every other row and why each row has a norm of 1.
- b) Explain why each column of a unitary matrix is orthogonal to every other column and why each column has a norm of 1.
- c) For α a real number, and for **U** a unitary matrix, is $e^{i\alpha}$ **U** a unitary matrix?
- d) Consider an $N \times N$ unitary matrix \mathbf{U} with eigenvalues λ_i with $i \in 0....N-1$. Show that the eigenvalues must be complex numbers on the unit circle. In other words $|\lambda_i| = 1$, they must be complex numbers with length 1.

3. On the inner product, expectation value and uncertainty

For Hermitian operator **A** and state-vector $|\psi\rangle$ the expectation value $\langle \mathbf{A} \rangle = \langle \psi | \mathbf{A} | \psi \rangle$.

The uncertainty ΔA is a real number that is defined by

$$\Delta A = \sqrt{\langle \mathbf{A}^2 \rangle - \langle \mathbf{A} \rangle^2} \tag{1}$$

Show that the expression inside the square root is always greater or equal to zero.

Hints

 $\langle \mathbf{A}^2 \rangle - \langle \mathbf{A} \rangle^2 = \langle (\mathbf{A} - \langle \mathbf{A} \rangle) \times (\mathbf{A} - \langle \mathbf{A} \rangle) \rangle$. Use this fact to show that the expression for $(\Delta A)^2$ can be written as $\langle v|v \rangle$ for some vector $|v \rangle$.

4. On uncertainty relations

For a state $|\psi\rangle$ and Hermitian operators \mathbf{A}, \mathbf{B} , let $\langle \mathbf{A} \rangle = \langle \psi | \mathbf{A} | \psi \rangle$ denote the expectation value of \mathbf{A} . Let ΔA denote the uncertainty

$$\Delta A \equiv \sqrt{\langle \mathbf{A}^2 \rangle - \langle \mathbf{A} \rangle^2}.$$
 (2)

(a) Show that

$$\mathbf{A} |\psi\rangle = \langle \mathbf{A} \rangle |\psi\rangle + \Delta A |\psi_{\perp A}\rangle, \qquad (3)$$

where $|\psi_{\perp A}\rangle$ is a state orthogonal to $|\psi\rangle$.

Note: $|\psi\rangle$, $|\psi_{\perp A}\rangle$ are normalized.

(b) Use this result to prove the general uncertainty relation,

$$\Delta A \ \Delta B \ge \frac{1}{2} |\langle [\mathbf{A}, \mathbf{B}] \rangle|,$$
 (4)

where [A, B] = AB - BA is the commutator of A and B.

Hint: First show that

$$\langle [\mathbf{A}, \mathbf{B}] \rangle = \Delta A \Delta B (\langle \psi_{\perp A} | \psi_{\perp B} \rangle - \langle \psi_{\perp B} | \psi_{\perp A} \rangle)$$

Since the interaction for measuring **A** disturbs the state-vector, an observable **B** that

does not commute with A is affected by measurement of A.

This problem is from the book *Quantum Paradoxes* by Aharonov and Rohrlich.

5. On the cyclic nature of the trace

a) Show that the trace operator is cyclic.

$$tr(\mathbf{ABC}) = tr(\mathbf{BCA})$$

where A, B, C are two dimensional square matrices.

It may be convenient to use summation notation. If a matrix **A** has elements A_{ij} in an orthonormal basis, then $\operatorname{tr} \mathbf{A} = \sum_j A_{jj}$ and the sum is over $j \in 0, 1, \dots, N-1$ where N is the dimension of the vector space.

Matrix multiplication can also be done with indices. If $\mathbf{D} = \mathbf{A}\mathbf{B}$ then

$$D_{ik} = \sum_{j} A_{ij} B_{jk}$$

for matrices A, B, D.

b) Suppose a matrix **A** can be diagonalized with a unitary operator **U**. In other words $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\dagger}$ where $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3...)$ is a diagonal matrix with values on the diagonal λ_i . Show that

$$\mathrm{tr}\mathbf{A} = \sum_{i} \lambda_{i}$$

It may be helpful to remember that a unitary matrix satisfies $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$ where \mathbf{I} is the identity matrix.

6. Eigenvectors are perpendicular

a) Suppose λ_i, λ_j are eigenvalues of a Hermitian matrix **A** with associated eigenvectors $|\mathbf{e}_i\rangle, |\mathbf{e}_i\rangle$ and suppose that $\lambda_i \neq \lambda_j$.

A vector $|\mathbf{e}_j\rangle$ is an eigenvector of matrix \mathbf{A} with eigenvalue λ_j if $\mathbf{A}|\mathbf{e}_j\rangle = \lambda_j |\mathbf{e}_j\rangle$ and $|\mathbf{e}_i\rangle$ is not zero.

Show that the two eigenvectors are perpendicular; $\langle \mathbf{e_i} | \mathbf{e_i} \rangle = 0$.

b) Show that any Hermitian operator **A** has eigenvalues that are real numbers.

7. The Pauli spin matrices

Many quantum algorithms use simple single qubit transformations such as the Pauli spin matrices.

The Pauli spin matrices are

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

They satisfy $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \mathbf{I}$ where \mathbf{I} is the identity matrix and

$$\sigma_x \sigma_y = -\sigma_y \sigma_x = i\sigma_z$$

$$\sigma_y \sigma_z = -\sigma_z \sigma_y = i\sigma_x$$

$$\sigma_z \sigma_x = -\sigma_x \sigma_z = i\sigma_y$$

The Pauli spin matrices are unitary.

- a) What are the eigenvalues and eigenvectors of σ_z ?
- b) Show that the unitary matrix $\mathbf{H} = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_z)$ diagonalizes σ_x . In other words show that $\mathbf{H}\sigma_x\mathbf{H}^{\dagger}$ is a diagonal matrix.

 ${f H}$ is known as the Hadamard gate and is

$$\mathbf{H} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

- c) Find the eigenvalues and eigenvectors of σ_x, σ_y .
- d) Find a unitary matrix that diagonalizes σ_y .

8. The Hadamard transform

A Hadamard transform is a $2^N \times 2^N$ matrix where N is an integer. Starting with the 1×1 matrix $H_0 = 1$, the transforms can be defined recursively

$$\mathbf{H}_{m+1} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{H}_m & \mathbf{H}_m \\ \mathbf{H}_m & -\mathbf{H}_m \end{pmatrix}$$

This gives

$$\mathbf{H}_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

and

- a) Show that \mathbf{H}_m is Hermitian.
- b) Show that $\mathbf{H}_m^2 = \mathbf{I}_{2^m}$ where \mathbf{I}_{2^m} is the 2^m -dimensional identity matrix (and we take $I_0 = 1$).
- c) Show that \mathbf{H}_m is unitary.

9. On indexing in base 2 for a vector space with dimension that is a power of 2

Matrices used in quantum computing often have dimensions that are powers of two. For example they are often $2^n \times 2^n$ with n a nonzero positive integer. Indices for vectors or matrices run from 0 to $2^n - 1$ and so can be written as binary numbers with a series of digits that are 0 or 1.

For example suppose we have a 2^3 dimensional vector space. An index for a vector would be in the set $\{000, 001, 010, 011, 100, 101, 110, 111\}$.

A positive integer index i can be written as a series of digits where each digit is in the set $\{0,1\}$. We write i as a series $i_0, i_1, i_2...$ where i_k is in $\{0,1\}$ and k is an index that refers

to the digit. Here $k \in \{0,, n-1\}$ where n is the number of digits. Conventionally i_0 is the smallest digit and i_{n-1} is the largest one. For example with i=110 in base 2 the digits are 1,1,0 and $i_0=0, i_1=1$ and $i_2=1$. In base 10, i=4+2=6. This means that $i=i_22^2+i_12^1+i_02^0$. More generally

$$i = i_{n-1}2^{n-1} + i_{n-2}2^{n-2} + \dots$$
$$\dots + i_32^3 + i_22^2 + i_12 + i_0$$
$$= \sum_{k=0}^{n-1} i_k 2^k$$

Consider 2 integers i, j, both written in terms of digits in base 2.

$$i = i_{n-1}i_{n-2}....i_1i_0$$

 $j = j_{n-1}j_{n-2}....j_1j_0$

We can compute the sum

$$i \cdot j = \left(\sum_{k} i_k j_k\right) \mod 2.$$

Because it is modulo 2 the result is either equal to 1 or 0.

For example $0010 \cdot 1010 = 1$ and $1111 \cdot 1010 = 0$.

Compute the $2^2 \times 2^2$ matrix with components

$$H_{ij} = (-1)^{i \cdot j}$$

10. On qubit global phase

Two quantum states can be considered equivalent if they only differ by a complex phase. In other words $|\phi\rangle \equiv |\psi\rangle$ if

$$|\phi\rangle = e^{i\alpha} |\psi\rangle$$

for a real number α , which we call the phase.

This equivalence makes sense as there is no way to measure α with conventional quantum measurements.

Below I give a list of pairs of states. Which pairs of states represent equivalent quantum states for a single qubit? If they are equivalent find the phase α . If the states are not equivalent describe a measurement for which the probabilities of the outcomes of the two states differ. In other words, find an operator \mathbf{A} that gives different $\langle \mathbf{A} \rangle$ for each state.

a)
$$\frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$$
 and $|0\rangle$

b)
$$\frac{1}{\sqrt{2}}(|\mathbf{i}\rangle + |-\mathbf{i}\rangle)$$
 and $|1\rangle$

c)
$$\frac{1}{\sqrt{2}} \left(|0\rangle + e^{-i\pi/4} |1\rangle \right)$$
 and $\frac{1}{\sqrt{2}} \left(e^{i\pi/4} |0\rangle + |1\rangle \right)$

d) $|+\rangle$ and $|i\rangle$

We use the states

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$
$$|\mathbf{i}\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$$
$$|-\mathbf{i}\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

11. On the Bloch sphere

a) Show that no point $|x\rangle$ on the Bloch sphere satisfies

$$\langle x | \sigma_x | x \rangle = \langle x | \sigma_y | x \rangle = \langle x | \sigma_z | x \rangle = 0$$

where $\sigma_x, \sigma_y, \sigma_z$ are the Pauli spin matrices.

b) Are there any points on the Block sphere that satisfy

$$\langle x | \sigma_x | x \rangle = \langle x | \sigma_z | x \rangle = 0?$$

If so find them.

Hints:

Any point on the Bloch sphere can be written with two angles ϕ , θ as

$$|x\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2)e^{i\phi} |1\rangle$$

The solution to $\langle x | \sigma_x | x \rangle = 0$ is a great circle on the Bloch sphere. Similarly for σ_y and σ_z .

12. On eigenvalues of fermionic raising and lowering operators

A set of N fermions can be described with a set of N operators $\{\hat{a}_j\}$ where index j goes from 1 to N. The operators satisfy

$$\hat{a}_j \hat{a}_k^{\dagger} + \hat{a}_k^{\dagger} \hat{a}_j = \delta_{jk} \hat{I}$$

$$\hat{a}_j \hat{a}_k + \hat{a}_k \hat{a}_j = 0 \qquad \forall j, k$$

where \hat{I} is the identity operator.

- a) For any operator \hat{A} , show that $\hat{A}\hat{A}^{\dagger}$ is Hermitian.
- b) Find the possible eigenvalues for the operator $\hat{N}_i = \hat{a}_i \hat{a}_i^{\dagger}$.

Hint: Show that $\hat{N}_i^2 - \hat{N}_j = 0$.

13. Antipodal points on the Bloch Sphere

For (x, y, z) a point on the sphere, (-x, -y, -z) is its antipodal point. With wave vector

$$|\psi\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\phi}|1\rangle$$

the point on the Bloch sphere is

$$(x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

- a) Show that antipodal points on the surface of the Bloch sphere represent orthogonal states.
- b) Optional: Show that any two orthogonal states correspond to antipodal points on surface of the Bloch sphere.

14. Transformations of eigenbases

In an N dimensional quantum space, we find an orthogonal basis \mathcal{V} consisting of eigenvectors of a Hermitian operator \mathbf{A} .

Describe the set S of unitary operators, where $\mathbf{U} \in S$ if $\mathbf{U} | v_j \rangle$ is an eigenvector of \mathbf{A} , for all $|v_j\rangle \in \mathcal{V}$.

Hint: this problem is straightforward if you assume that the eigenvalues differ from each other.

15. Eigenvalues of the QFT

A unitary operator \mathbf{Q} satisfies $\mathbf{Q}^4 = \mathbf{I}$ where \mathbf{I} is the identity operator.

What are the possible eigenvalues for \mathbf{Q} ?

16. Finding the dimension of a vector space - 2×2 Hermitian matrices

A 2×2 complex matrix can be written as

$$\mathbf{A} = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}$$

or

$$\mathbf{A} = A_{00} |0\rangle \langle 0| + A_{01} |0\rangle \langle 1| + A_{10} |1\rangle \langle 0| + A_{11} |1\rangle \langle 1|$$

where $A_{00}, A_{01}, A_{10}, A_{11}$ are independent complex numbers.

We can think of $|0\rangle\langle 0|, |1\rangle\langle 0|, |0\rangle\langle 1|, |1\rangle\langle 1|$ as orthonormal basis elements. With that in mind, the space of 2×2 complex matrices is a 4 dimensional complex vector space.

If we divide each matrix element into a real and complex part, we can consider the space of 2×2 complex matrices as an 8 dimensional real vector space with basis vectors $|0\rangle \langle 0|, |1\rangle \langle 0|, |0\rangle \langle 1|, |1\rangle \langle 1|$ and $i |0\rangle \langle 0|, i |1\rangle \langle 0|, i |0\rangle \langle 1|, i |1\rangle \langle 1|$.

a) What is the dimension of the vector space of 2×2 Hermitian matrices?

b) What is the dimension of the vector space of $n \times n$ Hermitian matrices?

17. On the BB84 quantum communication protocol

Alice and Bob are sharing a key through the BB84 quantum communication protocol. Suppose Eve is eavesdropping on the line. Alice and Bob agree to send a test message to detect the presence of Eve. How many bits do Alice and Bob need to compare to have a 90 percent chance of detecting Eve's presence?

Hint: involves numerically summing probabilities with the binomial distribution.

18. New problems!

Propose and solve your own problem.