Homework \# 1. Physics 265, Spring 2024

Topic: On linear algebra and notation commonly used in quantum mechanics and quantum computing

Due date: Thursday Feb. 1, 2024. Choose a subset of about 8 problems to work on. Please upload your solutions to blackboard.

A unitary matrix is a square complex matrix that satisfies $\mathbf{U U}^{\dagger}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{I}$. A unitary matrix transforms one orthonormal basis to another. A Hermitian matrix is self-adjoint; $\mathbf{A}=\mathbf{A}^{\dagger}$.

1. On the definitions of unitary and Hermitian

Find an example of a non-identity 2 x 2 ma trix that is both unitary and Hermitian.

2. On the rows and columns of a unitary matrix

a) Explain why each row of a unitary matrix is orthogonal to every other row and why each row has a norm of 1 .
b) Explain why each column of a unitary matrix is orthogonal to every other column and why each column has a norm of 1.
c) For α a real number, and for \mathbf{U} a unitary matrix, is $e^{i \alpha} \mathbf{U}$ a unitary matrix?
d) Consider an $N \times N$ unitary matrix \mathbf{U} with eigenvalues λ_{i} with $i \in 0 \ldots . N-1$. Show that the eigenvalues must be complex numbers on the unit circle. In other words $\left|\lambda_{i}\right|=1$, they must be complex numbers with length 1.
3. On the inner product, expectation value and uncertainty

For Hermitian operator \mathbf{A} and state-vector $|\psi\rangle$ the expectation value $\langle\mathbf{A}\rangle=\langle\psi| \mathbf{A}|\psi\rangle$.
The uncertainty ΔA is a real number that is defined by

$$
\begin{equation*}
\Delta A=\sqrt{\left\langle\mathbf{A}^{2}\right\rangle-\langle\mathbf{A}\rangle^{2}} \tag{1}
\end{equation*}
$$

Show that the expression inside the square root is always greater or equal to zero.
Hints:
$\left\langle\mathbf{A}^{2}\right\rangle-\langle\mathbf{A}\rangle^{2}=\langle(\mathbf{A}-\langle\mathbf{A}\rangle) \times(\mathbf{A}-\langle\mathbf{A}\rangle)\rangle$. Use this fact to show that the expression for $(\Delta A)^{2}$ can be written as $\langle v \mid v\rangle$ for some vector $|v\rangle$.

4. On uncertainty relations

For a state $|\psi\rangle$ and Hermitian operators \mathbf{A}, \mathbf{B}, let $\langle\mathbf{A}\rangle=\langle\psi| \mathbf{A}|\psi\rangle$ denote the expectation value of \mathbf{A}. Let ΔA denote the uncertainty

$$
\begin{equation*}
\Delta A \equiv \sqrt{\left\langle\mathbf{A}^{2}\right\rangle-\langle\mathbf{A}\rangle^{2}} \tag{2}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
\mathbf{A}|\psi\rangle=\langle\mathbf{A}\rangle|\psi\rangle+\Delta A\left|\psi_{\perp A}\right\rangle \tag{3}
\end{equation*}
$$

where $\left|\psi_{\perp A}\right\rangle$ is a state orthogonal to $|\psi\rangle$.
Note: $|\psi\rangle,\left|\psi_{\perp A}\right\rangle$ are normalized.
(b) Use this result to prove the general uncertainty relation,

$$
\begin{equation*}
\Delta A \Delta B \geq \frac{1}{2}|\langle[\mathbf{A}, \mathbf{B}]\rangle| \tag{4}
\end{equation*}
$$

where $[\mathbf{A}, \mathbf{B}]=\mathbf{A B}-\mathbf{B A}$ is the commutator of \mathbf{A} and \mathbf{B}.
Hint: First show that

$$
\langle[\mathbf{A}, \mathbf{B}]\rangle=\Delta A \Delta B\left(\left\langle\psi_{\perp A} \mid \psi_{\perp B}\right\rangle-\left\langle\psi_{\perp B} \mid \psi_{\perp A}\right\rangle\right)
$$

Since the interaction for measuring \mathbf{A} disturbs the state-vector, an observable \mathbf{B} that
does not commute with \mathbf{A} is affected by measurement of \mathbf{A}.
This problem is from the book Quantum Paradoxes by Aharonov and Rohrlich.

5. On the cyclic nature of the trace

a) Show that the trace operator is cyclic.

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})
$$

where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are two dimensional square matrices.
It may be convenient to use summation notation. If a matrix \mathbf{A} has elements $A_{i j}$ in an orthonormal basis, then $\operatorname{tr} \mathbf{A}=\sum_{j} A_{j j}$ and the sum is over $j \in 0,1, \ldots . . N-1$ where N is the dimension of the vector space.
Matrix multiplication can also be done with indices. If $\mathbf{D}=\mathbf{A B}$ then

$$
D_{i k}=\sum_{j} A_{i j} B_{j k}
$$

for matrices $\mathbf{A}, \mathbf{B}, \mathbf{D}$.

b) Suppose a matrix \mathbf{A} can be diagonalized with a unitary operator \mathbf{U}. In other words $\mathbf{A}=\mathbf{U D U}^{\dagger}$ where $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots\right)$ is a diagonal matrix with values on the diagonal λ_{i}. Show that

$$
\operatorname{tr} \mathbf{A}=\sum_{i} \lambda_{i}
$$

It may be helpful to remember that a unitary matrix satisfies $\mathbf{U U}^{\dagger}=\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{I}$ where \mathbf{I} is the identity matrix.

6. Eigenvectors are perpendicular

a) Suppose λ_{i}, λ_{j} are eigenvalues of a Hermitian matrix \mathbf{A} with associated eigenvectors $\left|\mathbf{e}_{i}\right\rangle,\left|\mathbf{e}_{j}\right\rangle$ and suppose that $\lambda_{i} \neq \lambda_{j}$.
A vector $\left|\mathbf{e}_{j}\right\rangle$ is an eigenvector of matrix \mathbf{A} with eigenvalue λ_{j} if $\mathbf{A}\left|\mathbf{e}_{j}\right\rangle=\lambda_{j}\left|\mathbf{e}_{j}\right\rangle$ and $\left|\mathbf{e}_{j}\right\rangle$ is not zero.

Show that the two eigenvectors are perpendicular; $\left\langle\mathbf{e}_{\mathbf{i}} \mid \mathbf{e}_{\mathbf{j}}\right\rangle=0$.
b) Show that any Hermitian operator \mathbf{A} has eigenvalues that are real numbers.

7. The Pauli spin matrices

Many quantum algorithms use simple single qubit transformations such as the Pauli spin matrices.

The Pauli spin matrices are

$$
\begin{aligned}
\sigma_{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\sigma_{y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\sigma_{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

They satisfy $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathbf{I}$ where \mathbf{I} is the identity matrix and

$$
\begin{aligned}
\sigma_{x} \sigma_{y} & =-\sigma_{y} \sigma_{x}=i \sigma_{z} \\
\sigma_{y} \sigma_{z} & =-\sigma_{z} \sigma_{y}=i \sigma_{x} \\
\sigma_{z} \sigma_{x} & =-\sigma_{x} \sigma_{z}=i \sigma_{y}
\end{aligned}
$$

The Pauli spin matrices are unitary.
a) What are the eigenvalues and eigenvectors of σ_{z} ?
b) Show that the unitary matrix $\mathbf{H}=$ $\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)$ diagonalizes σ_{x}. In other words show that $\mathbf{H} \sigma_{x} \mathbf{H}^{\dagger}$ is a diagonal matrix.
\mathbf{H} is known as the Hadamard gate and is

$$
\mathbf{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

c) Find the eigenvalues and eigenvectors of σ_{x}, σ_{y}.
d) Find a unitary matrix that diagonalizes σ_{y}.

8. The Hadamard transform

A Hadamard transform is a $2^{N} \times 2^{N}$ matrix where N is an integer. Starting with the 1×1 matrix $H_{0}=1$, the transforms can be defined recursively

$$
\mathbf{H}_{m+1} \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{H}_{m} & \mathbf{H}_{m} \\
\mathbf{H}_{m} & -\mathbf{H}_{m}
\end{array}\right)
$$

This gives

$$
\mathbf{H}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
\mathbf{H}_{2}=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

a) Show that \mathbf{H}_{m} is Hermitian.
b) Show that $\mathbf{H}_{m}^{2}=\mathbf{I}_{2^{m}}$ where $\mathbf{I}_{2^{m}}$ is the 2^{m}-dimensional identity matrix (and we take $I_{0}=1$).
c) Show that \mathbf{H}_{m} is unitary.
9. On indexing in base 2 for a vector space with dimension that is a power of 2

Matrices used in quantum computing often have dimensions that are powers of two. For example they are often $2^{n} \times 2^{n}$ with n a nonzero positive integer. Indices for vectors or matrices run from 0 to $2^{n}-1$ and so can be written as binary numbers with a series of digits that are 0 or 1 .
For example suppose we have a 2^{3} dimensional vector space. An index for a vector would be in the set $\{000,001,010,011,100,101,110,111\}$.

A positive integer index i can be written as a series of digits where each digit is in the set \{ $0,1\}$. We write i as a series $i_{0}, i_{1}, i_{2} \ldots$ where i_{k} is in $\{0,1\}$ and k is an index that refers
to the digit. Here $k \in\{0, \ldots, n-1\}$ where n is the number of digits. Conventionally i_{0} is the smallest digit and i_{n-1} is the largest one. For example with $i=110$ in base 2 the digits are $1,1,0$ and $i_{0}=0, i_{1}=1$ and $i_{2}=1$. In base $10, i=4+2=6$. This means that $i=i_{2} 2^{2}+i_{1} 2^{1}+i_{0} 2^{0}$. More generally

$$
\begin{aligned}
i= & i_{n-1} 2^{n-1}+i_{n-2} 2^{n-2}+\ldots \\
& \quad \ldots+i_{3} 2^{3}+i_{2} 2^{2}+i_{1} 2+i_{0} \\
= & \sum_{k=0}^{n-1} i_{k} 2^{k}
\end{aligned}
$$

Consider 2 integers i, j, both written in terms of digits in base 2 .

$$
\begin{aligned}
& i=i_{n-1} i_{n-2} \ldots i_{1} i_{0} \\
& j=j_{n-1} j_{n-2} \ldots j_{1} j_{0}
\end{aligned}
$$

We can compute the sum

$$
i \cdot j=\left(\sum_{k} i_{k} j_{k}\right) \bmod 2 .
$$

Because it is modulo 2 the result is either equal to 1 or 0 .

For example $0010 \cdot 1010=1$ and $1111 \cdot 1010=$ 0 .

Compute the $2^{2} \times 2^{2}$ matrix with components

$$
H_{i j}=(-1)^{i \cdot j}
$$

10. On qubit global phase

Two quantum states can be considered equivalent if they only differ by a complex phase. In other words $|\phi\rangle \equiv|\psi\rangle$ if

$$
|\phi\rangle=e^{i \alpha}|\psi\rangle
$$

for a real number α, which we call the phase. This equivalence makes sense as there is no way to measure α with conventional quantum measurements.

Below I give a list of pairs of states. Which pairs of states represent equivalent quantum states for a single qubit? If they are equivalent find the phase α. If the states are not equivalent describe a measurement for which the probabilities of the outcomes of the two states differ. In other words, find an operator \mathbf{A} that gives different $\langle\mathbf{A}\rangle$ for each state.
a) $\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)$ and $|0\rangle$
b) $\frac{1}{\sqrt{2}}(|\mathbf{i}\rangle+|-\mathbf{i}\rangle)$ and $|1\rangle$
c) $\frac{1}{\sqrt{2}}\left(|0\rangle+e^{-i \pi / 4}|1\rangle\right)$ and $\frac{1}{\sqrt{2}}\left(e^{i \pi / 4}|0\rangle+|1\rangle\right)$
d) $|+\rangle$ and $|\mathbf{i}\rangle$

We use the states

11. On the Bloch sphere

a) Show that no point $|x\rangle$ on the Bloch sphere satisfies

$$
\langle x| \sigma_{x}|x\rangle=\langle x| \sigma_{y}|x\rangle=\langle x| \sigma_{z}|x\rangle=0
$$

where $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the Pauli spin matrices.
b) Are there any points on the Block sphere that satisfy

$$
\langle x| \sigma_{x}|x\rangle=\langle x| \sigma_{z}|x\rangle=0 ?
$$

If so find them.
Hints:
Any point on the Bloch sphere can be written with two angles ϕ, θ as

$$
|x\rangle=\cos (\theta / 2)|0\rangle+\sin (\theta / 2) e^{i \phi}|1\rangle
$$

The solution to $\langle x| \sigma_{x}|x\rangle=0$ is a great circle on the Bloch sphere. Similarly for σ_{y} and σ_{z}.
12. On eigenvalues of fermionic raising and lowering operators
A set of N fermions can be described with a set of N operators $\left\{\hat{a}_{j}\right\}$ where index j goes from 1 to N. The operators satisfy

$$
\begin{aligned}
& \hat{a}_{j} \hat{a}_{k}^{\dagger}+\hat{a}_{k}^{\dagger} \hat{a}_{j}=\delta_{j k} \hat{I} \\
& \hat{a}_{j} \hat{a}_{k}+\hat{a}_{k} \hat{a}_{j}=0 \quad \forall j, k
\end{aligned}
$$

where \hat{I} is the identity operator.
a) For any operator \hat{A}, show that $\hat{A} \hat{A}^{\dagger}$ is Hermitian.
b) Find the possible eigenvalues for the operator $\hat{N}_{j}=\hat{a}_{j} \hat{a}_{j}^{\dagger}$.
Hint: Show that $\hat{N}_{j}^{2}-\hat{N}_{j}=0$.
13. Antipodal points on the Bloch Sphere For (x, y, z) a point on the sphere, $(-x,-y,-z)$ is its antipodal point. With wave vector

$$
|\psi\rangle=\cos (\theta / 2)|0\rangle+\sin (\theta / 2) e^{i \phi}|1\rangle
$$

the point on the Bloch sphere is

$$
(x, y, z)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

a) Show that antipodal points on the surface of the Bloch sphere represent orthogonal states.
b) Optional: Show that any two orthogonal states correspond to antipodal points on surface of the Bloch sphere.

14. Transformations of eigenbases

In an N dimensional quantum space, we find an orthogonal basis \mathcal{V} consisting of eigenvectors of a Hermitian operator A.
Describe the set S of unitary operators, where $\mathbf{U} \in S$ if $\mathbf{U}\left|v_{j}\right\rangle$ is an eigenvector of A, for all $\left|v_{j}\right\rangle \in \mathcal{V}$.
Hint: this problem is straightforward if you assume that the eigenvalues differ from each other.

15. Eigenvalues of the QFT

A unitary operator \mathbf{Q} satisfies $\mathbf{Q}^{4}=\mathbf{I}$ where \mathbf{I} is the identity operator.
What are the possible eigenvalues for \mathbf{Q} ?
16. Finding the dimension of a vector space - 2×2 Hermitian matrices
A 2×2 complex matrix can be written as

$$
\mathbf{A}=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right)
$$

or

$$
\begin{aligned}
\mathbf{A}= & A_{00}|0\rangle\langle 0|+A_{01}|0\rangle\langle 1|+A_{10}|1\rangle\langle 0| \\
& +A_{11}|1\rangle\langle 1|
\end{aligned}
$$

where $A_{00}, A_{01}, A_{10}, A_{11}$ are independent complex numbers.
We can think of $|0\rangle\langle 0|,|1\rangle\langle 0|,|0\rangle\langle 1|,|1\rangle\langle 1|$ as orthonormal basis elements. With that in mind, the space of 2×2 complex matrices is a 4 dimensional complex vector space.
If we divide each matrix element into a real and complex part, we can consider the space of 2×2 complex matrices as an 8 dimensional real vector space with basis vectors $|0\rangle\langle 0|,|1\rangle\langle 0|,|0\rangle\langle 1|,|1\rangle\langle 1|$ and $i|0\rangle\langle 0|, i|1\rangle\langle 0|, i|0\rangle\langle 1|, i|1\rangle\langle 1|$.
a) What is the dimension of the vector space of 2×2 Hermitian matrices?
b) What is the dimension of the vector space of $n \times n$ Hermitian matrices?

17. On the BB84 quantum communication protocol

Alice and Bob are sharing a key through the BB84 quantum communication protocol. Suppose Eve is eavesdropping on the line. Alice and Bob agree to send a test message to detect the presence of Eve. How many bits do Alice and Bob need to compare to have a 90 percent chance of detecting Eve's presence?
Hint: involves numerically summing probabilities with the binomial distribution.

18. New problems!

Propose and solve your own problem.

