Homework # 1. Physics 265, Spring 2025

Topic: On linear algebra and notation commonly used in quantum mechanics and quantum computing

Due date: Thursday Feb. 4, 2025 at midnight. Choose a subset of 8 problems to work on. Please upload your solutions onto blackboard.

A unitary matrix is a square complex matrix that satisfies $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$. A unitary matrix transforms one orthonormal basis to another. A Hermitian matrix is self-adjoint; $\mathbf{A} = \mathbf{A}^{\dagger}$.

1. On the definitions of unitary and Hermitian

a) Find an example of a non-identity 2x2 matrix that is both unitary and Hermitian.

b) Find an example of a non-identity 3x3 matrix that is both unitary and Hermitian.

2. On the rows and columns of a unitary matrix

a) Explain why each row of a unitary matrix is orthogonal to every other row and why each row has a norm of 1.

b) Explain why each column of a unitary matrix is orthogonal to every other column and why each column has a norm of 1.

c) For α a real number, and for **U** a unitary matrix, is $e^{i\alpha}$ **U** a unitary matrix?

d) Consider an $N \times N$ unitary matrix **U** with eigenvalues λ_i with $i \in 0....N-1$. Show that the eigenvalues must be complex numbers on the unit circle. In other words $|\lambda_i| = 1$, they must be complex numbers with length 1.

e) A unitary operator \mathbf{Q} satisfies $\mathbf{Q}^4 = \mathbf{I}$ where \mathbf{I} is the identity operator. The discrete quantum Fourier transform is an example of such an operator.

What are the possible eigenvalues of \mathbf{Q} ?

3. On commutators

An operator **a** satisfies

$$[\mathbf{a}, \mathbf{a}^{\dagger}] = \mathbf{a}\mathbf{a}^{\dagger} - \mathbf{a}^{\dagger}\mathbf{a} = \mathbf{I}$$

where **I** is the identity.

Show that **a** cannot be Hermitian or unitary.

Hint: Show that Unitary and Hermitian operators are normal matrices satisfying $\mathbf{aa}^{\dagger} = \mathbf{a}^{\dagger}\mathbf{a}$.

This commutator is obeyed by a raising operator but a raising operator is not Hermitian or unitary.

4. On the inner product, expectation value and uncertainty

For Hermitian operator **A** and state-vector $|\psi\rangle$ the expectation value $\langle \mathbf{A} \rangle = \langle \psi | \mathbf{A} | \psi \rangle$.

The uncertainty ΔA is a real number that is defined by

$$\Delta A = \sqrt{\langle \mathbf{A}^2 \rangle - \langle \mathbf{A} \rangle^2} \tag{1}$$

Show that the expression inside the square root is always greater or equal to zero.

Hints:

 $\langle \mathbf{A}^2 \rangle - \langle \mathbf{A} \rangle^2 = \langle (\mathbf{A} - \langle \mathbf{A} \rangle) \times (\mathbf{A} - \langle \mathbf{A} \rangle) \rangle.$ Use this fact to show that the expression for $(\Delta A)^2$ can be written as $\langle v | v \rangle$ for some vector $|v\rangle$.

5. On measuring a single qubit in mutually unbiased bases

You have a mechanism that can produce a qubit that is in a particular state

$$|\psi\rangle = a |0\rangle + b |1\rangle$$

for two complex numbers a, b. We assume this state is normalized, so $aa^* + bb^* = 1$. It may be convenient to work with $|\psi\rangle$ on the Bloch sphere and in the form

$$\left|\psi\right\rangle=e^{i\gamma}\left(\cos\frac{\theta}{2}\left|0\right\rangle+e^{i\phi}\sin\frac{\theta}{2}\left|1\right\rangle\right)$$

where γ is a global phase.

The mechanism that you have access to can produce as many qubits in this particular state as you desire. Using many measurements you would like to find a, b and so determine what quantum state your mechanism produces. This procedure is called quantum state tomography. Quantum state tomography is when a quantum state is reconstructed using measurements on an ensemble of identical quantum states.

a) Suppose you make a series of many measurements in the $\{|0\rangle, |1\rangle\}$ basis. What do you learn about the state $|\psi\rangle$? In other words, what do you learn about *a* and *b* or equivalently about the Bloch state angles θ, ϕ, γ ?

b) Suppose you also make a series of many measurements in the $\{|+\rangle, |-\rangle\}$ basis. What more do you learn about the state $|\psi\rangle$?

c) Suppose you also make a series of measurements in the $\{|i\rangle, |-i\rangle\}$ basis. Do you gain additional information?

The states

$$\begin{split} |+\rangle &= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \\ |-\rangle &= \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ |i\rangle &= \frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle) \\ |-i\rangle &= \frac{1}{\sqrt{2}} (|0\rangle - i |1\rangle) \end{split}$$

6. On the cyclic nature of the trace

a) Show that the trace operator is cyclic.

$$\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{BCA})$$

where **A**, **B**, **C** are two dimensional square matrices.

It may be convenient to use summation notation. If a matrix **A** has elements A_{ij} in an orthonormal basis, then $\operatorname{tr} \mathbf{A} = \sum_j A_{jj}$ and the sum is over $j \in 0, 1, \dots, N-1$ where N is the dimension of the vector space.

Matrix multiplication can also be done with indices. If $\mathbf{D} = \mathbf{AB}$ then

$$D_{ik} = \sum_{j} A_{ij} B_{jk}$$

for matrices $\mathbf{A}, \mathbf{B}, \mathbf{D}$.

b) Suppose a matrix **A** can be diagonalized with a unitary operator **U**. In other words $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{\dagger}$ where $\mathbf{D} = \text{diag}(\lambda_1, \lambda_2, \lambda_3...)$ is a diagonal matrix with values on the diagonal λ_i . Show that

$$\operatorname{tr} \mathbf{A} = \sum_{i} \lambda_{i}$$

It may be helpful to remember that a unitary matrix satisfies $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$ where \mathbf{I} is the identity matrix.

7. Eigenvectors are perpendicular

a) Suppose λ_i, λ_j are eigenvalues of a Hermitian matrix **A** with associated eigenvectors $|\mathbf{e}_i\rangle, |\mathbf{e}_j\rangle$ and suppose that $\lambda_i \neq \lambda_j$.

A vector $|\mathbf{e}_{j}\rangle$ is an eigenvector of matrix **A** with eigenvalue λ_{j} if $\mathbf{A} |\mathbf{e}_{j}\rangle = \lambda_{j} |\mathbf{e}_{j}\rangle$ and $|\mathbf{e}_{j}\rangle$ is not zero.

Show that the two eigenvectors are perpendicular; $\langle \mathbf{e_i} | \mathbf{e_j} \rangle = 0$.

b) Show that any Hermitian operator **A** has eigenvalues that are real numbers.

8. The Pauli spin matrices

Many quantum algorithms use simple single qubit transformations such as the Pauli spin matrices.

The Pauli spin matrices are

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

They satisfy $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \mathbf{I}$ where \mathbf{I} is the identity matrix and

$$\sigma_x \sigma_y = -\sigma_y \sigma_x = i\sigma_z$$

$$\sigma_y \sigma_z = -\sigma_z \sigma_y = i\sigma_x$$

$$\sigma_z \sigma_x = -\sigma_x \sigma_z = i\sigma_y$$

The Pauli spin matrices are unitary.

a) What are the eigenvalues and eigenvectors of σ_z ?

b) Show that the unitary matrix $\mathbf{H} = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_z)$ diagonalizes σ_x . In other words show that $\mathbf{H}\sigma_x\mathbf{H}^{\dagger}$ is a diagonal matrix.

H is known as the Hadamard gate and is

$$\mathbf{H} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

c) Find the eigenvalues and eigenvectors of σ_x, σ_y .

d) Find a unitary matrix that diagonalizes σ_y . In other words, find **U** such that $\sigma_y = \mathbf{U}\Lambda\mathbf{U}^{\dagger}$ where Λ is a diagonal matrix.

9. Using measurements to describe a unitary transformation

You have access to a quantum system consisting of a qubit. You can apply a unitary transformation

$$\mathbf{U} = e^{i\alpha\boldsymbol{\sigma}_x} = \cos\alpha\mathbf{I} + i\sin\alpha\boldsymbol{\sigma}_x$$

to the qubit, where σ_x is the Pauli X matrix, and α is a phase that you would like to measure. The phase α is a real number satisfying $0 \leq \alpha < 2\pi$.

Quantum process tomography is when known quantum states and measurements are used to probe the nature of quantum process so that it can be accurately described.

- You initialize your qubit in the $|0\rangle$ state.
- You then operate on the qubit with the unitary operator U, giving you the state U |0>.
- Then you make a measurement in a basis of your choice.
- You can repeat this procedure as many times as you like.

a) Design a series of measurements to measure the mystery phase α .

b) How many measurements would you need to determine $\cos \alpha$ to an accuracy of 10%?

Hint: Use the mean and variance of the Bernoulli distribution https://en.wikipedia.org/wiki/

Bernoulli_distribution. The variance of the Bernoulli distribution is a maximum if the probability of an outcome is 1/2 and you can use that value to estimate the number of measurements you would need to ensure that the standard deviation of combined measurements to be smaller than 0.1.

10. On qubit global phase

Two quantum states can be considered equivalent if they only differ by a complex phase. In other words $|\phi\rangle \equiv |\psi\rangle$ if

$$|\phi\rangle = e^{i\alpha} |\psi\rangle$$

for a real number α , which we call the phase.

This equivalence makes sense as there is no way to measure α with conventional quantum measurements.

Below I give a list of pairs of states. Which pairs of states represent equivalent quantum states for a single qubit? If they are equivalent find the phase α . If the states are not equivalent describe a measurement for which the probabilities of the outcomes of the two states differ. In other words, find an operator **A** that gives different $\langle \mathbf{A} \rangle$ for each state.

a)
$$\frac{1}{\sqrt{2}} (|+\rangle + |-\rangle)$$
 and $|0\rangle$
b) $\frac{1}{\sqrt{2}} (|\mathbf{i}\rangle + |-\mathbf{i}\rangle)$ and $|1\rangle$
c) $\frac{1}{\sqrt{2}} (|0\rangle + e^{-i\pi/4} |1\rangle)$ and $\frac{1}{\sqrt{2}} (e^{i\pi/4} |0\rangle + |1\rangle)$
d) $|+\rangle$ and $|\mathbf{i}\rangle$

$$\begin{split} |+\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \\ |-\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) \\ |i\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle + i |1\rangle \right) \\ |-i\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle - i |1\rangle \right) \end{split}$$

11. On the Bloch sphere

a) Show that no point $|x\rangle$ on the Bloch sphere satisfies

$$\langle x | \sigma_x | x \rangle = \langle x | \sigma_y | x \rangle = \langle x | \sigma_z | x \rangle = 0$$

where $\sigma_x, \sigma_y, \sigma_z$ are the Pauli spin matrices. b) Are there any points on the Block sphere that satisfy

$$\langle x | \sigma_x | x \rangle = \langle x | \sigma_z | x \rangle = 0?$$

If so find them.

Hints:

Any point on the Bloch sphere can be written with two angles ϕ, θ as

$$|x\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2)e^{i\phi} |1\rangle$$

The solution to $\langle x | \sigma_x | x \rangle = 0$ is a great circle on the Bloch sphere. Similarly for σ_y and σ_z .

12. New problems!

Propose and solve your own problem.