
Homework # 1. Physics 265, Spring 2024

Topic: On linear algebra and notation com-
monly used in quantum mechanics and quantum
computing

Due date: Thursday Feb. 1, 2024. Choose a
subset of about 8 problems to work on. Please
upload your solutions to blackboard.

A unitary matrix is a square complex ma-
trix that satisfies UU† = U†U = I. A uni-
tary matrix transforms one orthonormal basis
to another. A Hermitian matrix is self-adjoint;
A = A†.

1. On the definitions of unitary and Her-
mitian

Find an example of a non-identity 2x2 ma-
trix that is both unitary and Hermitian.

2. On the rows and columns of a unitary
matrix

a) Explain why each row of a unitary matrix
is orthogonal to every other row and why
each row has a norm of 1.

b) Explain why each column of a unitary
matrix is orthogonal to every other column
and why each column has a norm of 1.

c) For α a real number, and for U a unitary
matrix, is eiαU a unitary matrix?

d) Consider anN×N unitary matrix U with
eigenvalues λi with i ∈ 0....N−1. Show that
the eigenvalues must be complex numbers
on the unit circle. In other words |λi| = 1,
they must be complex numbers with length
1.

3. On the inner product, expectation
value and uncertainty

For Hermitian operator A and state-vector
|ψ〉 the expectation value 〈A〉 = 〈ψ|A |ψ〉.
The uncertainty ∆A is a real number that
is defined by

∆A =
√
〈A2〉 − 〈A〉2 (1)

Show that the expression inside the square
root is always greater or equal to zero.

Hints:

〈A2〉 − 〈A〉2 = 〈(A − 〈A〉) × (A − 〈A〉)〉.
Use this fact to show that the expression
for (∆A)2 can be written as 〈v|v〉 for some
vector |v〉.

4. On uncertainty relations

For a state |ψ〉 and Hermitian operators
A,B, let 〈A〉 = 〈ψ|A |ψ〉 denote the ex-
pectation value of A. Let ∆A denote the
uncertainty

∆A ≡
√
〈A2〉 − 〈A〉2. (2)

(a) Show that

A |ψ〉 = 〈A〉 |ψ〉+ ∆A |ψ⊥A〉 , (3)

where |ψ⊥A〉 is a state orthogonal to |ψ〉.
Note: |ψ〉 , |ψ⊥A〉 are normalized.

(b) Use this result to prove the general un-
certainty relation,

∆A ∆B ≥ 1

2
|〈[A,B]〉|, (4)

where [A,B] = AB−BA is the commutator
of A and B.

Hint: First show that

〈[A,B]〉=∆A∆B(〈ψ⊥A|ψ⊥B〉−〈ψ⊥B |ψ⊥A〉)

Since the interaction for measuring A dis-
turbs the state-vector, an observable B that
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does not commute with A is affected by
measurement of A.

This problem is from the book Quantum
Paradoxes by Aharonov and Rohrlich.

5. On the cyclic nature of the trace

a) Show that the trace operator is cyclic.

tr(ABC) = tr(BCA)

where A,B,C are two dimensional square
matrices.

It may be convenient to use summation no-
tation. If a matrix A has elements Aij in an
orthonormal basis, then trA =

∑
j Ajj and

the sum is over j ∈ 0, 1, .....N − 1 where N
is the dimension of the vector space.

Matrix multiplication can also be done with
indices. If D = AB then

Dik =
∑
j

AijBjk

for matrices A,B,D.

b) Suppose a matrix A can be diagonalized
with a unitary operator U. In other words
A = UDU† where D = diag(λ1, λ2, λ3...) is
a diagonal matrix with values on the diago-
nal λi. Show that

trA =
∑
i

λi

It may be helpful to remember that a uni-
tary matrix satisfies UU† = U†U = I where
I is the identity matrix.

6. Eigenvectors are perpendicular

a) Suppose λi, λj are eigenvalues of a Hermi-
tian matrix A with associated eigenvectors
|ei〉 , |ej〉 and suppose that λi 6= λj .

A vector |ej〉 is an eigenvector of matrix A
with eigenvalue λj if A |ej〉 = λj |ej〉 and
|ej〉 is not zero.

Show that the two eigenvectors are perpen-
dicular; 〈ei|ej〉 = 0.

b) Show that any Hermitian operator A has
eigenvalues that are real numbers.

7. The Pauli spin matrices

Many quantum algorithms use simple single
qubit transformations such as the Pauli spin
matrices.

The Pauli spin matrices are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

They satisfy σ2
x = σ2

y = σ2
z = I where I is

the identity matrix and

σxσy = −σyσx = iσz

σyσz = −σzσy = iσx

σzσx = −σxσz = iσy

The Pauli spin matrices are unitary.

a) What are the eigenvalues and eigenvec-
tors of σz?

b) Show that the unitary matrix H =
1√
2
(σx+σz) diagonalizes σx. In other words

show that HσxH
† is a diagonal matrix.

H is known as the Hadamard gate and is

H =
1√
2

(
1 1
1 −1

)

c) Find the eigenvalues and eigenvectors of
σx, σy.

d) Find a unitary matrix that diagonalizes
σy.
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8. The Hadamard transform

A Hadamard transform is a 2N ×2N matrix
where N is an integer. Starting with the
1×1 matrix H0 = 1, the transforms can be
defined recursively

Hm+1 ≡
1√
2

(
Hm Hm

Hm −Hm

)
This gives

H1 =
1√
2

(
1 1
1 −1

)
and

H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


a) Show that Hm is Hermitian.

b) Show that H2
m = I2m where I2m is

the 2m-dimensional identity matrix (and we
take I0 = 1).

c) Show that Hm is unitary.

9. On indexing in base 2 for a vector
space with dimension that is a power
of 2

Matrices used in quantum computing often
have dimensions that are powers of two. For
example they are often 2n×2n with n a non-
zero positive integer. Indices for vectors or
matrices run from 0 to 2n− 1 and so can be
written as binary numbers with a series of
digits that are 0 or 1.

For example suppose we have a 23

dimensional vector space. An in-
dex for a vector would be in the set
{000, 001, 010, 011, 100, 101, 110, 111}.
A positive integer index i can be written as a
series of digits where each digit is in the set {
0,1 }. We write i as a series i0, i1, i2.... where
ik is in { 0,1 } and k is an index that refers

to the digit. Here k ∈ {0, ...., n − 1} where
n is the number of digits. Conventionally i0
is the smallest digit and in−1 is the largest
one. For example with i = 110 in base 2
the digits are 1,1,0 and i0 = 0, i1 = 1 and
i2 = 1. In base 10, i = 4 + 2 = 6. This
means that i = i222 + i121 + i020. More
generally

i = in−12n−1 + in−22n−2 + ....

....+ i323 + i222 + i12 + i0

=

n−1∑
k=0

ik2k

Consider 2 integers i, j, both written in
terms of digits in base 2.

i = in−1in−2....i1i0

j = jn−1jn−2....j1j0

We can compute the sum

i · j =

(∑
k

ikjk

)
mod 2.

Because it is modulo 2 the result is either
equal to 1 or 0.

For example 0010·1010 = 1 and 1111·1010 =
0.

Compute the 22 × 22 matrix with compo-
nents

Hij = (−1)i·j

10. On qubit global phase

Two quantum states can be considered
equivalent if they only differ by a complex
phase. In other words |φ〉 ≡ |ψ〉 if

|φ〉 = eiα |ψ〉

for a real number α, which we call the phase.

This equivalence makes sense as there is no
way to measure α with conventional quan-
tum measurements.
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Below I give a list of pairs of states. Which
pairs of states represent equivalent quantum
states for a single qubit? If they are equiv-
alent find the phase α. If the states are
not equivalent describe a measurement for
which the probabilities of the outcomes of
the two states differ. In other words, find
an operator A that gives different 〈A〉 for
each state.

a) 1√
2

(|+〉+ |−〉) and |0〉

b) 1√
2

(|i〉+ |−i〉) and |1〉

c) 1√
2

(
|0〉+ e−iπ/4 |1〉

)
and 1√

2

(
eiπ/4 |0〉+ |1〉

)
d) |+〉 and |i〉
We use the states

|+〉 =
1√
2

(|0〉+ |1〉)

|−〉 =
1√
2

(|0〉 − |1〉)

|i〉 =
1√
2

(|0〉+ i |1〉)

|−i〉 =
1√
2

(|0〉 − i |1〉)

11. On the Bloch sphere

a) Show that no point |x〉 on the Bloch
sphere satisfies

〈x|σx |x〉 = 〈x|σy |x〉 = 〈x|σz |x〉 = 0

where σx, σy, σz are the Pauli spin matrices.

b) Are there any points on the Block sphere
that satisfy

〈x|σx |x〉 = 〈x|σz |x〉 = 0?

If so find them.

Hints:

Any point on the Bloch sphere can be writ-
ten with two angles φ, θ as

|x〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉

The solution to 〈x|σx |x〉 = 0 is a great cir-
cle on the Bloch sphere. Similarly for σy
and σz.

12. On eigenvalues of fermionic raising
and lowering operators

A set of N fermions can be described with a
set of N operators {âj} where index j goes
from 1 to N . The operators satisfy

âj â
†
k + â†kâj = δjk Î

âj âk + âkâj = 0 ∀j, k

where Î is the identity operator.

a) For any operator Â, show that ÂÂ† is
Hermitian.

b) Find the possible eigenvalues for the op-

erator N̂j = âj â
†
j .

Hint: Show that N̂2
j − N̂j = 0.

13. Antipodal points on the Bloch Sphere

For (x, y, z) a point on the sphere,
(−x,−y,−z) is its antipodal point. With
wave vector

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉

the point on the Bloch sphere is

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

a) Show that antipodal points on the sur-
face of the Bloch sphere represent orthogo-
nal states.

b) Optional: Show that any two orthogo-
nal states correspond to antipodal points on
surface of the Bloch sphere.
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14. Transformations of eigenbases

In anN dimensional quantum space, we find
an orthogonal basis V consisting of eigenvec-
tors of a Hermitian operator A.

Describe the set S of unitary operators,
where U ∈ S if U |vj〉 is an eigenvector of
A, for all |vj〉 ∈ V.

Hint: this problem is straightforward if you
assume that the eigenvalues differ from each
other.

15. Eigenvalues of the QFT

A unitary operator Q satisfies Q4 = I where
I is the identity operator.

What are the possible eigenvalues for Q?

16. Finding the dimension of a vector
space - 2×2 Hermitian matrices

A 2× 2 complex matrix can be written as

A =

(
A00 A01

A10 A11

)
or

A = A00 |0〉 〈0|+A01 |0〉 〈1|+A10 |1〉 〈0|
+A11 |1〉 〈1|

where A00, A01, A10, A11 are independent
complex numbers.

We can think of |0〉 〈0| , |1〉 〈0| , |0〉 〈1| , |1〉 〈1|
as orthonormal basis elements. With that in
mind, the space of 2 × 2 complex matrices
is a 4 dimensional complex vector space.

If we divide each matrix element into a
real and complex part, we can consider
the space of 2 × 2 complex matrices as an
8 dimensional real vector space with ba-
sis vectors |0〉 〈0| , |1〉 〈0| , |0〉 〈1| , |1〉 〈1| and
i |0〉 〈0| , i |1〉 〈0| , i |0〉 〈1| , i |1〉 〈1|.
a) What is the dimension of the vector space
of 2× 2 Hermitian matrices?

b) What is the dimension of the vector space
of n× n Hermitian matrices?

17. On the BB84 quantum communication
protocol

Alice and Bob are sharing a key through
the BB84 quantum communication proto-
col. Suppose Eve is eavesdropping on the
line. Alice and Bob agree to send a test
message to detect the presence of Eve. How
many bits do Alice and Bob need to com-
pare to have a 90 percent chance of detect-
ing Eve’s presence?

Hint: involves numerically summing proba-
bilities with the binomial distribution.

18. New problems!

Propose and solve your own problem.
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