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1 Acronyms for Complexity and Terminology

We list some terminology.

1.1 Big O notation

Let f,g : N — N be functions of natural numbers. We say that f(n) = O(g(n)) iff
3 a,n, € N such that Vn > n, implies that f(n) < ag(n). The function g(n) is an
asymptotic upper bound for f(n) and we say that f is of the order of g. Informally,
f(n) = O(g(n)) means that f grows as g or slower.

1.2 P and NP and NP-complete and NP-hard

e A decision problem is a problem that gives a yes or no answer. The output is
Boolean.

e P. The class of decision problems that can be solved in polynomial time. If the size
of the input is N the decision problem can be solved on a deterministic sequential
machine in an amount of time that is a polynomial function of the size of the input.

e NP. NP stands for ‘nondeterministic polynomial time’. The class of decision prob-
lems for which an answer can be verified in polynomial time.

e NP-complete. If any NP problem can be transformed, in polynomial time, to a
problem A, then the problem A is said to be NP complete. A problem A in NP is
NP-complete if every problem in NP can be reduced to problem A. An NP-complete
problem is an NP problem that is at least as “tough” as any other NP problem.

e NP-hard. Optimization problems are not decision problems. They often lack a
function that lets you verify in polynomial time if you have an optimal solution so
they are not in P or NP. However they can be computationally as hard as an NP
problem if it takes an exponentially long time to find an optimal solution.

Can all problems that can be verified in polynomial time (NP) also be solved in poly-
nomial time (in P)? If it turns out that P # NP, which is widely believed, it would mean



that there are problems in NP that can be verified in polynomial time but not solved in

polynomial time.

1.3

CIRCUT-SAT, 3-SAT, PSPACE, BPP, BQP

CIRCUIT-SAT. You are given a Boolean circuit C that consists of a logical ex-
pression that is a function of Boolean variables, with each variable z; € {0,1}. You
want to find out if there is an x (a string of input bits) such that C'(x) = 1; and
the output is TRUE. CIRCUIT-SAT € NP as C(), the circuit itself, is a verifying
function that can be quickly computed. CIRCUIT-SAT is also NP-complete.

3-SAT. A Boolean decision problem that can be written in terms of conjunctions of
clauses, each of which only involve three Boolean variables. CIRCUIT-SAT can be
reduced to K-SAT which can be reduced to 3-SAT. We discuss 3-SAT in more detail
in section 6.4. 3-SAT is in the class of NP-complete.

PSPACE. Problems that can be solved in polynomial space but may require expo-
nential time.

BPP. Bounded-error probabilistic polynomial time. It is guaranteed to run in poly-
nomial time and has a probability of less than 1/2 or 1/3 of getting the wrong answer
Or NO answer.

BQP. Bounded error quantum polynomial time. The class of problems that can be
decided with high probability by polynomial size quantum circuits.

Quantum supremacy. A computation that can be done on a quantum computer
with fewer operations than on a classical computer demonstrates quantum supremacy.

Nothing is as yet known about the relation between BQP and NP or P.
It is not known whether BPP C BQP is a proper inclusion.
It is an open question as to whether BPP = PSPACE.

1.4
°
°

QFT, QPE, NISQ, VQA, VQE
QFT. Quantum Fourier Transform.
QPE. Quantum phase estimation.

NISQ. Noisy Intermediate Scale Quantum. An acronym used to describe noisy
quantum computers that have about 100 qubits.

VQC, VQA, VQE. Variational Quantum Computer. Variational Quantum Algo-
rithm. Variational Quantum Eigensolver. A hybrid algorithm that alternates be-
tween quantum algorithm, and measurement followed by classical computations to
achieve optimization or minimization of a function of many variables.



1.5 Can quantum algorithms be faster than classical ones?

e Nonexponential speedup. Some quantum algorithms are demonstrably faster
than the best classical algorithm, but not exponentially faster. These algorithms
demonstrate that quantum algorithms are different than classical ones. Example:
Grover’s quantum search algorithm of an unsorted data base that achieves a quadratic
speed-up compared to classical algorithms.

e Exponential speed-up. By feeding quantum superpositions to a quantum oracle,
we can learn what is inside the oracle with an exponential speedup, compared to how
long it would take if we were only allowed classical computations. An example is
Simon’s black box algorithm.

e Exponential speedup for hard problems. There are quantum algorithms that
solve a problem in polynomial time, where the problem appears to be hard classically,
so that it is strongly suspected that the problem is not in BPP. Example: Shor’s
factoring algorithm.

2 Black box problems

The goal of this section is to show how entanglement and superposition can be used on
quantum computers to speed up certain types of calculations.

2.1 Deutsch’s problem

Consider a Boolean function f(z) on a single bit with « € {0, 1} that gives an output also
€ {0,1}. There are 4 possibilities for the function

f@)=0 f@) =1 f@=x f(z)=NOTu.

|0>'!'H'!'XU xHH A
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A Ol o R 5

TANETA TANIA

Figure 1: The Deutsch algorithm is the following quantum circuit applied to an initial
state of |01). The Uy transformation is |zy) — |z,y + f(z)) where xz,y € {0,1} and the +
is mod 2. Here f() is a Boolean function (returning 0 or 1). The goal is to determine if
f(z) is constant (with f(0) = f(1)) or balanced (with f(0) = NOT f(1)) with a single call
of the operator Uy.



The left two are constant Boolean functions as they always give the same out bit. The
right two possibilities are called balanced functions as they give both 0 and 1 as outputs.
Classically you would have to call the function twice to figure out if the function is constant
or balanced. However it is possible to design a quantum circuit that uses interference and a
single function call to determine whether the function is constant or balanced. The circuit
is illustrated in Figure 1. The unitary operation Uy takes

Uy : lzy) = |z,y + f(2)) (1)

and is only called a single time in the circuit.
To illustrate this computationally rather than analytically we need to implement the
unitary operation Uy. We compute the following for Uy

flx)=0 |00) — |00),|01) — |01),|10) — |10),|11) — |11)
flx)=1 |00) — |01),]01) — |00),|10) — |11),]11) — |10)
flx)== |00) — |00),]01) — |01),|10) — |11),]|11) — |10)
fle)== |00) — |01),]01) — |00),|10) — |10),|11) — |11)
The unitary operation Uy depends on the form of f
—o=1
0100
1 0 00
Urm=1=| g g o 1 [T1®0
0010
1 0 00
0100
Uf(z)=2 = 0001l = CNOT(control = 0, target = 1)
0010

This one is equivalent to the CNOT gate with control bit the first one and target bit the
second one. It is also |zy) — |,y + z).

0
= CNOT(control = 0, target = 1) x (I ® o)

=

2

Il

8l

I
S O = O
o O O
O = O O
_ o o

This one flips the second bit only if the first bit is 0. It is also |xy) — |z,y + NOT z).
Let’s mimic the operation of the circuit shown in Figure 1. Starting with initial state

[Wo) = |01)



we apply H® H
¥)) = H® H|01)
_ 1 —=(10) - 1)
V2 V2
- %(\00> — |01) + [10) — [11))

(10) + 1) @

Now apply Uy = |zy) — |z,y + f(z))

100) = 10,0+ £(0)) = 10, £(0))
01) = [0,1 + £(0)) = |0,NOT f(0))
[10) = 1,0+ f(1)) = [1, f(1))
11) — [1,1+ £(1)) = |1,NOT £(1)).

The result is
[Wa) = Uy [W1) = %(\O,f(()» —[0,NOT £(0)) + |1, f(1)) — [1,NOT f(1))).  (2)

Now we apply the Hadamard operation to the first bit. The Hadamard operator takes

1

10, £(0)) = —=(10, f(0)) +[1, £(0)))

S

2

1

|0,NOT f(0)) — (|0,NOT £(0)) + [1,NOT f(0)))

S

2

1, £(1)) = —=(10, f(1)) = |1, £(1)))

1
2

1
2

S5

[1L,NOT f(1)) = —=(|0,NOT f(1)) — |1, NOT f(1)))

N

The operation of the Hadamard to the first qubit on the state in equation 2 gives a final
or output state

(W3) = (HOT)[Wy)
= \}g(lo»f((l» —[0,NOT £(0)) + 10, f(1)) — |0,NOT f(1)) +
1, £(0)) — [1,NOT f(0)) — [1, f(1)) + [1,NOT f(1))

(10 @ (17(0)) ~ INOT f(0)) +17(1)) ~ INOT (1))
1) ® (£(0)) — [NOT f(0)) — (1)) + INOT f(1))))

S

8

7



If f() is a constant function then If f(0) is equal to f(1) and |f(0)) —|f(1)) = 0 and
the final state evaluates to
1
V2
We notice that the first bit is now exclusively in the 0 state!

If f is balanced, then f(0) is opposite to f(1). In this case |f(0)) — [NOTf(1)) =0
and the final state is

|Ws3) = (10, £(0)) — |0,NOT £(0))) for f() constant.

1
V2

We notice that the first bit is now exclusively in the 1 state! Measurement of the first bit
determines whether the function is constant or balanced.

This is the Deutsch algorithm. It is possible to measure whether the Boolean function
f() is constant or balanced using a single quantum query of the function f().

|W3) = —(|1, f(0)) — |1, NOT £(0))) for f() balanced.

2.2 The N-bit Hadamard transformation

In the Deutsch problem we applied the Hadamard to two qubits. The Hadamard operation
applied to many or all qubits is a common element of many quantum algorithms.

We consider a system of N qubits. A number of algorithms use the N-bit Hadamard
transformation which is the tensor product of a Hadamard transformation for each bit

Wy=HoHoH®®..2oH=H®"

This is sometimes called the Walsh-Hadamard transformation.
Let’s do the operation on 3 qubits starting with |¢/) = |000),

W3 000) = H ® H ® H |000)

1 1 1
:7§m+u»®7§ 7§M+HD

1
23T(|OOO> +1(001) + |010) + |011) + |100) + |101) + |110) + |111))

(10) +1) @

111

1
:§E§:uy

=000

Here x is a binary string that has length 3.



Starting with wave vector [¢) = |0000....0) what does the N-bit Hadamard transforma-
tion do?

Wy [000..0) = H® H® H® H® ... ® H|0000....0)

1 1 1 1
= 7(|0> +1)® E(W +1)® \ﬁ(lm +1))®..o E(W + 1)

= 2N/2(|0000 ) + [1000..) + 0100...) 4 |1100..) + [1010..) + ...)

N_1
1
- oN/2 Z |JI>
=0

Here x is a binary string that has length N. The binary string z is a string of digits
xoT1To.... where each digit x, € {0,1}. Sometimes people write digit =z, € Zo and x €

(Z2)N. If we think of = as a number in base 2 then z is also an integer € {0, 1,2,....,2V71}.
With N qubits, a basis for wave vector is also given by the binary strings that have N
digits.

What if we apply the W3 transformation to a different state vector? Again starting
with the 3-bit version of W

1 1
W35 [001) = 7(I0> +1)) ® f(|0> +11)) ® \ﬁ(|0> — 1)
= 23/2(|000> |001) + [010) — [011) + |100) — |101) 4 [110) — |111))

= 23/2 Z Z Z [ioiiz) (

10=0171=012=0

In the last step x is a 3 bit string of bits. With the state

Wi [011) = 7<ro> ) e j§<|o> —me j§<|o> )

= 2L/(|000> 1001) — [010) + [011) + [100) — [101) — [110) + |111))
1 1 1 1 ' .
=g 2 2 D lioaia) (1)
Z =01 : 3 :
231

_ 1 Z1+12
T 93/2 Z



We see a pattern that we can write in terms of the number of common bits in  and in
the wave vector upon which W operates that are 1.

It is convenient to define a new symbol which we write as x -y where x, y are both N bit
strings. The product x - y is the number of digits (mod 2) that are both 1 in both strings.
If x has bits zgzi1z2 and y has bits yoy1ys

z -y = (zox122) - (Yoy1Y2)
= (2o Ayo) B (y1 Ay1) & (22 A y2)
= ZoYo + Y1Y1 + T2Y2.

Let’s check that this works: For the first case with |¢)) = |001), the expression z - 001 is
only 1 if the third bit in = is 1. In the second case with [¢) = [011), the expression = - 011
is only 1 if one of the second and third bits in = are 1 but not both. This is consistent with
the examples we did above!

As the power of -1 can only be one of two values, 1 or -1, a general expression for the
N bit Hadamard

2N —1
1 .
Wi ly) = H®V |y) = N2 Z (=" |z). (3)
=0
where x,y are both IV bit binary strings.

2.3 Deutsch-Jozca problem

A more general version of the Deutsch problem with function f(x) that depends on = a
binary string of length N (or a series of bits) is known as the Deutsch-Jocza algorithm.
Previously we looked at the unitary operation (equation 1)

Up: ey) = ey + f(2)) 2y e{0,1} (4)

with f(z) a Boolean function. We can more consider the same expression but more gen-
erally with = € (Z2)V = {0,1}*" (strings of bits of length N) and with y still a single bit.
The function f(x) takes a string of bits of length N to {0, 1} so its output is Boolean.

f: {0,13Y = {0,1}

We restrict the form of f and assert that it is either constant or balanced. If f is
constant then f(x) = 0 for all x or f(x) =1 for all z. If f is balanced then f(z) = 0 for
half of all possible x string values. There are functions on N bits with N > 1 that are
neither constant nor balanced so this assertion is quite restrictive.

Again we can ask is f constant or is f balanced? And can we find out with a single
operation of Uy with

Uy : lwy) = e,y + f(2)) e {0,1}"V,y e {0,1}. (5)

10
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W) |0 o) W)

Figure 2: The Deutsch-Jozca algorithm is the following quantum circuit applied to an
initial state of [0)™ ®]1). Here the total number of qubits is N + 1. The U ¢ transformation
is |zy) — |2,y + f(2)) where z € ({0,1)})V, y € {0,1} and the + is mod 2. Here f() is
a Boolean function (returning 0 or 1) that is either constant or balanced. The goal is to
determine if f() is constant or balanced with a single call of the operator Uy.

To find out if f is constant or balance we use a quantum circuit that is similar to that
in Figure 1 for the Deutsch problem and that is shown in Figure 2. The Hadamard on the
|0) state used in the Deutsch problem is replaced by the N-bit Hadamard on |0)". The

initial state
[Wo) = [0) ¥[1).

The action of the circuit is

V1) = (H®N ® H) !0>N ® |1)

= ovm Z 7) ® <=(10) - 1)

|Wa) = Uy !‘1’1>
oN_1

= v O (9 @17(@) — ) @ |1+ £(z)
=0

|T3) = (H®N ®I)|¥s) using equation 3
2N 12N 1

2N+1/2 Yo D DTy @ f(2) — ly) ® 1+ f(2).

z=0 y=0

If f(z) = 0 then |f(x)) — |1+ f(x)) = |0) — [1).
If f(z) = 1 then |f(2)) — [1 + f(x)) = [1) = ]0) = (=1)/@ x (J0) - |1)).

In general
|f (@) = L+ f(2)) = (=1)/“(J0) - |1))

11



and the final state is

oN_19N_1

[W3) = 2N+1/2 > (= “(ly) @ (l0) - 1)) (6)

z=0 y=0
If the function is constant and f(x) = ¢ where ¢ € {0, 1}, then the final state is

2N _19N_1

|W3) = 2N+1/2 Z Z D<(ly) @ (]0) — |1)) for f constant

z=0 y=0

where x and y are N-bit strings. We need to compute the sum
1 2N -1
=0

For any non-zero y string we are going to get as many +1 as -1 in the sum so this will be
zero unless y = 00000...0. If y = 0000...0 then the sum gives 1.! Hence

1 2N 1
v O (FD" =10y, (7)
=0
The final wave function is

1
1W3) = [0)Y @ —(=1)/@(|0) = |1)) for f() constant.
V2
Measurement of the the first N bits should always give a series of zeros.
We now consider the case of f(x) balanced

aN_12N_1

Us) = 2N+1/2 oD (- D@ (|ly) ® (0) = 1)) for f() balanced.

z=0 y=0

We need to compute the sum

+f(=
2N+1/2 Z )™

'For example, consider y = 1000. When summing over all z values & = 1000 will give -1 in the sum and
x = 0000 will give 1 in the sum. The two cancel out. Consider x = 1ijk and « = 0ijk. These will cancel
each other out for all possible values of ijk. Now consider y = 1100. For = 0000 we get 1, for x = 1000
we get -1 for x = 0100 we get -1 and for x = 1100 we get 1. The 4 terms cancel. Likewise for any other
possible values for the last two bits, the 4 terms cancel. The pattern should be clear.

12



Consider the case of y = 0000...0.

2N 1
OF 105) = i S (<10} ~ 1),
x=0

We need to compute
2N -1

1 T
o > (17,
=0

but if f(z) is balanced then this sum is zero. This implies that

<0]N |W3) =0 for f() balanced.
The state |¥3) must be perpendicular to [0)Y. This means that |¥3) must contain a qubit
that is not in the 0 state. When the measurement of the first N bits is done they will not
all be zero.

In summary, if the function is constant then the first N bits measured will all be zero.
Any other result implies that the function is balanced.

Efficiency: For the Deutsch-Jozca black box problem is there an advantage in doing
the quantum calculation? In a classical setting 2V queries of the function are required to
determine if the function is constant, but here we used mixed states to determine if the
function is constant with a single query of the function f. After a few queries (classically) we
would be unlikely to get the same value if the function were actually balanced. Classically
the computation is not considered hard because a polynomial number of queries can give
an exponentially good estimate for whether the function is constant or balanced.

2.4 What is an oracle?

The Deutsch and Deutsch-Jozca problems are oracle problems. The function is like a
black box and you can ask it questions (the function queries). The idea is that if you
ask the oracle enough questions, you can determine what is in the box. In the quantum
setting, the unitary operation U serves as the quantum oracle. The circuit complexity
is the number of calls (querries) made to the oracle to determine how the oracle functions.

Additional quantum oracle problems are the Bernstein-Vazirani problem, Simon’s prob-
lem and Grover’s problem.

2.5 Non-invertible functions and quantum parallelism

For a classical computer one evaluates a function of a series of bits. For a quantum computer
one evaluates a function on a series of qubits that can be in quantum superpositions of
states. Calling the function a single time gives what is called quantum parallelism and
we have been seeing this exploited in the Deutsch and Deutsch-Jozca algorithms.

13



Quantum gates are unitary operations which are invertible. How do we evaluate func-
tions that are not necessarily invertible? How do we write irreversible functions in terms
of unitary or invertible operations? Consider a function f(x) of N bits that returns 0 or
1, and define a function of N 4 1 bits

F(x,y) = (x,y + f(x))

with x € {0,1}", f(z) € {0,1}, y € {0,1}. Here the plus is mod 2 or equivalent to
the XOR. Because we have x in the output we can compute f(x), subtract it off the last
bit and recover y. The transformation is invertible. However any Boolean function can
be computed, including those that are not invertible. Quantum computing requires extra
information to be retained during the calculation.

2.6 Bernstein-Vazirani algorithm

ORG: R B <A o)

H H UfS H
1) —'-H-'-y y+sx-§-H E 1)
(W) V1) (W) | W3)

Figure 3: The Bernstein-Vazirani problem is solved with this quantum circuit applied to an
initial state of [0)"" ®|1). Here the total number of qubits is N +1. The U ¢ transformation
is |zy) — |7,y + f(x)) where z € ({0,1)})¥, y € {0,1} and the + is mod 2. The function
f(x) = s x for a mystery N-bit binary string s. The goal is to determine the string s with
a single call of the operator Uy.

We once again are given an oracle function
f {0,1}" — {0,1}.
We assert that f(x) = s-z (mod 2) for some secret N bit string s. Here
$-x = Spro+ 8121 + .... + SN_1xN_1 mod 2.

The problem is to find s with the fewest oracle queries.
Our oracle does this

Uglo,y) = |z, y+5-x).

14



Classically to find s you must query the function N times

£(1000..0) = s
£(0100..0) = s
£(0010..0) = s
£(0001..0) = s3

f(OOOOl) — SN—-1-

No classical algorithm has fewer queries, since each query only provides one bit of infor-
mation about the mystery string s.

Not surprisingly the Bernstein-Vazirani algorithm is similar to the Deutsch-Jozca prob-
lem. Start with \O>N, then apply the N-bit Hadamard operator H®N then query with Uy,
then apply the N-bit Hadamard operator again, the measure all bits. The result is s. The
initial state

[Wo) = 0)Y @ 1)

The action of the circuit is

W) = (H®N ®H) \0>N ® 1)

= ovm Z 7) ® —=(10) 1)

|Wo) = Uy [¥y)

2N 1
= svmer O (9 @ 17@) —12) © 1+ f@)
=0

2N 1
1
= TR Z(|$>®|5‘$>—’$>®\1+S-x>)
2N—1

=2N/2+1/22 1% J2) @ (0) — 1))

as s-x is either 0 or 1.

2N _1
o)) = 555 3 ()" leh 0.

15



Lastly we use equation 3 to apply the last operation of H®N

[W3) = (HEN @ H) |¥y)
oN_12N 1

= DI NSV CIVENY

z=0 y=0
oN_19N_1

2N Yo X el (8)

z=0 y=0

As we did previously (see equation 7) when computing the Deutsch Jozca algorithm, the

sum
1 2N —1
v 2 (1T =
=0
This follows because the number of positive and negative terms is the same and they cancel

unless ¢ = 0. Our sum in equation 8 is zero unless s + y = 0. Equation 8 becomes

2N _1

[W3) = ) Gapyoly) ®1).
y=0

Equivalently modulo 2, y = s for the remaining term,
[W3) = |s) @1).

We measure the first N bits and we recover the mystery string s! Amazingly this worked
with only one query of the quantum oracle function Uy!

H H

Hl—&—{H

Figure 4: These two circuits are equivalent.

Why does this work? We used quantum parallelism and superposition to remove all
incorrect results. Another way to look at it is to notice the 4 Hadamard transformations. 4
Hadamard transformations on a CNOT reverse the control bit and target bits (see Figure
4). The circuit behaves as if it were applying a CNOT for every bit of the mystery string
s.

Efficiency: Classically N queries of the function f are required to find the string s
where N is the number of bits in s. In the quantum algorithm a single query sufficed to
find s.

16



3 The Quantum Fourier Transform

The Quantum Fourier transform (QFT) is used in a number of ‘fast’ algorithms such as
the Shor algorithm.

e2mi/11

Figure 5: By symmetry, the roots of unity on the complex plane sum to zero.

3.1 The Discrete Fourier Transform

The Discrete Fourier Transform is used on an evenly spaced set of data points. A par-
ticularly efficient (in both numbers of operations and memory usage) is the Fast Fourier
Transform (FFT) which is done on N = 2" data samples, where the number of samples is
a power of 2.

We take x; to be our N data samples with index j going from 0 to N —1. The numbers
xj can be complex. The result of the Discrete Fourier Transform is another sequence of
complex numbers

1 N-1 s
X =—= zje N K 9)
VN jz(:) ’

with index k also ranging from 0 to N — 1. The inverse transform is

z; = 1N21Xlezﬁ”j (10)
= .
VN 5

The normalization of these two transforms is need not both involve v/N. Sometimes
people chose to define the transform without the factor of ﬁ and then the inverse trans-
form has a factor of 1/N in it. Also sometimes the signs of the exponents are flipped (the
transform has a minus sign and the inverse transform has a plus sign instead of what is
written here).

17



It is useful to compute a few sums involving complex roots of unity. The numbers e N
with integer j € [0, N — 1], are N evenly spaced points on the unit circle on the complex
plane. The points are symmetrically distributed about the real and imaginary axes on the
complex plane, as showin in Figure 5, so the sum

N-1

27

enNJ =0.

W.
o

With integer g € [0, N — 1], the sum

N-1 .
2mig; ) 0 if ¢#0
2. " N if ¢g=0" (11)
7=0

We can check that inverse transform is an inverse transform by inserting the sum for
x; inside that for Xj,

1 2mi
Xy = — zje N
N Z ’
7=0
| V11 o
N Z Xjem NNk (using eqn 10)
j=0 1=0
| N1 N1
AT e
=0  j=0
1 N-1
=N X; N 6, (using eqn 11)
=0
— X,

Let’s look again at the definition of the discrete Fourier transform in equation 9 which

is repeated here
N—1

Xk:—Za:jeN 7 (12)
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The discrete Fourier transform can be written as

x 1 1 1 1 1
0 2 3 N—-1 o
% 1 wy Wiy Wy e Wy
1 1 1 W2 wi 6 N-2 1
X _ N N wy e Wy . (14)
2 V/ 1 ws Wb w? w3 2 '
N N N N N
X1 : : : : : : o
N-1 N—-2 N-3 N-1
1wy Wy Wy . WN

I have simplified using (wx)™ = 1. For example, the second row contains multiples of wy.
The third row contains multiples of w%\,. The rightmost term of this row is equivalent to
(wn )2V = (wy) 2 = (wn)N 2

Let’s look at the matrix in equation 14

1 1 1 1 1
1 wy wJQV w?\, w%il
2 4 6 N—2
U(N) _ 1 1wy Wi Wy w% X (15)
PET /N | 1 w?’v w?\, w?\, wy
1 w%_l w%_z w]J\\;_?’ .. WN
N)

Equation 11 implies that the rows of U ]g pr are orthogonal and its columns are also orthog-

onal. The matrix is a unitary transformation.

The N x N square matrix U (D]\IQT has indices

= jﬁw% (16)

N
(U(DF)T)ij

For N = 8 the transformation matrix is

11 1 1 1 1 1 1
1w w? W oWt W oWl W
1 w? wt Wb 1w oWt WS
v®, = AL et W e Wt Wl Wt with w=es (17)
DET = g1 wt 1 w' 1 ! 1 w ’
1 W w? W' owt Wl Wl WP
1 Wb Wt w1 W oWt W?
1 W Wl W oWt WP w? Wl

If N is a power of 2 then there is a recursive way of generating it that is the heart of
the Fast Fourier Transform.

If N = 2", then (wy)/? = —1. The matrix in equation 14 can be rearranged (columns
can be reordered) and written in terms of a N/2 x N/2 diagonal frequency matrix, some
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factors of -1 and with matrices that reorder the states. Because the iterative steps involve
powers of 2, we use an index k to give us 2¥ x 2¥ matrices. We define a complex root of
unity (1)

27

ek . (18)

Wi
It is convenient to define
T = ok ok identity matrix.

We define the 2¥ x 2* diagonal matrix
DW= diag(l,warl,w,%Jrl,werl,....,wii_ll) (19)
A 2F x 2F matrix that helps us swap states has components

1 if2i=j
R ={1 if2t-2")+1= (20)

0 otherwise.

The discrete Fourier transform for N = 2 states we define as

(2%)

F® = DFT"

These matrices can be used to write the F¥) discrete Fourier transform in terms of the
F*=1) transform.

1 J(=1)  pk-1) F(k=1) 0
P = V2 <I(k1> _D(kl)) ( 0 F(k1)> R®.

The recursive composition makes the Discrete Fourier transform efficient. If N = 2", then
F®) is used n or logy, N times. The matrix multiplications only involve N operations as
the matrices are diagonal or sparse. The number of computations is O(/N log N).

3.2 Quantum Fourier transforms

The quantum Fourier transformation (QFT) is an important quantum subroutine. It and
its generalizations are used in quantum algorithms that achieve a significant speedup over
classical algorithms. It is used in Shor’s algorithm which achieves BQP time for factoring
integers.

We work in a N dimensional Hilbert space with dimension N = 2™ that is a multiple
of 2. The number of qubits is n.

We start with a wave function

N-1

W) = Z Qg ‘x>

=0
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where x are integers and the amplitudes a, are complex numbers. The integer x written
in powers of 2
2 =212" 4 292" 2 4 252" 3t 12 + 2,20

and could be described in terms of the string of digits
binary string : T1, T2, T3, ..y T

where the digits z; € {0,1} are either 1s or 0s and the binary string € {0,1}". Notice
we are indexing from 1 instead of from 0! The basis state can described in terms of these
digits

|I‘> = |:E17 T2, T3y -y $n>
or in terms of the integer x. As a binary fraction

T

5 = 127+ 1027 % + 2327z, 27 (21)
As a binary decimal
x
o = 0.212213T4.... 2Ty (22)
Binary expansions
Example with n = 5 qubits and N = 2° = 32 possible basis states
Integer binary expansion binary string
r=06 0x 2440 x 2341 x 2241 x 2140 x 20 ‘00110’
Binary fraction binary expansion binary string
_ 6 0 0 1 1 0 ¢ )
2%—3*2 §+Z+§+Tﬁ+§ 0.00110
Wavefunction Wavefunction
|z) = |6) |00110)

The Quantum Fourier Transform is a linear and unitary transformation from one wave-
function to another one

N-—1 N-1
QFT : D axlz) = > byly). (23)
=0 y=0

Here z,y are integers from 0 to N — 1, however |z), |y) can either be written as integers or
with x,y as binary strings. The amplitudes of the two wave functions are related by the
Discrete Fourier Transform

1 .
DFT: b, =—— Y ™/, (24)



The Discrete Fourier transform is the same as we discussed in section 3.1.
What is meant by the product zy in the exponential in equation 247 This is the product
of two integers. It is not a bitwise operation. It is computed modulo N.
Notice that equation 24 goes from 0 to N —1. With an n qubit system we take N = 2".
The Quantum Fourier Transform (QFT) of a basis vector |z)

N-1

QFT |z) = 2™ wIN |y | (25)

%\H

y=0

This means that the Quantum Fourier transform can be described with a matrix that is in
the form of equation 15 and with components in equation 16.

N-1
Z with wy = 2N, (26)
7,k=0

L
The unitary matrix in equation 26 can also be regarded as a definition for the Quantum
Fourier transform.

3.3 3-qubit Quantum Fourier Transforms

Let’s compute the Quantum Fourier transform of |000) for a 3 qubit system. The number
of states is N = 23 = 8.

7
§ :627r7,0y/8

y=0

QFT |000) =

(1000 + [001) + [010) + [011) + [100) + [101) + [110) + |111))

(10) + 1)) @ (10) +[1)) @ (|0) +[1))-

I
%\m% @\H

Let’s compute the Quantum Fourier transform of [001) using w = e27%/8

27: 7r7,1y/8 Zwy ’y

QFT [001) =

ap %\

(yo> + wt 1)) ® (]00) + w[01) + w? [10) 4+ w?|11))

S\

(!0> +w (1)) @ (10) +w? (1)) ® (|0) +w 1))

S\

22
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Let’s compute the Quantum Fourier transform of |010)

7
Z W [y)

(1000> + w?1001) + w* |010) 4 wb[011) +]100) + w? |101) + w? [110) + O |111))

QFT [010) =

ap sx

(yo> + 1)) @ (]00) 4+ w?|01) + w? |10) + w®|11))

m

~(10) + 1)) (0) +w' 1)) @ (10) + 2 [1))

I
Sl

Let’s compute the Quantum Fourier transform of [011)

7
QFT |011) = —Z 3 |y)
\[y

(|000> + w3 001) + w®|010) 4 w! [011) +w?|100) + w” [101) + w? |110) + w° [111))

%

~(10) + " [1)) @ (0) +w [1)) ® ([0) + &7 1))

[
Sl

It’s not all that easy to see a pattern, but using w = /8

with the product

our examples are consistent

QFT [j1jads)=—= (10) + &% [1)) @ (0) + w22 [1)) & (|0) 4+ w4272+ [1))

f
:ﬁ

A circuit that generates the 3-qubit Quantum Fourier Transform can be done with a
circuit that has the Hadamard gate, a controlled Pg phase gate and a controlled Pg gate.
We write down the single bit versions of these gates

1 /1 1 10 1 0
T Y R () BT () B
1 1 0 1 0
H=—(t L} p— o Pr — a (29)
V2 \1 e™ 2 0 e2 1 0 es

J3

(o) +e % 1) @ (10)+(F5) 1)) © (0) 127 (3 10y). (27)

Equivalently



3 qubit Quantum Fourier Transform

o [ )2 s [9)a [6)s b

Figure 6: A circuit that computes the 3-qubit Quantum Fourier Transform. The 2-qubit
gate on the right is a swap gate.

We first show, using brute force, that the circuit in equation 6 works to give the 3-qubit
Fourier transform. Then we analytically show that the circuit is equivalent to the product
formula in equation 27.

Let’s show the operations in matrix form (which I checked using the python quantum
toolbox QuTip)

1000 1 0 0 0

01000 1 0 0

00100 0 1 0

1looo1 0 0 0 1
HoI®I="7211 000 -1 0 0 o0
01000 -1 0 0

00100 0 -1 0

0001 0 0 0 -1

In QuTip HO = tensor(snot(),qeye(2),qeye(2)).

101 000 0 0

01 0 1 00 0 0

10 -1 000 0 0

01 0 100 0 0
TeHOI="72100 0 0 10 1 o0
00 0 001 0 1

00 0 0 10 -1 0

00 0 001 0 -1
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In QuTip H1 = tensor(qeye(2),snot(),qeye(2)).

- o O

I®I®H=

_ O O O O OO
_ o O O o oo

S
cCoocococorR
coocooo
CoOo O R MmO
cocoo |
co~r—oooo

0o -1 -1

In QuTip H2 = tensor(qeye(2),qeye(2),snot()).
The controlled phase gate Pg with target top bit and control the second bit

100 00O0O0O0O
01 00 0O0O0OO
001 00O0O0OO
0001 00O0O0
A(P%,control =1, target = 0)= 00 0O0T1U0O00
000O0O0OT1O0O0
000 0O0O0OG 40
000 0O0O0TU 0 4

In QuTip this is cphase(np.pi/2,3,control=1,target=0).
The controlled phase gate Pg with target the middle bit and control the third bit

10000000
01000000
00100000
000 i 0000
A(Pg,control—ltarget—1)— 00 0O0T1TUO0TU0D0
000O0O0DT1O0O0
0000O0O0T1O0
000 0O0O0OTU 0O 3

In QuTip this is cphase(np.pi/2,3,control=2,target=1).
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The controlled phase gate P% with target the first bit and control the third bit

1000 O 00 O
0100 0 00 O
0010 0 00 0
0001 0 00 0
A(Psz, control = 2, target = 0) = 0000 ¢/ 00 o0
0000 0O 10 0
0000 0O 01 0
0000 0 00 e/t

In QuTip this is cphase(np.pi/4,3,control=2,target=0). Lastly we need to swap the
first and last bits

SWAP(0,2) =

(== sl en e e Mo Nal
S oo+, OO oo
[=lelelolBoall S =Nl
O R OO O o oo
(= eleloBoNol e
oSO o R OO o OO
(=N elelNells =N
— O O O O o oo

In QuTip this is swap(3, [0,2]).

The entire circuit shown in Figure 6 is:

Uw = HO*cphase(np.pi/2,3,control=1,target=0)* cphase(np.pi/4,3,control=2,target=0)*H1x*
cphase(np.pi/2,3,control=2,target=1)*H2*swap (3, [0,2])

The result is

1 1 1 1 1 1 1 1
1 i -1 —z‘ 1 i -1 1
YR 1 -1 1 —1 1 —1 1 1
1 —1i -1 1 1 —1 -1 1
1 %(1—2') —i %(—1—1') —1 %(—1“’) i %(1“)
We recognize that %( 14i) = e™/* = " and then it is clearer that this matrix is identical

to the Discrete Fourier transformation for

equation 17.
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We show that the circuit for the 3 qubit Fourier transform shown in Figure 6 is equiv-
alent to the product formula shown in equation 27 which we repeat here

L)+ % my e o)+ E ) )@ (0) + FEEEE) ),

QFT |j17273) = 75
(30)

Starting with [¢)), = |j1J2J3) we perform a Hadamard operation on the first qubit

500+ (<17 [1)) @ L. )

We perform a controlled phase gate with control bit the second bit and target bit the first
one. The wave vector becomes

[¥) = \f(\0> (=17 1)) @ |j2, Js) -

We perform a controlled Pg with control bit the third bit and target bit the first one. The
wave vector becomes

V), = H®I® I|j1j2js3) =

)5 = \[(\0> (1)1 €™/ 1)) @ |ja, js) -
This can also be written as
1 omi( L +22 433 .
91 = 500+ ") 1) & i o)

and we recognize an expression similar to that of last qubit in equation 30. We perform a
Hadamard operation on the second qubit, the wave vector becomes

9 = 500+ F ) 10y @ (0 + (-1 1) @ ).

We perform a controlled phase gate with control bit the third qubit and the target bit the
second one. The wave vector becomes

995 = 2(0) + ) 1) @ (10) + (12 1) @ 1)
= 200+ R 1) 6 0y 1+ ) 1y o 1)

We perform a Hadamard operation on the third qubit giving

) = L () 1)) o (0) + 27 FHE) 1) @ (0) + (<15 ).

1
ﬁ(\m

Lastly we swap the first and third qubits giving

0+ e 1) @ (0) + T (30) 1)) o (0) + () )

and this matches the product form of the 3-qubit QFT in equation 30.

QFT |j1j2gj3) =
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3.4 Product representation for the Quantum Fourier Transform

There is a handy product representation for the Quantum Fourier Transform which we
derive.

We repeat yet again the product form of the 3-qubit Quantum Fourier transform (pre-
viously equations 27 and 30)

1

0+ 1) @ (o) + 7 (308) 1)) o (0) + (3 HEHE) 1),

(31)

QFT |j1j2j3) =

and recall the binary decimal form for an integer (equation 22). Using the binary decimal
form for an integer we can write the product form of the 3-qubit Quantum Fourier transform
as

1

\/g(\0> +e2 0 1)) @ (|0) + e*™ 0925 (1)) @ (|0) + €27 PN 1))

(32)

QFT |j1j273) =

We derive a more general product representation for the Quantum Fourier transform
of n qubits.
Here j, k are integers € {0,1,....,2" — 1}. We take digits for k

n
k=Fk2" ' 4 k2" 24 4k, = Z k,2n
=1

2n
QFT|]> = er2 Jk/2 |,I€>
k=1

= 2'”‘% 21: 21: 21: 21: 2mid iy ka2t /2n |k)

k1=0ko=0k3=0 k,=0

1 1 1 1
1 n _
- W E E E E 627”‘7 Zl:l kl2 : ’klekn> all dlglts Of k

k1=0ko=0k3=0 k,=0
1 1 1 1 1 n
_ 2migjh; 27
DI IDIED I L )
k1=0ko=0k3=0 k,=0 I=1

The tensor product in the bottom line is consistent with the sum in the exponential in the
line right above it.
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We can move the sums for the digits inside the tensor product as each one only affects
its own subspace

T l
QFT [j) = Qn/2® Z 2wk 2 | ) (33)
=1

= o ® [10) + 275327 1) (34)

Now let’s consider the digits of j. We take digits for j
n
=02 4 2" e = ) 2"
m=1
Consider the exponent

o227 t 27rz(zm Lqi2nTme l). (35)

if n —m — 1 > 1 then the exponent is a multiple of 27 and the factor is 1. This implies
that each [ value determines how many digits of j are important in the term. In terms of
the digits of j and using fractional binary strings for j

QFT |]> — W(‘m + 62m 0.4n |1>) ® (|0> + 627” 0.jn—1Jjn ‘1>) ® (‘0> + eQm 0.jn—2jn—1Jjn ‘1>)
@ .. @ (|0) + 2™ OJ1zedn—vin | 1)), (36)
That this is consistent with the product representation for the 3 qubit quantum Fourier

transform in equation 32. This product representation can make it easier to understand
how to construct a quantum circuit to carry out the Quantum Fourier transform.

3.5 An efficient circuit for the Quantum Fourier Transform

The product representation of the Quantum Fourier Transform in Equation 36 can be
turned into an efficient circuit shown in Figure 7. The circuit uses the phase gate

1 0
Ry = <1 o m) (37)

We start with |j1j2...jn) as input. Then apply a Hadamard to the first bit

H@I®I...|j1j2...50) = 7(|0> 2™ 0911 1)) | 52. i) -
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Quantum Fourier Transform

q ) o
|51) -'"IR”'IHRMI —%(|O> + €27 0:n|1))
|72) I H I_ . J L (J0) + e2mi O-jnflj,,,|1>)

S

2

Jn—1) — 1 ([0) + €27 0d2ndn i 1))
‘]n) C - & _%(|0> +627Ti 0-j1j2-~-jn—1jn|1>)

Figure 7: A circuit for the n qubit Quantum Fourier Transform. Here Ry, = diag(1, e2™/ 2k)
is the phase gate shown in equation 37. The x’s on the right are when all bits are reversed
with swap operations.

This follows as e?™J1 is either 1 or -1 depending upon the value of the digit j;. Now we
apply a controlled Ry phase gate with control bit the second bit and target bit the first
one. The result is 1

V2
We continue operating with controlled phase gates. We do a controlled R3 with control
bit the third qubit and target the first qubit. We do a controlled R4 with control bit the
fourth qubit and target the first qubit, and so on until we have reached the n-th bit with
R,,. The result is

(10) + €™ *192 1)) | ...n)

1
V2
We then repeat this procedure (first with a Hadamard and then a series of phase gates) but

for the second qubit applying controlled Ro through R,_; all with target bit the second
bit. The result is

(10) + 2™ O72Im 1)) |ga...n)

5 (10) + e Dndzdn 1)) @ (|0) + €™ 02330 | j)).

After repeating the procedure until the final qubit is reached with a Hadamard the final
state is

1

W(|O> + 6271'1' 0.5152-.Jn ‘1>) ® (‘0> + 627rz' 0.52..9n |1>) ® (|0> + 6271'1' 0.53..9n |1>) ...

- ((0) + €7 O 1) @ ((0) 4 271 O9n 1))
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Lastly we swap the order of all the bits giving as final state

1 L L
o7z @ (10) + 2™ B 1)) @ ([0) + ¥ M 1) @

(38)
® (|0) + 2™ %30 1)) © (|0) + €™ HIIn (1) @ (|0) + €7 PN 1)),

This is equivalent to Equation 36 so we have shown that the circuit shown in Figure 7
carries out an n-bit quantum Fourier transform.

3.6 Number of gates required for an n-bit QFT

How many gates are required to carry out a Quantum Fourier Transform of n qubits?
Examination of Figure 7 gives (n — 1)(n — 2) 4+ 1 controlled phase gates + n Hadamard
operators. This is O(n?) gates. The QFT is polynomial in n, the number of qubits, or
equivalently polylog in N where 2" = N is the number of quantum states.

3.7 Notes

A recursive way to describe the circuit that is related to the recursive discrete Fourier
transform is explained in section 7.8 of the clear book by Rieffel & Polak.

It so happens that the unitary transformation for the Quantum Fourier transform
satisfies

UéFT — I
We show that this is true: Starting with the definition for the QFT in equation 26
1 T . ;
Uqrr = ﬁ Zw]k 17) (K| with w = /N
QFT— ijk kl|] ZW a ’J
Jkl jkl

= Zéj_l l7) (| via equation 11
= 1i) (=
J
Udrr = Z 17) Gl =
J

This implies that that the eigenvalues of Uqpr are € {1,—1,4,—i}. I don’t think the
eigenvectors are easy to compute.
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4 Algorithms that use the Quantum Fourier Transform

Simon’s algorithm does not use the Quantum Fourier transform but we discus it here
because of its similarity to period finding which is part of Shor’s algorithm.

4.1 Simon’s problem

YNy v+ f——{ 2 Hw)

0
R

0 = s 5 [a) ® | F(a))

Figure 8: A circuit for the Simon’s algorithm. The function satisfies f(x) = f(y) iff
y = x & s for a mystery IV bit string s. The goal is to find the string s with a minimum
number of queries of Uy. The circuit is run O(N) times to determine s.

We once again are given an oracle function
Foo oY = {o,13Y

but it takes an N bit binary string to an N bit binary string. We assert that there is a
secret N-bit string s (that is not all zeros) such that

flx)=fly) <= y=r0s. (39)

Here x and y are also N bit strings. The relation is if and only if and the @ is a bitwise
XOR (an exclusive OR?). If y has bits y192...yn, and likewise for 2 and s then each digit
satisfies y; = x; @ s; for i € {1,....N}. For any x,y such that y = = @ s then f(z) = f(y)
and vice versa.

Consider digits y; = x; D s;.

What happens if I compute y; & s; = (x; @ s;) B 847

There are 4 cases to consider

2@Gives a 0 if and only if each bit is the same.
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=0 O

0

1 1
0 1
1 0

By considering the different cases we find (z; ® s;) ® s; = x;.

For string, this implies that if y = x @ s then y® s = z and (x ® s) & s = x. A solution
x to f(x) = w can be used to generate another solution y = = @ s that satisfies f(y) = w.

Suppose we have f(x) = f(y) which implies that z = y & s. We can operate on both
sides of the equation with @y to find t®y=y P s Py =s Py Dy = s. This means that
if we find z,y such that f(z) = f(y) we can find s =z @ y.

Suppose the function operates on 3 bits and gives

£(000) = 110
£(001) = 010
£(101) = 110
£(011) = 001
f(111) = 101

The outputed values are not important. The important thing to notice is when two of the
outputs agree, f(000) = f(101). We would say a collision has occurred. We can take the
XOR of the two inputs from the collision to identify the mystery string s

s =000 ® 101 = 101.

4.1.1 Efficiency

With Simon’s problem, the goal is to find the secret N-bit string s by querying U; as
few times as possible. The problem is solved at high probability with O(N) queries of
Uy followed by O(N 2) steps to solve some equations. The best that a classical algorithm
can do is O(2V/?) calls to f(). In algorithms we discussed previously (e.g., the Deutsch,
Deutsch-Jozca and Bernstein-Vazirani problems) we solved the problem. Here we need to
repeat the query to solve the problem at high probability. There are similarities to Simon’s
algorithm and the Shor algorithm approach to factoring. Simon’s algorithm does not use
the Quantum Fourier transform but we discus it here because of its similarity to Shor’s
algorithm.

4.1.2 The algorithm - continued

For Simon’s problem, the oracle is the unitary transformation

Up: zyy) = [zy+ fla). (40)
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We are working with two registers of qubits and each register is N bits long. The total
number of qubits required for the calculation is 2N and the circuit we will use is shown in
Figure 8.

Simon’s algorithm is as follows: Start with

|Wo) = [000..) 1]000..) = [0} @ |0)Y
Apply an N bit Hadamard to the first N bits. This gives

oN_1
1
W) = HN @ 19V |Tg) = 7 > |x) ®000..)
x=0

Apply Uy the oracle, giving

2N _1
W2) = U [01) = 5 2, 9@ lf@). (41)

We perform an N bit Hadamard again on the first IV bits. Using equation 3, this gives

‘\I/3> — H®N I®N ’\I’2>
2N _19N_1

2N Z Z D)"Y |y) @ | f(x)) before measurement. (42)
z=0 y=0

Then all bits are measured. Here x -y refers to a bitwise multiply followed by a sum modulo
2.

Suppose we measure z in the first register (the first N qubits) and w in the second
register (the second N bits). With z measured in the first register the sum in y collapses
to a single term (y — z). However, there could be a set of = values that satisfy f(x) = w.
There must be at least one value of x that satisfies f(z) = w, otherwise we would not have
been able to measure w. Let x1, be a bit string that satisfies f(z1,) = w. We compute
Ty = T1q D . Because of the requirement on our function we know that f(x15) = w.
Because * @ s @ s = = we cannot generate other value of x that satisfies f(z) = w.
However there could be another x5, that satisfies f(z9,) = w. From 9, we can generate
Top = Toq B s. Values of x that satisfy f(x) = w must come in pairs.

The amplitude of the relevant part of the wave vector is

aw,> = (2] (w|¥3) = 2N Z

Tpairs

2N Z ( Jia 4 (= l)ma@s).z) ‘

pairs
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For w to be measured this amplitude cannot be zero. There must be a pair of x values
(that means there are two solutions) for which

(—1)%ia® = (_1)(331@@5);
This is true if
Tig - 2= (Tig B 8) - 2 mod 2 (43)
This expression is equivalent to? the condition
= s-2=0 mod 2. (44)
Each time you run the circuit you get a new value of z such that
z-5=0.

Once you have N different linearly independent measured z, values you can solve for s.
Here N is the number of bits in the string s, equivalently the number of qubits. To solve
for s you need to run the algorithm O(N) times, giving O(N) queries of the function, and
then solve the O(N) equations which requires O(N?) classical operations. Here N is the
number of bits in the string s and is also the number of qubits.

4.2 Phase Estimation

Phase estimation is also an algorithm that can efficiently be implemented via the Quan-
tum Fourier Transform. See section 6.2 below where we introduce the phase estimation
algorithm and then use it as part of quantum searching algorithms. It is also used in the
HHL algorithm for solving linear equations (section 7).

4.3 Outline of Shor Algorithm

The aim is to find prime factors of a given positive integer M efficiently. The Shor algorithm
is a bounded probability polynomial-time quantum (BPQ) algorithm for factoring integers.
Factoring of integers is an ingredient of many encryption algorithms.

Shor’s algorithm has two ingredients:

SWe use Zj,55,2; to denote the j-th bits of the integers x.,s,z. Equation 43 can be written as
Zj;zﬂgo T; = Zj;zj;éo x; @ s; as only bits of z that are non-zero contribute. If z; = 0,s; = 0 then
x; = x; @ s; = 0 and terms on both side of equation 43 are zero. If z; =1,s; =0, then z; = z; ®s; =1
and terms on both side of equation 43 cancel. If s; = 0 then it does not matter what x; is. If z; = 0,s; =1
then x; = 0 but z; & s; = 1 and equation 43 gains a 1 from the right hand side. If z; = 1,s; = 1 then
x; = 1 but z; ® s; = 0 and equation 43 gains a 1 from the left hand side. The number of bits with s; =1
(within the set z; = 1) must be even for equation 43 to be satisfied. This means that only bits with s; =1
and z; = 1 contribute to the sum and the number of bits that satisfy both conditions must be even. The
condition that the sum is even means the sum is 0 mod 2. This gives equation 44.
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e A reduction from factoring to period finding.

e A quantum algorithm using the Quantum Fourier transform for period-finding that
uses only a constant (O(1)) number of queries to a function f, and a polynomial
number of computational steps.

4.4 Period finding

0)N—y v+ )
' )

o) [T, ™

W) =587z 2, 1) © | f ()

Figure 9: A quantum circuit for finding the period of a function. The function satisfies
f(z) = f(y) iff y — 2 mod r = 0 for a mystery integer r, known as the period. The period
0 < r < 2N. The goal is to find the period r with a minimum number of queries of U [
The circuit is run order poly(/N) times to determine the period r. Period finding is used
in Shor’s factoring algorithm.

Shor’s algorithm for factoring uses a period finding algorithm.
Suppose we have a function f (an oracle) that takes one integer to another

f {0,....,28 1}y - {0,....,2V 1}
We assert that r is a secret integer 0 < r < 2V and
f(x) = f(y) <= y mod r = x mod r.

In other words
flx) = f(x+mr) forall z,m. (45)

Here x,y,r,m are integers modulo 2V and the arithmetic is also modulo 2V. As the
function f() returns the same thing every r steps, the mystery integer r is the period of
the function f().

If you find an x; and an x3 such that f(z1) = f(z2) you are close to finding the mystery
integer r. If 7 ~ 2¥/2 and on a classical computer, the oracle must be queried of order 2V/4
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times to find a collision where two x values give the same f(x) value. However, there is a
quantum algorithm that computes r in order poly(N) queries of the oracle.

The beginning of the circuit (see Figure 9) is similar to that used in Simon’s algorithm.
We start with [0) @ [0)", perform an N bit Hadamard on the first register, then query
the oracle. This gives the state

W2) = Up(H @ 1)[0)" ©0)" ) |f ()

Z /2N
We perform a Quantum Fourier transform on the first register giving

oN_12N_1

W) = 2N m S0 > T ) |f (). (46)

z=0 y=0

We measure both registers. Suppose we measure z in the first register and w in the
second register. The sum in y collapses to a single term y — z. However, there can be
multiple = values that satisfy f(z) = w. Consider the set of = values that satisfies f(x) = w.
We can find an z,, so that the set is x,, T + 7, Ty + 21, .... Let Ny, be the number of values
in this set; in other words the number of possible x values that satisfy f(x) = w. The
relevant amplitude of the wave vector involves a sum over this set of possible z values,

Ny—1
= (] (e 5) = Y2 pppeiwtmnz/z

m=0

Azw

)

1 Ny—1
_ e27rizwz/2N § : 627rimrz/2N

= 5N
m=0

Notice that this is independent of the actual value of w as x,, only contributes to a phase.
Let
q= 627rirz/2N. (47)

The amplitude a. ,, involves the geometric series

Ny—1 Ny—1
Z eQrimrz/QN _ Z qm _ 1+q+-~-qu_1

m=0 m=0
1— g
1—q

The probability of measuring z
Prob(z)

1— ezm‘me/2N 2

X

1 — e2mirz/2N
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If r is a power of 2 then ¢ is a root of unity. The sum of the roots will be zero unless
z is a multiple of 2%V /r and then in this case ¢ is an integer. A sequence of measurements
for z will give multiples of 2V /r. The period r can be determined by finding the greatest
common divisor of this series of measurements.

When the period r does not divide 2%V, the transform approximates the exact case, so the
amplitude is only high for integers z close to multiples of 2V /r. A sequence of measurements
giving different z values can also be used to estimate the period r using a continued fraction
expansion. Apparently the number of queries required is O(v/N) = O(y/Iogm), where the
integer r satisfies 0 < r < m = 2V, and N = log, m is the number of qubits. (This should
be checked and explained!)

Here we have used N to be the number of qubits. However, we have previously used
N to be the maximum size of an integer. We are going to try to be careful in each section
about what N refers to!

The continued fraction expansion of a real positive number r is the following iter-
ative algorithm which starts with i = 0:

1. Store |r]. This is the floor function and gives the greatest integer less than r. The
stored number is an integer a; where 7 refers to the iteration.

2. Compute z =1 — [r].
3. If x = 0 exit. Otherwise set r = 1/z, increment ¢ and go to step 1.
The result is

r=aqyt+ ——.
a1+a+1

The result is a series of non-negative integers [ag, a1, ....].

4.5 The Euclidean algorithm for finding the greatest common divisor of
two natural numbers

Another ingredient needed in the Shor algorithm is the efficient algorithm known as the
Euclidean algorithm for finding the greatest common divisor of two positive integers.

The greatest common divisor of two natural numbers a,b we call ged(a,b).

Two integers are relatively prime or coprime if they share no prime factors. In other
words if ged(a,b) = 1 then a,b are relatively prime.

Here is the algorithm: Assume that a > b. Find ¢¢ and remainder ry such that

a = qob + rg.
Then find ¢; and remainder r; such that

b=qirg+11.
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Now find go and remainder ro such that

ro = qor1 + 7ro.

Now find g3 and remainder r3 such that

L =q3r2+ T3

and so on.

A remainder ry must eventually be equal to zero, at which point the algorithm stops.
The final nonzero remainder rn_7 is the greatest common divisor of @ and b. If ry_1 =1
then a, b are relatively prime.

Here is an example with a = 100,b = 15,

100=6-15+ 10
15=1-10+5 ged is b
10=2-5+0.

The Euclidean algorithm on positive integers a > b requires at most O(log a) steps.
Below is an iterative form of the algorithm:

1.

2.

4.6

Set r_1 =b. Set r_5 =a. Set i = 0.

Ti—2
Ti—1

Compute ¢; = [ J (Again using the floor function).

Compute r; = rji_o — q;T5_1.

. If r;, = 1 exit. In this case a, b are relatively prime.

If r; = 0 exit. In this case the greatest common divisor of a,b is 7;_1.

Otherwise increment ¢ and go to step 2.

Complexity of Factoring

Suppose our task is to factor an integer N with n = log IV digits. A brute force algorithm
goes through all primes p up to v N and checks whether p divides N. The most efficient
classical factoring algorithm, kn({wn as general number field sieve, achieves an asymptotic
runtime that is exponential in n3.

In contrast, Shor’s factoring algorithm has runtime polynomial in n.
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4.7 Reduction of period finding to order finding

Factoring can be related to another hard problem, that of finding the order of an integer
which is equivalent to find a period.
The input to the Shor algorithm is positive integer, M, the number to be factored.
Consider positive integers a, M that are relatively prime. The order of ¢ modulo M
is the smallest integer r > 0 such that

a”" =1 mod M.
Furthermore*
a® mod M = a**" mod M if and only if a” =1 mod M. (48)
We show this by starting with
a"=1 mod M

a —1=0 mod M
(a" —1)(a*—1)=0 mod M
atF b —a"+1=0 mod M

a"tF —a¥ =0 mod M.
Going the opposite direction

A —aF =0 mod M
(a" —1)a®* =0 mod M.

k cannot be a multiple of M, so we can divide by

Because a and M are relatively prime, a
a® giving " —1 =0 mod M.
Consider the function

f(k) = a* mod M (49)

for a, M relatively prime, and where k is a positive integer. This function satisfies f(k) =
f(k+r) if and only if " =1 mod M. As f(k) = f(k + r) for all k, we say that f() has
period r. For a relatively prime to M, the order r of @ modulo M is the period of the
function f().

Order-finding is believed to be a hard problem on a classical computer, in the sense that
no algorithm is known to solve the problem using resources polynomial in the O(n) bits
needed to specify the problem, where n = log M is the number of bits needed to specify
M.

4Tt is possible to show that a actually has an order » < M by noting that the powers of a can only take
a finite number of different values modulo M, and using the pigeonhole principle. Related is the fact that
the powers of @ modulo M (the integers a* mod M) form a group if a, M are relatively prime.
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4.8 Finally the Shor algorithm — reducing factoring to period finding

The relation between factoring and period finding inspires the algorithm. Here is the
procedure to factor the integer M:

e Step 1. Randomly choose a positive integer a < M. Use the Euclidean ged (greatest
common denominator) algorithm to check whether a and M are relatively prime. If a
and M are not relatively prime, then their greatest common denominator is a factor
of M! We have found a factor of M. If a and M are relatively prime, then proceed.

e Measure the period r of the function f(k) = a* mod M. This is done using the
quantum period finding algorithm.

e if r is odd then go back to Step 1.

e If r is even then
a =1mod M

can be written as
a2a"? =1 =0mod M

which can be written as

(a”/? = 1)(a"/? + 1) = 0 mod M.

Note that (a”/2 — 1) cannot be a multiple of M, otherwise the order of a would be
r/2 and this contradicts the above statement that r is the order of a as r > r/2.

If (a/? + 1) is a multiple of M then go back to Step 1.

o If (ar/ 241) is not a multiple of M then use the Euclidean algorithm to find the greatest
common divisor of (a”/? — 1) and M. The greatest common divisor of (a’"/? — 1) and
M is a factor of M. We have found a factor of M.5

Shor’s algorithm is this recipe, but the period finding is done with the Quantum Fourier
transform.

Apparently odd values of period r don’t happen more than about 1/2 the time.

The number of times you need to run the QFT depends on the number of positive
integers less than M that are relatively prime to M and this is given by the Euler ¢
function and is logarithmically dependent on N = 2". As this function is logarithmically
dependent on N, you don’t need to run the QFT very many times to find the period.

This concludes our outline of the Shor algorithm.

%ged can’t be 1 because the product of (a™/? +1)(a™? — 1) is a multiple of M but neither are a multiple
of M.
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To implement Shor’s algorithm on a quantum computer, it is necessary to construct
unitary operations that perform modular multiplication and addition. The associated
problem set illustrates some ways to achieve these operations. Modular arithmetic can
be done with bitwise phase shifts and a Fourier transform. Multiplication can give a
permutation of basis states (if the factor is relatively prime to the integer M for the mod).

Question: What happens if M is prime? Maybe you would notice that you only get
odd values for 7

4.9 Factoring 35 with the Shor algorithm

In 2019 an attempt was made to factor the number 35 using Shor’s algorithm on an IBM Q
System One, but the algorithm failed. This is a good reason to work through the number
35 as an example.

Let M = 35. Suppose we choose integers a less than M without factoring M until we
find one, that is relatively prime to M. On a quantum computer we would then devise a
circuit that computes an oracle with f(z) such that f(x) = a® mod M and then measure
its periodicity.

Suppose we choose a = 11, relatively prime to M. We compute a® mod 35 for x =
1,2,3,4.. and find the sequence 1, 11, 16, 1, 11, 16 .... The period of this sequence is r = 3.
The period is odd so we need to choose another value for a.

Suppose we choose a = 13, also relatively prime to 35. a” mod 35 gives gives the
sequence 1, 13, 29, 27, 1 ... The period of this sequence is r = 4. This is even! We compute
(a”/? +1) = a® + 1 = 170 which is 30 mod 35. We verify that this is not a multiple of 35.
The number (a™/? + 1) and M should have a common divisor, and they do, ged(170,35) =
5. We have found a factor of M.

5 The hidden subgroup problem

Quantum algorithms that are known to be fast can be described as solving the following
problem: Let f() be a function from a finitely generated abelian group G to a finite set X
such that f is constant on the cosets® of a subgroup H of G, and f(g) is distinct on each
coset; for g,¢' € G, f(g9) = f(¢') iff gH = ¢'H. Equivalently the function satisfies

flg) = flg+h) Vge G,he H constant on cosets

for g,¢' € G, if ¢ # g+ h Vh € H then f(g9) # f(¢') distinct on cosets.

The goal is to find a generating set for the subgroup H.

SWith g € G, the left coset gH is the set of elements {gh : h an element of H}. Here left cosets are the
same as right cosets because the group is abelian.
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e Simon’s problem. Here G is the bitwise additive group Z§ = {0, 1}" of size 2n, with
operator @ (bitwise addition modulo 2), the subgroup H = {0, s} for a “hidden” n-
bit Boolean string s € {0,1}", and f satisfies f(z) = f(y) iff y = x @ s. The function
also returns an n-bit binary string. Finding the generator of H (i.e., finding s) solves
Simon’s problem.

e The period finding algorithm is also an example of the hidden subgroup problem.
The group G is the set of natural numbers {0, .....,N — 1} which can be called Zy.
The group operation is + mod N. The function f operates on the set of natural
numbers modulo N and is periodic with unknown (hidden) period r. The function
obeys f(z) = f(x+r). Assume that period r divides N (though this is not necessary
for the algorithm, it does give a subgroup H in Zy). The function returns a number
in the set Zy. Because f is periodic, it does not give N values, rather its range is a
subset of unique possible values in the set of natural numbers {0, .....,N — 1}.. The
subgroup H is generated by r and has elements {0,r,2r,3r,...}. The goal is to find
the period r which determines the (hidden) subgroup.

e The order finding algorithm is also an example of the hidden subgroup problem.
The group G is Zjps (natural numbers mod M) with the operation + mod M. The
function f() operates on the set of natural numbers modulo M and depends on
a € Zyy, via f(k) = a¥ mod M, where 0 < k < M. The range of f is within the set
Zys. The subgroup H depends on a hidden natural number . The hidden r satisfies
a” =1 mod M which implies that f(k) = f(k+r). The subgroup H is generated by
r and has elements {0,7,2r,3r,...}. The goal is to find the period r which generates
the (hidden) subgroup.

o The discrete log problem. We start with a generator v € Zy. This generates a
cyclic group {7*|a € {0,...N —1}} where numbers are modulo N. Given A € Zy, the
goal is to find a that satisfies 7* = A. The number a is called the discrete logarithm
of A with respect to the generator . Apparently, this problem is used in classical
public-key cryptography.

The group is G = Zn X Zy with operation + mod N for two quantities. An element
in G looks like (z,y). For example with g1 = (z1,¥1) and g2 = (z2,¥y2), their sum is
91 + g2 = (x1 + x2,y1 + y2) where both sums are modulo N. The generator v and
natural number A give a function f: G — X via

f(z,y) =9"A7Y mod N. (50)

where the set X is within Zy. The subgroup H is generated by the group element
(a,1) where a is hidden. The goal is to find a which generates the subgroup.
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With A =~°

f(x]J yl) == ’Y%A_yl — f}/xl_ayl
f(x27 y2) = ’}/:ZBAiyz ey ryx27ay2.

If f(x1,51) = f(x2,y2) then (z1 —2x2)=a(y1 —y2)

mod N. (51)

What does the subgroup H generated by (a, 1) look like? It contains elements

H: (z,y) € {(0,0),(a,1),(2a,2), (3a,3).....}.

Note that these elements all satisfy x = ay which (via equation 51) implies that

flg)=flg+h)

Thus f is invariant on the cosets of H.

for he H,g € G.

Hidden Subgroup Algorithms

Algorithm | Simon’s Period finding | Order Finding Discrete Log

Group G {0,1}™(+mod 2)"| Zy,+mod N | Zps,+mod M ZNXZN, (+,+) mod N

Subgroup H| {0,s},s € {0,1}" | {0,r,2r,..} {0,7,2r,..} {(0,0), (a,1), (2a,2),..}

Function f | f(w) = f(w®s) | f(x)=f(z+7r) | f(k)=a*mod M | f(x,y) =~v*A~Y mod N
(k)= f(k+r) | Flg)=F(gh)ihe HgeG

Set X {0,1}" Zn {a/mod M} CZp| {7) mod N} C Zn

Notes G is isomorphic r divides N for| choose a € Zyy choose v, A € Zy

to Z5 H a subgroup | a" = 1mod M ¥ =A
Goal find bit-string s find r find r find a

In the table w, s are bit-strings and n, N,r,z, M, a, j, k,y,, A are natural numbers.

5.1 The discrete Fourier transform of a finite abelian group

For a nice introduction on the topic of Fourier transforms of abelian groups see Appendix
B2 of the book by Rieffel and Polak.

We need a way to compute the quantum Fourier transform in the context of a group G.
For finite abelian groups, a way to do this is to use the associated group of 1-dimensional
representations of G. A d-dimensional representation of a group G is a map p: g — p(g)
from G to the set of d x d invertible complex matrices, satisfying p(gh) = p(g)p(h) for all
g,h € G (giving a homomorphism). Here gh is the product of the two group elements with

the group multiplication operator.

The characteristic x,(g) of a group element g is a complex number x,(g) = tr(p(g))
that is computed from the trace of the matrix representation of the group element.

44




Henceforth we assume that group G is finite and abelian and we consider only 1 dimen-
sional representations; d = 1. This means that the matrices in the representation are just
complex numbers. The characteristic functions and elements in the representation are the
same functions; x,(g) = p(g). The characteristic of the group’s identity element p(e) = 1
must be unity. The characteristics all must have modulus 1. All characteristics must be
roots of unity. In other words for any non-identity element g € G that has order m (so
g™ = e), its characteristic x,(g) should be in the form x,(g) = €***/™ for some integer
0 < k < m. This follows as x,(9™) = [x,(g)]™ = 1.

The fundamental theorem of finite abelian groups states that every finite abelian
group can be expressed as the direct sum of cyclic subgroups of prime-power order. In
other words G = Zyn, ® Zp,.... ® Zy, where N; are the prime povvers.7 The total number
of elements in G, known as the order of G, is |G| = Hle N; = N. Any element in G can
be written g = gil 952... g,i’“ as a product of powers of the generators of the cyclic subgroups.
For a 1d representation that means the characteristic of any element in the group can
be written as a product of powers of the characteristics of the generators in each cyclic
subgroup.

5.1.1 The group G of 1d representations

Consider two different 1d representations y; and x; of the finite abelian group G. We
can make a third representation xj that satisfies xx(g9) = xi(9)x;(g) for any g € G. The
identity representation is the trivial one x.(¢g) = 1 for all ¢ € G. We can construct an
inverse for any representation [Xj]_l via inverting all elements of another representation
;17 (9) = [x;j(9)]~!. As characteristics are roots of unity [x;(g)]™' = X;(g) (the inverse
is equal to the complex conjugate). The set {x;} of the different 1d representations of a
finite abelian group G form a group that we denote G.

We show an example of the group of representations for a cyclic group. The natural
number j € Zy specifies a group element in the cyclic group Zy. Consider the function

Xi(j) = eXmIRN. (52)

Equation 52 resembles a discrete Fourier transform! The function x() gives a complex
number for each group element so specifies a particular representation. Each natural num-
ber k can generate a different 1d representation. Furthermore, xx(j + ') = xx(J)xx(J’)-
The set {x} for k € {0,...,N — 1} is the group of representations G for Zy. Notice
that the number of elements in the group of representation is the same as the number of
elements in the cyclic group; ]G’ | = N.

We describe a quantum system with N states with basis {|j)} with j € Zy which for

"Note that 8 = 2% is an example of a prime to a power. Abelian groups of order 8 include Zs, Z2 ® Z4
and Zo Q@ Za @ Za.
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the moment is also our group G. We define a state |xx) as

1 N—-1 1 N—
Xk) = Vi > k() 15) = i Z 2Tk ) (53)
j=0 J=0

This is essentially a discrete Fourier transform. For every natural number k& € Zy we can
create a state |x). The transformation from basis set

{0} T {xe) } (54)

is given by the unitary matrix Uj;, = \/Lﬁegm'j /N5 (k| which gives the quantum Fourier
transform (QFT) (see equation 25 and section 3.2).

For example, consider the cyclic group Z4. The group has four elements e, g, g%, g>. We
could also refer to the elements as 0,1, 2,3 with the operator + mod 4. We construct a
particular 1d representation which we denote x, that has characteristics

Xa(€)
Xa(9) =
Xa( 2)
Xa(9”)

27rz/4 i7r/2 .

9
g3

All the other 1d representations for Z, can be generated from powers of this representa-
tion. We label the presentations from their power of x,. This gives X1 = Xa, X2 = X2,
X3 = X0 and Yo the identity representation. The group of representations of Z, is
G= {X0, X1, X2, x3}. We list the characteristics for each representation in the group of 1d
representations.

Representations of Zy
representation | x(0) x(1) x(2) x(3)
X0 1 1 1 1
X1 1 7 -1 —1
X2 1 -1 1 -1
X3 1 —1 -1 1

The quantum Fourier transform gives basis elements

‘Xk> \/E ZXa

geG
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The elements of the Fourier basis for Z,4 are

xo) = 5(10) +11) +12) +13))
1) = 5(10) +[1) ~[3) ~ i |4))
x2) = 5(10) — [1) + 13) — |4))
xs) = 5 (10) — 11} — |3) +i14)).

Here each state is generated using a different representation in G and we have labelled
them from the power of x, that was used to generate the representation.

More generally (meaning for a finite abelian group G that is more complicated than a
cyclic gz“oup) we can similarly define a state associated with a specific 1d representation

r (in G)

(55)

IXK) = \W > xlg
geG
where the sum is over all group elements. This equation essentially defines the quantum
Fourier transform for a finite abelian group.

We give an example of the group of representations for a finite abelian group that is
not cyclic. Consider the group Zs ® Zso. This group has 4 elements which we call e, g, h, gh.
Three of the elements have order 2 so the possible characteristic values are 1. The
elements of the group could also be written as bit strings {00,01, 10,11} with operator @&
or bit-wise addition, + mod 2. We list the characteristics for each representation in the
group of 1d representations.

Representations of Zo ® Zo
representation | x(00) x(01) x(10) x(11)
X0 1 1 1 1
X1 1 -1 1 -1
Yo 1 1 1 1
X3 1 1 1 1

If a representation gives x(e) =1, x(g9) = —1, x(h) = —1 then we require that x(gh) =

x(g)x(h) = 1.
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Via equation 55 the Fourier basis for Zy ® Zs is
[x0) = 5(100) +[01) + [10) +[11))
xa) = 5(100) ~[01) ~ [10) +11))
x2) = 5(100) — [01) +[10) — 1))
xs) = 5(100) + [o1) 10 — [11))

Some useful things that can be proven about the group of 1d representations of a finite
abelian group:

e The number of elements in the group of 1d representations of a finite abelian group
is the same as that in the original group;

Gl = 1G]

To show this we use the fundamental theorem of finite abelian groups (the group can
be written as a sum of cyclic groups). We construct the group of representations
from the product of the group of representations for each cyclic component. We use
the fact that the order of the group of representations for each cyclic group is equal
to the order of that cyclic group. This implies that the number of representations
for the full group is the product of the orders of the cyclic components which is
equal to the order of the group. Take G = Zn, ® Z,.... ® Zn,, where N; are prime
powers. The total number of elements in G, is |G| = Hi\il N; = N. Any element in
G can be written g = glf g?... gj\% with i; € Zy; for each index j. The quantum state
corresponding to group element ¢ is |i1i2...ip7). The representations of the i-th cyclic
group are the set {x;x,} with k; € Zy,. The representations for the entire group
are described by the product of the representations X, j,....kas = X1,k1 X2,k - XM ks
The order of G is equal to the product of the orders of the representations for each
cyclic group, which is equal to the order of the group. The construction illustrates
that |G| = |G| for any finite abelian group.

e The Fourier states associated with two representations are orthogonal
(XklXj) = 045 (56)

Here xi,x; € G are two representations in the group of 1d representations of finite
abelian group G. Here equality means the two representations are the same. Using
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equation 55

<Xk|Xj>:|(1;| > (X9 lg) = |G|ZXI<: )X (9)

9',9€G geqG

xk(h) (xklx;) = Gl Z Xk(h x;j(g) for some h € G
geG

‘G’Zth 'g9)x;(hh™'g)

geG

’ZXk )x;j(hg')

g'eCG

= x;(h |G|ZXk 9)x;(9)

geG

= x;( (Xklx;)
e Z j

If x; # xx then for some h € G, it must be that x;(h) # xx(h). The above equation then
implies that (xx|x;) = 0 for k # j. If j = k then because X;(g)xj(g) = x;(g71g) =1 for
all g, the sum (x;|x;) = >_,cq ﬁ = 1. Taking into account both cases (j = k and j # k)
gives us the condition for orthogonality (equation 56).

Consider the complex vector space with |G| elements. Because the Fourier states are
orthogonal and because ]é | = |G|, the Fourier states span the entire complex vector space.
The Fourier transform defined in equation 55 gives a change of basis {|¢)} — {|x&)}
This means that the quantum Fourier transform for a finite abelian group is a unitary
transformation. This implies that we can invert equation 55 giving the inverse quantum
Fourier transform for a finite abelian group

IG|-1
l9) Z Xk (9)) 7 [xw) - (57)
\/ \G
Notice that the sum is over all elements in the group of representations and we have used
the fact that |G| = |G]|.

There is one more relation that will be useful when we again discuss the hidden subgroup
problem. For a subgroup H of G and x a 1d representation of G

S {|H| if vi(h) =1,Yh € H (58)

hell otherwise.

To show this we restrict xi to the subgroup, giving a 1d representation of H. Let x.
be the identity representation of H giving x.(h) = 1,Vh € H. Using equation 56 for 1d
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representations of H

Ser = (XelXk) = Z Xk(h

heH

This implies that either yj is the identity representation and xx(h) = 1,Vh € H or the
sum is zero. This statement then implies equation 58. Note that there is only one iden-
tity representation in H the group of representations of H. However there may be more
than one representation in G the group of representations of G that acts like the identity
representation when applied only to the elements of subgroup H.

It is helpful to define the subgroup H C G in the group of 1d representations of GG
that is related to the subgroup H C G:

L= {xr:xx € G and xx(h) =1VYh e H}. (59)

The subgroup H~ consists of 1d representations of G that are the identity representation
when restricted to subgroup H. With this definition we update equation 58

H for e g+
> xilh ' | e (60)
hell otherwise.

Quantum Fourier transforms can be defined for all finite groups, however, for non-
abelian groups the representation typically has higher dimension than d = 1. For a review
see https://arxiv.org/abs/0812.0380.8 Apparently, there are some cases of non-abelian
groups where the Fourier transform can be computed efficiently.

5.2 The hidden subgroup finding algorithm

We use a tensor product vector space H 4 ®Hp. The first space has dimension large enough
to encompass the group G and the second space has dimension large enough to encompass
the set X. We can use a basis for states

l9) )

based on group elements g € G and set elements z € X. Recall that we should have a
function f : G — X. In other words f(g) gives an element of the set X. The function f
should satisfy f(g+ h) = f(g) for all g € G and h € H where the hidden subgroup is H.
Here we are using + to symbolize the group operation. Our goal is to find generators for
the hidden subgroup.

We choose z(, a member of the set X. We must construct a unitary operator (the
oracle) that gives Uy |g) |zo) = |g)|f(g)). The oracle operator could be more generally

8Andrew M. Childs and Wim van Dam, Rev. Mod. Phys. 82, 1 (2010), Quantum algorithms for
algebraic problems, https://arxiv.org/abs/0812.0380
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Figure 10: Steps of the hidden subgroup finding algorithm. We have finite abelian group
G and hidden subgroup H C G. The oracle function f : G — X for a set X, satisfies
flg+h) = f(g) for all g € G,h € H and is distinct on different cosets. The top register
is large enough to encompass elements of G. The bottom register is large enough to
encompass elements of X. The quantum Fourier transform (QFT) is that generated by
the group G of 1d representations of G (equation 55). Here x : G — C refers to a 1d
representation, giving a complex number that is a root of unity. The subgroup H+ C G is
defined by equation 59. The goal is to find generators of H through measurements (in the
last step) giving xx € H+.

something like Uy |g) |x) = |g) |x + f(g)) (this should look more familiar as it is used in
Simon’s algorithm and the period finding algorithm). Here the plus sign denotes a way to
shift elements in X.

Here is the algorithm:

e Create a superposition state
1
) = —=>_lg) o).
VIG5
e Operate on the superposition state with the oracle giving

Uy ) = w%‘ S 10 1£(9))
g

e Measure the second register. This gives f(s) for unknown s € G. The first register
collapses to a superposition over all g € G such that f(g + s) = f(s). The values of
g that satisfy this relation must be in the subgroup H. Again + refers to the group
operation. The state becomes

1
—_— h+s s)). 61
ﬁ,;,' +5)[f(s)) (61)
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e Apply a Fourier transform to the first register and then measure it!

Taking the Fourier transform (using equation 55) of the first register in equation 61

IG|-1
Z’ ZZth+5’Xk>
i hett \/|G\|H k=0 het
IG]-1
Nl Z Xe() D> xe(h) Ixe)
1
= T Z Xk(S) [ xk) using equation 58.  (62)

What is measured in the last step of the algorithm is x; and this determines a
particular 1d representation that must be in H-. A few measurements should give
quite a bit of information about the subgroup H. Note that the phases xx(s) do not
affect the probabilities of these measurements.

The above steps can be repeated. With sufficient measurements in the last two steps,
the generators of the subgroup can be efficiently recovered using properties of the measured
characters.

To infer the generators of the subgroup H, one must look at the properties of H=!

Why is this algorithm efficient? The sum in equation 61 only has only |H| terms in it.
The sum in equation 62 has only |H*| terms in it. Also Quantum Fourier transforms are
fast. Quantum Fourier transforms can be computed in polylogarithmic time with respect
to the size of the group G. With |G| = N the number of qubits needed is 2" = N so
logy N = n. Polylog means a polynomial of n. Previously we showed that the QFT could
be done with O(n?) gates. State preparation can be done with an n-bit Hadamard which
would be O(n). The number operations that is required for the oracle (implementing the
function f) would be polylog of N by leveraging Kitaev’s theorem. Lastly one must count
the number of times the algorithm needs to be run to ensure a high probability of finding
the generators of the subgroup.

Currently efficient quantum algorithms are not known for every non-abelian hidden
subgroup problem.

5.3 What does the subgroup H' look like?

e Simon’s problem. The group G is {0,1}" with operator bitwise + mod 2. The
group G is isomorphic to Z3. A 1d representation x, of G can be specified with a bit
string r = (r1,72...r,) with r; € {0, 1} giving x,(x) = (—1)"* where x = (x1, z2...xy,)
is a bit string and r - & = ), r;z; mod 2. Now consider x,(s) = (—1)"* where bit
string s specifies the hidden subgroup. The subgroup H= (as defined in equation 59)
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consists of representations y, where r - s = 0. Each measurement gives a bit string
r. With enough measurements all bits of s can be determined.

e Period finding. The group G is cychc as it is Zy. The representations xj are
specified by integer k where xx(j) = wN, j specifies the group element and wy =
e?™/N_ The subgroup H consists of the set of elements {O r,2r...} where natural
number r is the hidden generator. Consider xx(rj) = wN for natural number j.
This must be equal to 1 for y; € HL. The subgroup H~ consists of representations
xr where rjk mod N = 0. Each measurement gives a value for k. With k we can
compute r = 1%\7 for unknown integers m, j. With a few measurements of k it should
be possible to determine r.

e Order finding. Also a cyclic group! So probably equivalent to period finding!

e Discrete Log. The group is Zy ® Zy with elements (x,y). The representa-
tions of this group can be described with two indices X, k,.- The subgroup H =
{(0,0), (a,1),(2a,2)...}. An element of the subgroup is (aj,7) with natural num-
ber j. Xi, .k, (aj, ) = €27 Heia/Ne2mikyi/N —For this to be equal to 1 (and that way
Xkaoiky € Hi) we require that kyj = 0 mod N and kzja = 0 mod N. The first
condition gives j = Nm/k, for some integer m. Then the second condition gives
kyNm/kya = m'N or a = %/k— for two unknown integers m,m’. With a few mea-
surements of possible values for k,, k, it should be possible to find a.

6 Quantum Search Algorithms

6.1 Grover’s algorithm

Consider a search problem with M solutions out of N = 2™ possibilities. Here n is the
number of qubits. The oracle involves a Boolean function f(x) which maps a set of N
integers {0,1,.....,N — 1} — {0,1}. Here x a positive integer less than N = 2". The
function returns 1 if a solution is found and 0 otherwise.

We assume that there are not many solutions. Consequently an algorithm for finding
solutions is a search algorithm. The goal is to run a circuit O(y/N/M) times, and then
make measurements that would yield a solution to high probability.

A few unitary transformations are used in the algorithm.

e A black box transformation or oracle that implements the function f().
e A conditional phase shift.

e The n bit Hadamard operator W,, = H®".
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The black box transformation, or oracle, is a unitary transformation that operates using
the function f()

U |z,0) = |z, f(2))
Ugle, 1) = |z, f(x) + 1) (63)

With z € {0,1,...,2" — 1}, the operator Uy operates on a 27+ qubit system. Here addition
is modulo 2. The black box unitary transformation can also be written as

Uslz,q) = |z, f(z) + q) (64)

with ¢ € {0,1}.
What happens if the black box function operates on |+) or |—)?

Uy lat) = jﬁw,f(x» +le, f(z) + 1))
= |z, +)
Uy =) = — (o f(2)) — |z, f(z) + 1))

V2
:{ 2, -) it f(a)
o, <) i ()

We notice that if f(z) = 1 is a solution then the state vector picks up a minus sign. We
also notice the |x—) is always an eigenstate of Uy. If x is a solution then the eigenstate has
eigenvalue 1, otherwise it has eigenvalue -1. This means that we can describe the operation

0
1

(65)

Uf ‘.’L‘, _> - (_1)]‘(1) ’1‘, _> . (66)

The oracle marks the solutions with a sign (equivalently a phase as e™ = —1). Henceforth
we are going to ignore the |—) work-bit as it remains unchanged during iterations of the
algorithm.
We require an operator Upg that performs a conditional phase shift. The operator
x — 1 for all states except |0)" which we can also write as |0) if we label basis states via
integer base 2.
Ups: |z) — —(=1)%0 |z).

This operation should not affect additional work bits. The conditional phase shift can also
be written as

Ups =2(0) (0] — I (67)

where |0) is the n-bit state |0)*” and I denotes the identity I®™.
Let’s look at the operation of

Uiam = W, UpsW,,
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on n bits. Here IAM means Inversion About Mean.

Uiam = Wi (210)™ (0" — YW,

= 2W,, [0)" (0]" W,, — I. (68)
Recall that
on 1
W, 10)" |z)
- Xl
We define
on 1
[v) VﬁZm (69)
This means that
W [0)" (0" Wy, = [y) (y] - (70)
Equation 68 becomes
Uiam = 2y) (y| — 1. (71)

The operator Uiam when applied to a state [¢)) = )", ay |k) produces

Uram [¢0) = (2y) ( Zak k)
= Z ~ [0 Ul o k) — > ag k)
iik p

=Sl ey - Y anlk)
7 7 k

:Z ;Z%_ak k)
= (2(a) — o) |k) (72)

k
where the average
1
iy
k
Because the operator Upay (as shown in equation 72) reverses the sign and adds the mean

value, it inverts about the mean value.
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It is helpful to construct two states that are based on eigenstates of the oracle transfor-
mation Uy. Equation 65 shows that |z) is always an eigenstate of Uy (assuming that the
extra work-bit remains at |—)) but with eigenvalue 1 if x is a solution, and with eigenvalue
-1 otherwise. We construct a state that is a sum of the M states that are solutions and
have f(z) =

|s)

1
- YW
\/Mm:f(m):l

We construct a state that is a sum of the N — M states that have f(z) = 0 and are not
solutions

|v) = %xf%:

These two states are orthogonal; |v) (s| = 0. (This follows because they are comprised
of separate sets of orthogonal states). Our mixed state |y) defined in equation 69 can be
described in terms of these two states; |s) (where s is for solution) and |v) (where v is for

vanilla).
=T o+ \f )

= cos 9/2 |v) 4 sin(6/2) |s (73)

where we define an angle 6 that satisfies

0 N-M [0\ [M
COS<2> = T, Sln<2> = N (74)

We expect that 0 is small if there are few solutions.
We compute the identity in the |v) , |s) basis.

1= [v) (v] +s) {s] . (75)
With equation 73 we find
[y) (yl =cos?(0/2) v) (v] +sin®(6/2) |s) (s| + cos(8/2) sin(6/2)(Jv) (s| +|s) (v])

(14 cosb) (1 —cosb) sin 0

= [ [+ ) {s] + ——(Iv) (s + [s) (v]), (76)
where I have used identities 2 cos? 2z — 1 = cos(2z), 2sin? x — 1 = — cos(2z), 2sinx cosx =
sin(2x). We compute Uranm, the operator that inverts about the mean in the |v) , |s) basis.
Using equations 71 and 75

Utam = 2y) (y| —
= cosO(|v) (v] — |s) (s]) +sinb(|v) (s + [s) (v]). (77)
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In the |v),|s) basis

(78)

sinf —cos6

0 ind
Uiang = <cos sin ) '

The Grover algorithm is illustrated in Figure 12. It depends on an iteration step which
is illustrated in Figure 11.

Grover iterator G

U; oracle
|z) = (=1)/®)|z)

=)

Figure 11: The Grover iterator that is part of the Grover search algorithm shown in Figure
12.

=
3
()
Q)
Q)
Q)
LLLLLLL

B

=
|

T
1

Figure 12: A quantum circuit for doing a quantum search with Grover’s algorithm. The
operator G is a Grover iterator shown in Figure 11.

The Grover iteration G (see Figure 11) is the following set of unitary operations:

Apply the oracle function Uy.

Apply W,, ® I.

Perform the conditional phase shift, Upg ® I.

Apply W,, ® I.
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Figure 13: The Grover iteration inverts about the mean which amplifies the desired solu-
tions.

An additional work bit remains at |—) througout.
Altogether the Grover iteration operator is

G = [(WnUpSWn) ®I] Uf = (UIAM ®I)Uf. (79)

For the full algorithm (see Figure 12), the circuit starts with initial initial state |y, —)
and then the Grover iterator G is applied a number of times. Finally n bits are measured.

Let’s look at what happens during a single iteration.

The oracle function sends |v) — |v) but flips the sign of |s). Assuming that the work
bit is set to |—), and we start with a state a|v) + b|s), the oracle function does

U(alv) +bls)) @[=) = (afv) = bls)) @ [=).

In matrix form and in the |v),|s) basis (and ignoring the work bit)

Uy = <é _01> . (80)

Using the matrix form for Uray in the |v),|s) basis (shown in equation 78) the Grover

iterator
cos@ sinf 1 0
G= (sine — cos ¢9> (O —1) (81)

_ <cos9 —Sin¢9> ' (82)

sinf cosf

This looks like a rotation by angle 6!
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The algorithm starts with initial state |y) = cos(6/2) |v) + sin(6/2) |s). If we apply the
Grover iterator to this state a single time then it is as if we have rotated the |v) state by
an angle 30/2. In other words

G ly) = cos(30/2) |v) +sin(6/2) |s) .

After k applications of the Grover iterator

cﬁwy>:<ns<cyggl)9>yv)+sn1(cy“;])9>\@. (83)

If we apply G sufficient number of times that

(2k +1)0

s

then the state will only consist of possible solutions of f(). Here k is the number of times
we need to apply the Grover iterator.

6.1.1 Efficiency

We defined 6 with
M
in(0/2) =4/ —
sin(6/2) ~
(via equation 74). Assuming there are few solutions 6/2 ~ /M /N. How many queries (k

iterations of G) would we need? We insert 6 ~ 21/M /N into equation 84 to find

| M
N

7
k ~ NV

The number of queries k of the function that are needed to find a solution is O(v/N). Here
N is the number of possible input strings (N = 2" where n is the number of qubits).

A classical search would require N/M queries (and so is O(N)) to find a solution, so
the quantum algorithm is faster than a classical search, but it is not exponentially faster.

The final measurement doesn’t always give you a correct answer! However it is unlikely
you would get an incorrect answer. You could check a solution if you have access to the
function f. Alternatively you could run the algorithm multiple times to make sure you get
the same set of solutions.

If you don’t know the number of solutions, it is difficult to choose the optical number
of iterations k. This issue is addressed in the next section!
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Apparently Grover’s algorithm is essentially optimal (Bennet+97)? and it is impossible
to do better than O(v/N). For a nice explanation of the optimal aspect and a nice intro-
duction to modifications of the Grover algorithm, see chap 9 of the lovely book by Rieffel
and Polak.

6.2 Quantum Phase Estimation

Phases can be estimated using a quantum Fourier transform, so we could have discussed
phase estimation in one of the previous sections. We discuss it here because equation 83
is sinusoidal and phase estimation is used in the quantum counting algorithm that we will
discuss below.

We have a unitary transformation U and an eigenvalue of U that is 2™ that depends
on phase ¢ € [0,1). The associated eigenvector is |u).

We apply the circuit shown in Figure 14. Notice that after each application of U, the
bottom set of qubits remains in the state |u) because |u) is an eigenvector of U.

We use a set of £ qubits on the top part of the circuit, and each is affected by a different
number of iterations of U. The number of iterations of U applied in each step is a power
of two. After the circuit in Figure 14 is implemented, the state is

1 (28 (28
¥) = 550+ ETI ) @ (0) +SETI ) @

e @ (]0) + 2™ 1)) @ (|0) + 2™ 1)) @ |u) . (85)

0 {H] oo 5 (10) e L))
0 {x] — - L0+ )
|0>_E o—1. .. %(|O>—|—€2ﬂi[21¢]|1>)

0) L (|0} + e2m12°41[1))

S

2 —TEEEE — G

U E:::3uU

21

U

&

== U

Figure 14: The beginning of a circuit to measure a phase ¢. Here |u) is an eigenvector of
unitary matrix U and |u) has eigenvalue e?™®. There are ¢ qubits in the top register. For
each qubit in the top register a controlled operation that is U unitary matrix to a power
of 2 has target the bottom register.

9Bennett C.H., Bernstein E., Brassard G., Vazirani U. (1997). The strengths and weaknesses of quantum
computation. SIAM Journal on Computing. 26 (5): 1510-1523.
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QPE [$) = |d1¢2...¢1)
0 -H] e — ] C— o0

|0>——E—0— oFTTHHA
o HE—e—1—.. Loy

|0>__|E|_T ..... T o0

o o1 H P — 20!
|u) U’

HU HU E::: iU |u)

Figure 15: The rest of the quantum phase estimation (QPE) circuit for measuring the
phase ¢ of an eigenvalue with t-bits of accuracy. Here QFTT is the inverse quantum
Fourier transform (IQFT). For ¢ bits in the inverse Fourier transform, the circuit gives ¢
measured bits for the phase ¢ of the eigenvalue of U that is associated with eigenvector

Approximate ¢ € [0,1) as a binary number base 2

¢ ~ 0-¢1¢2¢3-~¢t (86)
t
=Y g2 (87)
i=1
where ¢; are binary digits € {0,1}. Equation 85 becomes

1 , , .
) = QW(\OHezmo“z’t) 1)@ (|0)+e>™ 0190 1)) @....(|0) >0 1)) @u) . (88)

This is equivalent to the product representation of the Fourier transform which means that
we can invert the state using an inverse Fourier transform,

QFTT @ I [¢h) = [¢1¢.....¢) @ |u) . (89)

where n is the number of bits in the lower set and that describes |u). Prior to measurement
the state is that on the right hand side of equation 89. When we measure the top t bits we
will have a t bit approximation for ¢. The rest of the circuit, including inverse QFT and
measurements, is shown in Figure 15.

6.2.1 Efficiency

How many calls to U are required for ¢ bits of precision in the measurement of ¢? The
number of operations of U is Z;;% 2/ = 2t — 1. How many additional gates are required?
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The Hadamard are O(t) gates. The QFT requires O(t?) gates. For ¢ > 5, the number of
gates in the series of controlled U operations dominates.

6.2.2 The QPE operator

Suppose we do not input a state that is a single eigenvector into the circuit? What does
the QPE operator outlined in Figure 15 do? We describe U in terms of a basis of all its
eigenvectors {u;}

U =D A fug) Gl = 3 €™ Jug) (] (90)

Here {\;} refer to the set of eigenvalues and {¢;} to their phases with \; = €™, We
describe the input state in terms of a superposition of the eigenvector basis

) = Zaj |uj) (91)

The output of the quantum phase estimation (QPE) operator (as shown in Figure 15 for
each eigenstate |u;)) is given by equation 89 and is

QPE [0)* |uj) = |¢;) & [uy) . (92)

Here |¢;) refers to the state given by ¢ bits of phase ¢;. Applying this operation to the
superposition state in equation 91

QPE|0)®tZaj ;) = Zaj 95) @ |u;) . (93)

This form for the QPE will be useful for other algorithms (such as the HHL for solving a
linear equation; see section 7).

6.3 Quantum Counting Algorithms

In Grover’s algorithm, it is difficult to chose the number of iterations without knowing the
number of solutions. One approach repeats Grover’s algorithm multiple times, choosing a
random number of iterations in each run. While inelegant, this approach does succeed in
finding a solution with high probability in O(v/N) queries.

On a quantum computer it is possible to estimate the number of solutions much more
quickly than is possible on a classical computer by combining the Grover iteration with
the phase estimation technique. Quantum counting, allows us to determine whether a
given search problem has any solutions, and to find one if there are, even if the number
of solutions is not known in advance. Fourier transform based phase estimation procedure
enables us to estimate M the number of solutions to high accuracy with O(v/N) queries.
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Quantum counting is done as follows. Run the Grover iterator 1 time and also 2 times
and also 4 times up to 2/~! times. Each output controls a bit in a register. Then an inverse
Fourier transform is performed on the ¢ bit register which is then measured, as shown in the
phase measurement circuit shown in Figure 15. The periodicity in equation 83 is detected
which gives an estimate for the angle 6 and so for the number of solutions (via equation
74).

QPE
t bits { (o) f—A}—————-- - oFr HE—
‘0>__IE o —1 ... __B_
0>__E_T ..... __lzl_

()
(A
()
(7 ¥

|L1> | a I — .E_m )

Figure 16: An algorithm for counting solutions. Here G is the Grover iterator. Here t is
the number of bits used for phase estimation and n is the number of bits for U which lies
within the Grover iterator. The bottom qubit is a work-bit used in the Grover iterator.
The operation within the large box is the quantum phase estimation algorithm.

Recall that the quantum phase estimating circuit used as input an eigenvalue of the
unitary operator. What are the eigenvalues of the Grover iteractor? The Grover iterator
G depends on an angle § which satisfies sin(6/2) = \/M/N (equation 74) where M is the
number of solutions and N is the number of states. In the basis of non-solutions |v) and
cosf) —sind

solutions |s), the Grover iterator is G = | .
sinf cosf

) (equation 82). The eigenvalues
of the Grover iterator are ‘
e'? and e

with eigenvectors

le+) = —=(lv) —ils)) and  le—) =

Sl
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We can write the initial state in terms of the eigenvalues
ly) = cos(0/2) |v) +sin(0/2) |s)

= \}i(eie/2 le+) + e /2 |e=)).
Our input to the quantum circuit in Figure 16 is a superposition of two eigenvectors. That
means that the Fourier transform will contain a superposition of two different phases.
When the phase is measured, one of these two eigenvalue phases will be measured. It
should be possible to tell the two possibilities apart as they are 6, —f. Note that the phase
estimation circuit contains a factor of 27 in the definition of the eigenvalue, so after you
take your measurement of the phase ¢ you should multiply it by 27 to find 6.

6.4 3-SAT

We discuss 3-SAT problems because Grover’s algorithm can be used to efficiently find their
solutions.

3-SAT is a Boolean satisfiability problem (a decision problem) where each clause consists
of three Boolean variables. For example on a set of n Boolean variables x = (z1, z2, 3, Z4....25)
with x; € {0,1} a 3-SAT problem consists of a logical expression which looks like

O(x) =(z1 Va2 VT7) A (T2V TgV xg)A
(mg V I5V :C7) VAN (a:l V I5V .’EQ)A
ONAQ-.. (94)

Each clause looks like this: z; V x2 V 7 (corresponding to 1 OR z2 OR NOT (z7)) and
contains 3 Boolean variables. Each variable within the clause is either a Boolean variable
x; or its opposite (Z; = NOT (z;)). All clauses must be satisfied (A is equivalent to AND).
The function ® returns a Boolean (either 0 or 1). The goal is to determine if there are
solutions (one or more possible binary strings x) giving ®(x) = 1. The form of equation
94 is called the conjunctive normal form.

Any combinatorial logic circuit can be converted efficiently (with fewer than an expo-
nential number of terms) to a conjunctive normal form via the Tseytin transformation
https://en.wikipedia.org/wiki/Tseytin_transformation. To reduce the unrestricted
SAT problem to 3-SAT, one can transform each clause with n terms to a conjunction of

n — 2 clauses. Here is a recipe:

(x1 Vo Vas..Vxg) —(x1 Vary Vwy)A
(wa V x3 V ws)A
(w3 V xg Vwg)A... A
(W—3 V Tp—2 V wi—_2)A
(lf)k_g VZr_1V {Ek)
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The two relations are not logically identical but they are logically satisfiable. An additional
set of k — 3 auxiliary logical variables ws...wg_o are used. A shorter example

(r1 VaaVasVey) — (x1 Ve Vw)A(wV xs V).

If w = 1 then we find z1 or x5 must be 1 for the expression to be true. If w = 0 then z3 or
x4 must be 1 for the expression to be true. Taking into account both possible w values, the
expression is satisfied/true if z1 or x9 or x3 or x4 is 1, as given in the original expression.

K-SAT, where each clause has k variables, is an NP problem. Any instance ®(x) of the
K-SAT problem with x € {0, 1}" requires doing the computation of the Boolean function for
2" different combinations of binary values for the input Boolean string x. (This establishes
that it takes exponential time to find solutions.) The correctness of any particular solution,
i.e. given any proposed set of values for a binary string can be checked in polynomial time.
That’s because the expression itself is comprised of a polynomial number of variables and
logical operations. (This establishes that it takes polynomial time to check solutions). For
K > 3, K-SAT is proved to be NP-complete (Cook(1971) and Levin(1973); - that means
all other NP problems can be converted into 3-SAT problems).

6.5 Solving a 3-SAT problem with Grover’s algorithm

How do you run a 3-SAT problem on a quantum computer? Since 3-SAT gives a Boolean
function f(x), we can use the function f() to construct a unitary oracle operator Uy (in
equation 64) that can be incorporated within the Grover iterator. We repeat equation 64
here:

Uglz,q) = |z, f(z) +q) - (95)

For example, suppose we would like to find solutions to
f(x) =(x1 Vaa Vas) A(xa VsV Ty). (96)
It is convenient to use this relation
(aVbVe)=aAbAc

Equation 114 becomes

f(X) =2X1 NTo ANT3 \NZTo \NZ3 N\ x4. (97)

A circuit that performs Uy (the oracle in equation 95), with f(x) in equation 114 or 97, is
shown in Figure 17. The circuit is not optimally efficient but illustrates that any 3-SAT
problem can be implemented on a quantum computer and solved via Grover’s algorithm.
Grover’s iterator needs to be run O(v/N) times where the number of possible solutions
N = 2™ and n is the number of input variables (the length of the binary string x) in the 3-
SAT problem. Thus Grover’s algorithm beats classical methods of searching for solutions
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lq) & |f(x)+q)

Figure 17: A circuit to perform the unitary operation Uy (the oracle) needed for the Grover
iterator and for the 3-SAT function f() in equation 114 or 97. I have tried to unentangle
the 3 work bits so that they can be reused during the iteration.

which are O(N) = O(2"). (As O(V'N) = O(2"/?) is still exponential in n, Grover’s
algorithm is faster but not exponentially faster. It’s not polynomial in n.).

I have illustrated one way to implement 3-SAT on a quantum computer. There is a nice
3-SAT example given in a g¢isket tutorial https://qiskit.org/, a quantum algorithm that
leverages classical algorithms such as the Davis-Putnam-Logemann-Loveland algorithm
(Zhang+20) and a google patent involving using density matrices? The research setting
seems active.

7 Solving linear equations on a quantum computer (the HHL
algorithm)

|1 keep|1>

|0)®* _|0 \®t
’0>®nb / . Pre are c |X
|%> rw |w2> W) |\1/4> |w5>

Figure 18: Illustrating the HHL algorithm.

Another application of the quantum phase estimation (QPE) algorithm (as introduced
in section 6.2) is with the HHL algorithm for solving a linear equation. The goal is to
efficiently solve a linear equation on a quantum computer. Given an NV, dimensional vector
b, and an N, X N, invertible square matrix A the goal is to find the solution to

Ax =b. (98)
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The quantum algorithm is known as HHL (Harrow-Hassidim-Lloyd)!°. For an introduction
to the algorithm see!! Morrel Jr., H. J., A. Zaman, Wong, H. Y. (2022) Step-by-Step HHL
Algorithm Walkthrough to Enhance the Understanding of Critical Quantum Computing
Concepts, https://arxiv.org/pdf/2108.09004.pdf. We will follow this clear introduc-
tion here.

We assume that A is Hermitian. If A is not Hermitian then the system can be replaced
with the following one where A’ is Hermitian;

() -0 <-0)

We assume that N, = 2™ where ny is the number of qubits needed to code b. In terms
of the eigenvectors {|a;)} and eigenvalues {);} of A

Ny—1

A= \lay) (a]. (99)
j=0

In the same basis the vector b is
Ny—1

b) = > Bjlay). (100)
j=0

To put the problem on a quantum computer this state should be normalized so that it has
length 1, so we require that > j | 53"2 = 1. We would like to find the solution to equation

98 which is
Np—1
-1 -1
x=A"b= > A '8lay). (101)
§=0
This too should be normalized! The state that is measured would be proportional to the
actual solution so that it is normalized. It will be convenient to use the unitary operator

U=e?=>"e"laj)(ay. (102)
j=0

We work with three registers of qubits, as shown in Figure 18. We order the registers
Ha @ Hy @ Hp where H, has a single qubit, H; has ¢ qubits and H; has ny qubits. We start
with

o) = [1), [0)" 05"

°A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm for Linear Systems of Equations,
Physical Review Letters, 103 (2009), no. 15, 150502, https://arxiv.org/abs/0811.3171.

"Morrel Jr., H. J., A. Zaman, Wong, H. Y. (2022) Step-by-Step HHL Algorithm Walkthrough to Enhance
the Understanding of Critical Quantum Computing Concepts, https://arxiv.org/pdf/2108.09004.pdf.
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The vector b is prepared and placed in the b register

Ny—1
[W1) = [1),10)7" [b)y = 1) 100" > Bilag), - (103)
j=0

The quantum phase estimation (QPE) circuit executed on the b and t registers con-
sists of a t-bit Hadamard, followed by a series of ¢ controlled U gates to different powers
of 2, followed by a t-bit inverse quantum Fourier transform (IQFT). For an input state
> aj [uj), The QPE circuit does this

Ny—1

QPE[0)" > ajluy) =Y a;l6;) @ Juy) . (104)
j

J=0

(see discussion above in section 6.2 and equation 93). Here each |u;) is an eigenvector of
the U operator with eigenvalue e>™% and the state |¢;) is a quantum state specified by ¢
bits of accuracy in the value of ¢; itself. Note that because U = e the eigenvalues of A
are related to the phases of the eigenvalues of U via

\j = 276;. (105)

For one of the phases ¢ = 0.j;j2...j: (via powers of 1/2) and ji, jo2, ....J+ € {0,1}. The state
associated with phase ¢ would be |¢p) = |j1j2....j¢). The bits j1, jo...j: are related to the
value of ¢ via ¢ = 2771 427272 . 4+ 27Ut 50 that ¢ € [0,1). Each phase has its own
fractional expansion!

We apply the QPE operator to |¥1) in equation 103 giving

|¥s) = QPE [¥y)
Ny—1

=1, ® > Bildi)laj),- (106)

§=0
Note we are labelling the states according to where they are in the circuit illustrated in
Figure 18.
7.0.1 The controlled rotation

In the next step we use a controlled rotation that targets the lone ancillary qubit. This is
the hard part! The rotation angle a(¢) is controlled so that it depends on the eigenvalue
phase ¢ which is located in the t-register,

[ cosa(¢) sina(e)
RY(a(¢)) = (— sina(¢) cos a(¢>)> ‘ (107)
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We illustrate the rotation on a single phase |¢)

RY [1), ® [¢), = [sin(a(9))[0), + cos(a()) [1),]|d), (108)
Applying the rotation to |¥s3) in equation 106 gives
[W3) = RY [¥y)
Ny—1
= ) [sin(c(65)) [0),, + cos(a(e;)) 11),]8; [¢5), laz), - (109)
=0

The rotation is described as a y-rotation because it rotates the qubit about the y axis on
the Bloch sphere.

The lone ancillary bit is measured and the entire calculation discarded unless the mea-
surement gives |1),. The resulting state is

1 Ny—1
1)e ® cos(a(95))Bj [#5)¢ las), - (110)
VML By cos(algn) 2 ]Zo c

We apply the inverse QPE circuit giving

|Wy) =

|V5) = IQPE |Uy)
. 6 3™ cos(a(6;) lay) (111)
= 1), ®[0)" @ > cos(c(e;))Bj laz), - 111
I By cos(als) P = b

The b-register is no longer entangled with the other two registers. The resulting state in
the b-register is

1 Np—1
)y = Z cos(a(¢;))Bj |aj) (112)
b \/Zivial |81, cos(a (o)) j=0 b

This resembles the solution for x in equation 101 if we can chose the angle function a(¢)
so that

¥

1 1
. = 113
cos(a(ep;)) o 2md; N (113)
or with rotation angle
a(¢) = acos 2§¢ (114)
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where C is a coefficient that can be adjusted. (It might make sense to choose C' = 27 as
¢ € [0,1).) Using this kind of function for a, equation 111 becomes

Np—1
1T5) o |1, ® [0)2 ® Z bi o), (115)

which is the desired solution!

Implementing the function in equation 114 seems non-trivial! Nevertheless there have
been a number of successful experimental implementations of the HHL algorithm, so it
must be possible! I am curious as to how such a functions can be implemented.

Measurement of the b-register at the end of the circuit gives an approximation for the
solution x. Why is it an approximation? The accuracy of the solution depends upon the
number of bits in the t-register which controls the accuracy of the phase estimation.

The vector b need not be input in any particular basis as long as it is consistent with
that used for A and U and that expected for the solution x.

7.1 Comments on variants

A variant of the HHL algorithm could be used to create operators that involve computing
more interesting functions of the eigenvalues of an operator A. Here the function computed
with the RY operator is f(A\) = A~! and it inverts the eigenvalues. With A = VAVT,
the singular value decomposition of A, V unitary and A a diagonal matrix containing the
eigenvalues of A, we could use a similar algorithm to compute the operator B = V f(A) V'
where f(A) is a more complicated function of the eigenvalues. To create the operator B
we would need to construct an operator RY with rotation angle a(¢) giving cos(a(¢)) =
f(2r6).

Can the HHL algorithm be used to amplify low energy states? For example if A = ¢H
and |b) gives an initial guess for the ground state of H, a couple iterations of the HHL
algorithm would give a state vector that is closer to the ground state. Iterating the entire
algorithm would be inefficient because it would require discarding the |0), measurements
numerous times. Perhaps one could create a steeper version of the controlled rotation
(implementing e~ instead of 1/\) which would be equivalent to iterating.

8 Adiabatic Algorithms

8.1 Finding the ground state of a complex Hamiltonian via adiabatic
evolution

Adiabatic algorithms are based on what is called the adiabatic theorem in quantum
mechanics.'?

12See https://en.wikipedia.org/wiki/Adiabatic_theorem.
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Suppose you have an initial Hamiltonian H; and you know its ground state |0). You
would like to know the ground state of another, similar problem (or final) Hamiltonian H.
Construct a time dependent Hamiltonian

H(t) = Hy(1 — s(t)) + Hys(t). (116)

where s(t) € [0,1] is a smooth, slowly increasing function that starts at s(0) = 0 and ends
at 1, with s(T") = 1 at some later time 7.
With & =1, a quantum state vector |¢(t)) evolves as

d (1))
dt

= —iH (1) [¢(1)) - (117)

The wave function slowly and continuously evolves from the initial ground state [¢)(0))
with the time dependent Hamiltonian

(1)) = e o ¥ HE 1y (0)) . (118)

If the evolution is done sufficiently slowly, then the adiabatic theorem states that the final
wave vector [¢(T)) will be very close to the ground state of the problem Hamiltonian H.
Gradual change from one ground state brings the system to another ground state.

Hi Hf

Figure 19: We show the evolution of the two lowest eigenvalues as the parameter s is
slowly varied. The Hamiltonian begins as H; when s = 0 and becomes Hy when s = 1.
The system begins in the ground state of H;. The system must evolve slowly for it to
remain in the ground state. The time needed to pass the region where the energy gap is
small depends on the width of the energy gap AFE.

What makes an adiabatic algorithm difficult?

If at some point during the evolution the two lowest energy eigenvalues of the system
are close to each other then the system can undergo a transition out of the ground state.
To prevent this, you would need to evolve the system very slowly, or adiabatically. To pass
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the region sufficiently adiabatically to suppress transition out of the ground state, the drift
rate 0 (in units of energy/time) must be slower than'?

§ < (AE)? (119)

where AF is the minimum energy gap between the two energy eigenstates. Note that with
h = 1 energy is in units of frequency and the drift rate is in units of frequency squared.
The time for each operation step 7 ~ E/d gives

E
>
T~ (AEB)?

(120)

where F is a characteristic energy at the transition where the two energy eigenvalues are
the same.

Qualitatively Rabi oscillations in a two state system take place at a frequency given by
AFE. To evolve slowly enough to remain in the adiabatic regime, the time for the energy
to cross a distance AF at drift rate § should be longer than a Rabi oscillation period. To
order of magnitude this gives equation 119.

Do adiabatic algorithms actually work? It is not necessarily easy in advance to deter-
mine the difference in energy between the ground state and first excited state as a function
of time during an adiabatic evolution calculation. This makes it challenging to efficiently
choose the time step.

One could run the adiabatic computation more than once but with different initial
Hamiltonians and initial ground states. The hope would be that one of the choices for
the initial Hamiltonian would be less prone to problems associated with proximity in the
lowest two energy levels during the adiabatic calculation. I have noticed that people do
not tend to choose an initial Hamiltonian with the simplest possible ground state, \O>®".
An initial ground state prepared with the n-bit Hadamard H™|0)*" seems more popular,
though I am not sure why.

Another approach is to introduce some intermediate Hamiltonians within the adiabatic
variation;

H(s) = A(s)H; + Z Bj(s)Hj + C(s)Hy. (121)

The time dependent functions A(s), B(s), C(s) are designed so that the system moves from
the ground state of the initial Hamiltonian H; to ground states of the intermediate Hamil-
tonians (here denoted H;) before approaching ground state of the desired final Hamiltonian

3The Landau-Zener formula is an analytic solution to the equations of motion governing the transition
dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy
separation of the two states is a linear function of time. The formula gives the probability of a diabatic (not
adiabatic) transition between the two energy states and it is exponentially dependent upon the drift rate.
See C. De Grandi and A. Polkovnikov 2009, Adiabatic perturbation theory: from Landau-Zener problem to
quenching through a quantum critical point, in the book: Quantum Quenching, Annealing and Computation,
pp 75-114, https://arxiv.org/pdf/0910.2236 . pdf.
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H. This provides some flexibility in the algorithm which could help improve and optimize
it.

Variational techniques which involve both classical and quantum operations, may have
advantages over adiabatic algorithms. We will discuss problems that could be solved with
an adiabatic algorithm, but keep in mind that many of the components of these problems
might also be useful for application in variational quantum algorithms.

8.2 Quantum adiabatic optimization

Quantum adiabatic optimization is a class of procedures for solving optimization problems
using a quantum computer.14

e Design a problem Hamiltonian H; whose ground state encodes the solution of an
optimization problem.

e Prepare the known ground state of a simple Hamiltonian, H;.

e Interpolate adiabatically by approximating the evolution with series of quantum op-
erations.

e Measure quantities of the ground state of Hy.

Why is this an optimization problem? This is because the ground eigenstate of Hy is
the wave function that minimizes (| Hy |1)).

8.3 Trotterization

In many physical systems energy states and evolution can be approximated with a sum of
Hamiltonians. For example with one Hamiltonian representing the energy in a subsystem
and another Hamiltonian representing interactions between the subsystem and external
degrees of freedom. Let iH = A + B. However the operators or matrices A and B need
not commute. In other words AB # BA and that means that eAT5 # e4eB. Let us use a
small parameter e,

A+B €A EBGEAGEB...

(& ~e e

where we repeat pairs of e“4e® a total number of 7 = 1/e times. Why is this a good

approximation? If e is small then e* ~ I + €A and

eAeBeAeB |~ (I+eA)I +eB)(I +eA)(I +e€B)....
~ I+ (A+ B).

To first order this is equivalent to eA*? ~ T+ A+ B+ .....

MProposed in the context of quantum computation by Quantum Computation by Adiabatic Evolution,
Farhi, Goldstone, Gutmann, and Sipser (2000) https://arxiv.org/abs/quant-ph/0001106.
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Equivalently Trotterization is the approximation
A T
eAB < (676§> . (122)

This means we can apply the operator erer ~ (I +2)(I+ £) a total number of r times
to approximate eAT5. How big is the error? This is a first order approximation which is

accurate O(1/r). In other words
B 1

T
r <7
)H_T'

||eA+B - (eée

Totterization is in general useful for approximating an operator that is an exponential
of a sum of simpler operators, as in equation 122. With r large, each piece is to a good
approximation a first order expression. Or the operators et and e® could be simple
unitary operators which can be straightforward to implement even if e(4+5) is difficult
to calculate. A similar approach is used to derive symplectic integrators in the setting of
celestial mechanics. In this setting the Hamiltonian can be divided into more than two
pieces with potential interaction terms in one piece and Keplerian terms for single bodies
in another one.

Going back to equation 116 for the adiabatic evolution of a Hamiltonian system from
H; — Hjy which we repeat here,

H(t) = Hy(1 — s(t)) + Hys(t). (123)

we assume that s = t/T and discretize the transition from s = 0 to 1 into r steps. We
index each step with index j € [1,7], giving s; = j/r and t; = s;T. This gives Hamiltonian
at time step j

H; = H(t;) = H; <1 - i) + Hf%. (124)

The time step has duration dt = T'/r, so the exponential operator we apply at the j-th
step is ' _
Vj = emiHydt = omi(Hi(1=)+Hs 3) T (125)
A Trotterized version of V; is
V; m e Hi(1-0) T i 1 T (126)

The entire sequence of r operations for the adiabatic evolution from ¢t = 0 — T is
approximated as

el WHO Ly VLW
~ H;?:le*iHi(lfi)%e—in%%, (127)

The order of the operators in the product is important. The first operator applied should
be that with j = 1. This expression can be used to evolve the ground state of H;, to that
of Hy as in equation 118.
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9 Optimization problems

9.1 Optimization of quadratic Boolean functions and the Ising model

A quadratic unconstrained pseudo-Boolean optimization (QUBO) problem involves
a real function of the form

Jue(x) = Z Ui + Z €ijTiTj, (128)
i i<j

where x = (x1, 22, ....2y), is a Boolean string ; € {0, 1} and u;, e;; are real coefficients. The
function f,e returns a real number. The goal is to find a Boolean string x that minimizes
the function f,.(x). QUBO is NP-hard because 2" possible solutions must be tried to
measure f. However, an optimization problem is not a decision problem. Optimization
problems are not in NP because they are not decision problems. You can compute a
function f for a particular x in polynomial time, but you would not know necessarily that
you have a minimum.
The function in equation 128 has the same minimum as the function

Gue(s) = Z upsi + Z €;;5is; + constant, (129)
i i<j

where s is a string of values with each s; € {1, —1}. Here

up=u;/2+ Y (e +€ji) /4 (130)
J
e = eyj/4 (131)
can be computed from the u; and e;; coefficients in equation 128 and

zi=(1+s;)/2 equivalently s; = 2x; — 1. (132)

A quadratic Boolean optimization (QUBO) model is related to an Ising model via
variable substitution

zi— (I+0,4)/2 or Si — 04 (133)
The result is a Hamiltonian for n qubits

H, = Z who,i+ Z e;jo'%io‘zd + constant (134)
i 1<j

This Hamiltonian is related to an ensemble of spin systems perturbed by a magnetic field
(giving the u; coefficients) and that interact (giving the e; coefficients). A Hamiltonian
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that only depends on o ; operators and contains local binary interaction terms is known
as an Ising model.

Thus optimization of the quadratic optimization problem in equation 128 (finding a
minimum) is related to finding the ground state of the Ising model Hamiltonian in Hye. In
fact the ground state of the Ising Hamiltonian H,. must be a basis state in the conventional
basis with states that look like |0010100111...). This is because the Hamiltonian commutes
with o ; for every i. We say that Hy. and {o,;} are simultaneously diagonalizable. That
means that eigenvectors of H are also eigenstates of o, ;. Because the ground state of the
Ising model must be a pure state (rather than a superposition) in the conventional basis, a
measurement of the ground state in the conventional basis gives a solution to the associated
quadratic Boolean optimization (QUBO) problem.

In summary, finding the minimum in a quadratic Boolean optimization problem is
equivalent to a finding the ground state of an Ising model.

9.2 Quadratization — reducing a polynomial Boolean optimization prob-
lem to a quadratic one

Supposing you would like to find the minimum of a Boolean function that contains cubic
or higher order terms? At the expense of adding more variables, it is possible to reduce
a higher order polynomial optimization problem to a quadratic one (which then can be
implemented on a quantum computer via the Ising model). The procedure is known as
degree reduction or quadratization. For a summary of methods for degree reduction
see the useful, comprehensive and detailed review!® by N. Dattani (2019) Quadratization in
Discrete Optimization and Quantum Mechanics, https://arxiv.org/pdf/1901.04405.
pdf.

Suppose we have an optimization problem where we would like to find a minimum of
the function

f(X) = Z a;T; + Z Qi Tix5 + Z Qi LTk + ... (135)
i ij ijk

with Boolean variables x € {0,1}", coefficients a;; . are real, and with f() returning a real

number. Suppose the function f() has maximum number of variables in any term equal to

positive integer d. The integer d is the degree of the optimization function. We can also
write equation 135 as

fax) =Y as[= (136)
S jes

where each S is a string of at most d distinct positive integer indices in order of size, and

with each index an integer ranging from 1 to n where n is the number of input variables (the

15N. Dattani (2019) Quadratization in Discrete Optimization and Quantum Mechanics, https://arxiv.
org/pdf/1901.04405 . pdf
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length of x). Each string S = ki, ko, k3...kq with order k1 < ka... < kg and k; € {1,2,....,n}.
As there are at most d variables in each product, the function is a d-degree polynomial.
It is possible to find another function, g(x,w) that depends upon additional Boolean
variables w that has the same minimum but is lower degree than f.
The optimization problem of a d-degree polynomial can be reduced to a quadratic
(degree 2) optimization problem. The reduction can be done in polynomial time and the
size (the number of terms) of the final polynomial can be bounded (dependent on d).

9.2.1 Freedman method for negative terms

Negative terms are relatively straightforward! We describe a popular method known as
the Freedman method.'® Consider a cubic term with a negative coefficient. With the
addition of a new Boolean variable w

—r1Tor3 = min [w(2 —z1 — x9 — x3)]. (137)

we{0,1}

Recall that each variable x; is either 0 or 1. The left hand side is only a minimum if all
variables are 1 and in that case the product xixex3 = —1. If any of the variables is not 1
then the product is 0. The right hand side has a minimum if z1 = 9 = 23 = w =1 and
in that case the function gives -1. If one or more of the variables x1,x2, x3 is zero, then
(2—=>",2;) > 0 and function gives 0 with w = 0 . Thus the left hand side is equivalent to
the right hand side. This can be generalized; for a d degree term ;

d d

—llzi= min |[w(d—1-— ;)] 138

[[zi= min [w(d—1- )] (138)
i=1 i=1

The method reduces a negative coefficient term of any degree to a sum of quadratic terms

with the addition of a single auxiliary Boolean variable w.

Example:

Hg(x) = —2x1290324T5T6 + T5X6

becomes

Hg(x,w) =2w(b — o1 — 292 — T3 — T4 — T5 — Tg) + T5T6

9.2.2 Bit flipping for positive terms

Methods for reducing positive terms are more complex and usually involve more auxiliary
variables and larger numbers of terms in the resulting quadratic expression. We describe
an iterative method by Ishikawa.'”

1D, Freedman and P. Drineas, Energy Minimization via Graph Cuts: Settling What is Possible, in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 2
(IEEE, 2005) pp. 939-946.

TH Ishikawa, Transformation of General Binary MRF Minimization to the First-Order Case, IEEE
Transactions on Pattern Analysis and Machine Intelligence 33, 1234-1249 (2011).
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We start with J
Hwi = X1X2...24
=1

for a positive d degree term. We use NOT of one of the variables; £; =1 — z;.

d

Hmi = (1 —Z1)r2..0q = T2X3...T4 — T1T2....24

i=1
We are left with a positive term that has degree d — 1 and a negative term with degree d.
The negative term can be treated with the Freedman method as described in the previous
section. The d — 1 degree positive term can be reduced by using the NOT of the first
variable in its product and proceeding iteratively. Note that if you choose to replace z;
with a new variable, you must replace it throughout the logical expression.

Example:

H(x) = x1z01324
= (1 — Z1)zox324 flip 71
H(x,w1) = zowgzy + w1(3 — T1 — xo — X3 — 24) use Freedman method
= (1 — Z2)zgxgy + w1 (3 — T1 — w9 — x3 — x4) flip x2 in positive term
H(x,wi,wy) = x3xg + wo(2 — Ty — x3 — x4) + w1 (3 — T1 — x9 — x3 — x4) Freedman method

=wxgxg +wo(l4+ 20 — 23 — x4) + wW1(2+ 21 — T2 — T3 — T4). restore 1, xo

Because we started with a quartic expression, two iterations were required to reduce all the
non-quadratic positive terms. This gave us two auxiliary variables in the final quadratic
expression.

If you are curious about the tradeoffs for the different degree reduction methods, take
a look at the review by Nike Dattani (see above footnote)!

9.3 Converting a 3-SAT decision problem to a Max-SAT optimization
problem

3-SAT, which is NP complete, can only be solved via Grover’s algorithm in O(v/N) quan-
tum operations where N = 2™ and n is the number of input Boolean variables. Is there
any advantage to converting a 3-SAT decision problem to an optimization problem and
using a quantum adiabatic or variational method to solve it? Possibly. Grover’s algorithm
has been proven to be optimal so it is not really possible to improve upon it, but it could
be matched using an adiabatic method. An adiabatic method could have advantages over
the Grover type algorithm that depend upon the flexibility and accuracy of the quantum
computer.
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Consider a 3-SAT problem in normal conjunctive form
@(X) =hi Aha A hs.... N hy (139)

where h; are logical expressions (clauses) that each involve three variables; for example
x1 V T2 V x3. The function ®(x) returns 0 or 1.

How would we convert this 3-SAT problem to an optimization problem? We need to
create a cost function with minima (possibly more than 1 of them) that are solutions to
the 3-SAT problem and have ®(x) = 1.

We construct an optimization function that counts the number of clauses that are true;
h<1>(X) :h1+h2+h3+....+hk. (140)

Here hg(x) returns a non-negative integer and each clause is either 0 or 1.
Using the fact that x; V x; V o, = Z; AT; A T, we convert each clause to a Boolean
cubic function

(wi V xj V xk) —)(1 — xl)(l — a:j)(l — xk)

=1—-x; — Tj — Tl + i + ik + LT — TiTTk. (141)

If all of the variables are 0, then the resulting function on the right gives 1. If one or more
of the variables is 1, then the function on the right gives 0. Thus the function on the right
is a minimum when the clause on the left is true. Note that the clause on the left is Boolean
and the function on the right only returns 0 or 1 so can be considered Boolean. However,
the resulting function can be incorporated into a cubic optimization function within hg(x)
which returns a non-negative integer. Nowhere on the right side in equation 141 need we
assume that arithmetic is mod 2.

It is straightforward to similarly convert clauses that have negated variables, for exam-
ple,

(i Va; VaR) = (1 — ) (1 —z5)(1 — 7)

=1—x; —xj — o + 23xj + Ty, + TjTh — T;T5 Tk, (142)

Using the procedure shown in equation 141, the function he(x) becomes a cubic Boolean
function that counts the number of satisfied clauses. If ® has k£ conjunctions and the
associated 3-SAT problem has a solution x*, (giving ®(x*) = 1) then he(x*) = k. The
natural number £ is the maximum possible value for hg(x).

To find the maximum possible number of satisfied clauses via minimization we use a
cost function

C(x) = —ha(x) (143)

which has minima corresponding to maxima of the clause counting function.
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The cubic Boolean optimization function can be converted into a quadratic one using
the procedures (Freedman/Ishikawa methods) we introduced in section 9.2.

In summary, any 3-SAT problem can be converted into a MAX-SAT Boolean optimiza-
tion problem which can be expressed via a quadratic optimization function. As discussed
in section 9.1, the minimum of a quadratic Boolean optimization function (QUBO) can be
found on a quantum computer by finding the ground state of the associated Ising model.

10 Quantum simulation problems

10.1 Fermions as qubits via the Jordan-Wigner transformation

A system of fermions can be described by a Hamiltonian that associates energies describing
interactions between fermions using a set of operators that satisfies the above commutation
relations. An example is BCS theory of superconductivity.

A fermionic Hamiltonian can be converted into a spin Hamiltonian which can be im-
plemented on a quantum computer comprised of qubits.

First we describe operators relevant for fermions. In many body problems, particles are
described with creation and annihilation operators a;, al-L. Here the index labels the single
particle states. For fermions, these operators satisfy anti-commutator relations

{a;, a;} = aia;[ + a;r-al- = 6,1 (144)
{al,al} = {ai,a;} =0, (145)

where I is the identity operator and the relations hold for all 4,j. The second of these
relations implies that (a’)? = 0.
The operator
Nj = a;r-aj

is Hermitian and has eigenvalues 0 or 1. The operator a; acts like a lowering operator and
a;r- acts like a raising operator. The set of operators a;r.aj for different j values all commute
with each other. We can choose a basis where each basis element is defined via a binary
string and each digit in the tring gives the eigenvalue of N; = a}aj. This gives a basis of
2™ orthogonal states where n is the number of particles. If we describe each state based on
how it created from a vacuum state with eigenvalues 0 for all operators, then the sign of
this state depends upon the order that the raising operators are applied. Let s be a binary
string comprised of digits s152s3......s,, for an n particle system and where s; € {0,1} are
binary digits. The we can define a state

|s) = (al)* (a)®2....(a})" |O) (146)

where ‘6> is the ground state that has IV; |6> = 0 for all j. There are 2™ of these states,
and that means the space is equivalent to an n qubit system. However, it is inconvenient
to use the operators a;, a; because they don’t commute.
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The Jordan-Wigner transform is based on the following operators

Z; = aja;- - a;r-aj (147)
Xj = —(leg....ijl)(aj + a;[) (148)
Y; = i(Z12....Zj1)(a;j — a). (149)

These operators serve as Pauli matrices. While X;,Y; don’t commute, X;,Y}; for j # k

do commute. Their commutators are the same as those of Pauli matrices! A Hamiltonian

written in terms of a;, a} can be converted into a form that has only Pauli matrices in it.
In terms of Pauli matrices, the inverse transform is

aj = —(Z1...Z;1) ®0); (1; = =(Z1....Zj1) @ (X — iYj) (150)

af = —(Z1..Z;1) @ |1); (0]; = —(Z1...Zj1) ® X +1iY)). (151)

A system of fermions can be written in terms of a Hamiltonian that contains a;, a}. An
orthonormal basis is created using equation 146 and looks just like that of n qubits. The
Hamiltonian can be transferred into one only containing Pauli matrices using the Jordan-
Wigner transform given in equation 149. Then the entire system can be simulated on a
quantum computer comprised of qubits.

A disadvantage of the Jordan-Wigner transform is that it is ‘non-local’. What is meant
is that for j larger, a; and a;f. depend on a large number of Pauli Z matrices and so require
operations on a large number of qubits. However, for spin chains and Hamiltonians with
quadratic interactions, apparently the resulting Hamiltonian in terms of generalized Pauli
operators is not all that complicated.

11 Variational Quantum Methods

Variational Quantum Methods are a strategy for performing significant computations on
NISQ devices.

Consider a Hamiltonian H (a Hermitian operator) with eigenvectors |v;) and eigenval-
ues )\;. The Hamiltonian can be written as

H =" Xjlvj) (v)]
J
The expectation of H for any state vector
(WL H ) = (] > Ajlv) (vl) (152)

= S nl ) (153)
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Notice that | (¢|v;)|?> > 0 so this is a sum of eigenvalues where each value is weighted by
a positive number.

The minimum possible value for (| H |1) is equal to the smallest eigenvalue of H.

By iterating on the choice of |¢)), it is possible to estimate the ground state energy of
a Hamiltonian.

What is being varied? The eigenfunction [¢).

What is being minimized? (| H [1)).

What is the goal? To estimate the ground state energy of H and find the associated
ground state eigenvector. Apparently the resulting ground state energy has much better
accuracy (smaller error) than the resulting ground state wavefunction.

11.1 The Variational Quantum Eigensolver (VQE)

Relevant references:

The theory of variational hybrid quantum-classical algorithms, McClean+15, https:
//arxiv.org/pdf/1509.04279 . pdf

A cross-disciplinary introduction to quantum annealing-based algorithms, Venegas-Andraca
et al., Contemporary Physics Vol. 59, Issue 02, pp. 174-196 (2018), https://arxiv.org/
abs/1803.03372

To carry out a variational algorithm a method for varying the ansatz eigenvector is
required. On a quantum computer you can generate |1)) using a unitary operation U(0)
that is a function of a vector of angles (which can be varied) and a simple base state |1)g)
with

) = U(8) lto)

The base state [1) might be something like |0) or H™|0) in a n qubit system. The vector
0 of angles allow you to vary the choice of |)).

Measurement can be done of H of itself giving ((0)| H [(0)). A classical non-
linear optimizer is used to determine a new value for @ that will decrease the value for
((0)| H |1(0)). The process is repeated until a convergence test is satisfied.

How can measurement of (H) be done? You can use phase estimation and an algorithm
like the Grover algorithm. Or, on a quantum computer, any Hermitian operator can be
written as a sum of Pauli operators; H = ), h; E; where Ej; is a product of Pauli operators.
As (H) = >, hi(E;) the expectation of H could be computed using measurements of
products of Pauli operators.

12 Next!

What to discuss next? Using quantum computers to carry out simulations of quantum
systems? Fermion raising and lower ops? Accuracy of Trotterization and ways to improve
this with local Hamiltonians?
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Figure 20: A flow chart for a VQE algorithm. A classical non-linear optimizer is used to
minimize the expectation value by varying ansatz parameters.
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