Homework set 10. Physics 141, Fall 2021

Due date: Friday Nov. 18, 2022 at noon.
Total of 8 points. On Force balance and equilibrium states (statics).

1. (2 points) The system shown in the Figure is in equilibrium. The mass of block 1 is $m_{1}=1.4 \mathrm{~kg}$ and the mass of block 2 is $m_{2}=3.7 \mathrm{~kg}$. String 1 makes an angle $\alpha=19^{\circ}$ with the vertical and string 2 is exactly horizontal.

a) What is the tension T_{1} ?
b) What is the tension T_{2} ?
c) Find the angle β between string 3 and the vertical.
d) What is the tension T_{3} ?
2. (2 points) A plank, of length L and mass M, rests on the ground and on a frictionless roller at the top of a wall of height h (see Figure). The center of gravity of the plank is at its center. The plank remains in equilibrium for any value of $\theta<\theta^{*}$ but slips if $\theta=\theta^{*}$. Here θ^{*} is a critical angle.

a) Calculate the magnitude of the force exerted by the roller on the plank when $\theta=\theta^{*}$.
b) Calculate the magnitude of the normal force exerted by the ground on the plank for $\theta=\theta^{*}$.
c) Calculate the magnitude of the friction force between the ground and the plank when $\theta=\theta^{*}$.
d) What is the coefficient of static friction μ ?
3. (2 points) A uniform horizontal bar of length $L=4 \mathrm{~m}$ and weight $M_{b} g=223 \mathrm{~N}$ is pinned to a vertical wall and supported by a thin wire that makes an angle of $\theta=33^{\circ}$ with the horizontal. A mass M, with a weight of 347 N , can be moved anywhere along the bar. The wire can withstand a maximum tension of $T_{\max }=576 \mathrm{~N}$.

a) What is the maximum possible distance x from the wall at which mass M can be placed before the wire breaks?
b) With M placed at this maximum distance, what is the horizontal component of the force exerted on the bar by the pin at A?
c) With M placed at this maximum distance, what is the vertical component of the force exerted on the bar by the pin at A?
4. (2 points)

A particle of mass m is in a potential energy well with potential energy as a function of radius

$$
U(r)=-A r e^{-\alpha r}
$$

We consider only radial motions. Here A, α are positive constants.
a) What radius r_{*} is an equilibrium point?
b) Give the Taylor expansion of $U(r)$ about this equilibrium point. In other words find $U\left(r_{*}\right), U^{\prime}\left(r_{*}\right)$ and $U^{\prime \prime}\left(r_{*}\right)$ so that you can approximate
$U(r) \approx U\left(r_{*}\right)+U^{\prime}\left(r_{*}\right)\left(r-r_{*}\right)+\frac{1}{2} U^{\prime \prime}\left(r_{*}\right)\left(r-r_{*}\right)^{2} \ldots$
c) What is the period of small radial oscillations about the bottom of the potential well and near this equilibrium point?

