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Chaper 2: Entropy and Temperature \

(c) How large is the fractio

nal error in the entropy when you ignore this
factor?

6. Integrated deviation, For the example that gave the result (17), calculate
approximately the probability that the fractional deviation from equilibrium
8/N is 107° or larger. Take Ny = N, = 10**, You will find it convenient to

use an asymptotic expansion for the complementary error function. When
x» 1,

2xexp(x?) mexp(~lz)111 ~ 1 4 small terms.
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Units: Thermodynamic results can easily be transtated from

saits. The only quantity that will cause difficuhy s the heat
Cifund.y (g,
10 quantiti

fundamental vaits o conventional
capacity, deficed below in (17a) as
in fundamental units and as Cleons). = T(ZS #T4in cor entional units. These
are not equal, for Cleonv.) = kyClfund.),

1
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Chapter 3: Boltumann Distribution and Helmholtz Free Energy

The laws of thermodynamics may easily be obtained from the principles of
statistical mechanics, of which they are the incomplete expression.

Gibbs

We are able to distinguish in mechanical terms the thermal action of one sysiem
on another from that which we call mechanical in the narrower sense . . . 50 as
to specify cases of thermal action and cases of mechanical action.

Gibbs
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principles that permit us to calculate the values
@ system as a function of the temperature. We
assume that the system 8 of interest (o us is in thermal equilibrium with a very
large system @, called the reservoir. The system and the reservoir will have a
common temperature t because they are in thermal contact,

The total system @ + .8 is a closed system, insulated from ail external
influences, as in Figure 3.1. The totat energy U
particular, if the system is in a statc of energy
the reservoir,

o = Uy + Uy is constant. In
. then Ug — g, s the energy of

Total sysiem

Reservoir

Constant energy Uy

Figure 3.1 Representation of a closed total system decomposed into a
reservoir O in thermal contact with a system 8.

BOLTZMANN FACTOR

A central problem of thermal physics is 1o find the probability that the system
S willbeina specific quantum state s of encrgy ¢,. This prob
tional to the Boltzmann factor,

When we specify that $ should be in the state s, the number of accessible
states of the total system is reduced to the number of geeessible states of the
reservoir @, at the appropriate encrgy. That is, the number Ja+ 3 of states

ability is propor-
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=
g
]
= o(Ug) Figure 3.2 The change of entropy when the
2 o(Uy - ) H feservoir transfers energy e to the system, The
o ' fractional effect of the transfer on the reservoir
% il is smalt when the reservoir is large, becuuse a
s L targe reservois will hase a high entropy,
H I
fi] ]

: t

]

Uy ~ed Ly,

Energy of the reservoir —

accessible to® + 3 is

ga X 1 =gy, (1)

because for our present purposes we have specified the state of § .

If the system energy is ¢, the reservoir energy is Uy — ¢, The number of
states accessible to the reservoir in this condition isgg (U — g,).asin Figure 3.2,
The ratio of the probability that the system is in quantum state 1 at energy
€; to the probability that the system is in quantum state 2 at energy €, is the
ratio of the two multiplicities:

Ple) _ Multiplicity of ® at energy U, — ¢, _galUg — &)

Ple;) ~ Multiplicity of & at encray Up ~ ¢, — galUs — 52)"

This result is a dircct consequence of what we have called the fundamental
assumption. The two situations are shown in Figure 3.3. Although questions
about the systern depend on the constitution of the reservoir, we shall see that
the dependence is only on the temperature of the reservoir,

Hthe reservoirs arc very large, the multiplicities are very, very large numbers,
We write {2) in terms of the entropy of the reservoir:

D) _ explay(Uy ~ z,)]

Pley)  explogiUy — e9)] ™

explaallo — ) = 6alUs = £3].  (3)
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& a
Energy U, — & Energy Uy — ¢,

gallUs ~ &) states galUy ~ &) states

3 3
State 1 State 2
Energy ¢, Energy e,
(@) (b)

Figure 3.3 The system in {a), (b) is in quantum state {, 2. The reservoir
has gs{Uq — £,) gsdUg — £,) accessible quantum statcs, in (a) and (b}
respectively.

With
Bog = og(Up ~ ) — aglUp ~ &2}, (O]
the probability ratio for the two states 1, 2 of the system is simply

Ple) 5
P(ez) = exp(Aca) (5)

Let us expand the entropics in (4) in a Taylor series expansion about o{Uo).
The Taylor series expansion of f(x) about f(x) is

d
flxo +a) = flxo) + a(j{() + 2 - q <‘b{)‘§x +oee 6)

Thus

o (Uo — &) = aa(Ug) — e@0a/dU)yy + -
= og{Ug} — g/t +---, U]

where 1/t = (0og/EU )y gives the temperature. The partial derivative is taken

Partition Function

at energy U,. The higher order terms in the expansion vanish in the limit of
an infinitely large reservoir.*

Therefore Ao 4 defined by (4) becomes

Aog = ~(g; — &)/t 8)
The final result of (5) and {8) is

Ple)) _ exp(=ey/n)

Ple)) ~ exp(—ea/1)°

©)

A term of the form exp{—¢/t) is known Aas a Boltzmann factor. This result is
of vast wility. I gives the ratio of the probability of finding the system in a

single quantum state 1 to the probubility of finding the system in a single
quantum state 2.

Partition Function

Tt is helplul to consider the function
Z(x) = Y exp(—~e,/1) , (10)
f

called the partition function. The summation'is over the Boltznmiann factor
exp(~¢;/7) for all states s of the system. The partition function is the pro-

postionality factor between the probability P(e,) and the Boltzmann factor
exp{—e/fth

Ple) eXP(Z /9 an

We see that ) P(e,) = Z/Z = 1: the sum of all probabilities is unity.
The result (11) is one of the most useful results of statistical physics. The
average energy of the system is U = (&) = § ¢,Ple,), ot
U= Zici‘-;ileﬂ =(2log Z/3r). (12)

* Weexpand o(Ug ~ andnot (U, ~ ) because the cxpansion of the latter quantity immediately
gives convergence difficullics.
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Figure 3.4 Encrgy and heat capacity of a
two state system as functions of the temperature

Chapter 3: Boltzmann Distribution and Helmbolty Free Energy

0.5 P

0.4 —

Ure
03 74——_~._

T The encrgy is plotted in units of &, 02 Cy T
0.1
e
o S N
0 1 2
PP—

" Example: Energy und heat cupucity of a two state system.

The average energy refers to those states of a system that can exchange energy
with a reservoir. The notation {---> denotes such an average value and is
called the thermal average or ensemble average. In (12) the symbol U is used
for (&) in conformity with common practice; U will now refer to the system
and not, as earlier, to the System + reservoir,

T T T e

1

We treut a system of onc parti-
cle with two stutes, one of caergy 0 and one of eneryy ¢. The particie is in thermat contaet
with a rescevoir at temperature v, We want to find the energy and the heat cuapacity of the

system as a function of the temperature 1. The parlition function for the two states of
the particle is

Z = exp(~0/1) + exp(~gft) = 1 4 exp{—¢/1). {13}
The average energy is
U= (e = 0080 expl-st

1+ c,\p(*g/T)' 4

This (unction is plotted in Figure 3.4,

Ifwe shift the zcro of energy and take the energics of the two states as —4e and +1s,
instead of as 0 and ¢, the resulls appear diffzrently, We have

Z = explef2t) + exp(—e/21) = 2cosh(e/27) , {15)

Partition Function

and
(—1e)exp(e/21) + (Je)exp(—~e/27) _ _ sinh(e/2r)
&= - ¥4 T 2cosh{ef2t)
= —lctanh(e/27). (16)

The heat capacity ;. of a system at constant volume is defined as
Cy = 1(éafir), , (172)

which by the thermodynamic identity (34a) derived below is equivalent to the alternate
definition

Cy = (3U/),. (17b)

Wehald ¥ constant because the values of theenergy are calculated fora systemataspecified
volume, From (14) and (17b),

e\ exple/n) - 18
s e e () fexple/d + 17 e

The same result follows from (16),
in conventional units Cy. is defined as TAES/ET)y or (GU/AT),., whenee

e \? exple/kyT)
(conventional) Cp = k,,(m) EKp“(c/k,.T‘)a ;TF (18b)

In fundamental units the heat capacity is dimensionless; in conventional uni\? it has \h}v:
dimensions of encrgy per kelvin, The specific heat is defined as the heat capacity per unit
MmMass,

“The hump in the plot of heat capacity versus temperature in Figure 34 is called a Schotthy
anomaly. For 7 » ¢ the heat capacity (18a) becomes

Cy = (g/20)% (19)

Notice that Cy ot~ % in (his high temperature fimit. In the low temperature limit the
temperature is small in comparison with the energy level spacing e For 1 « & we have

Cy = {efr)2exp{—g/r). (20}

Theexponential factor exp(— £/} reduces Cy rapidly as r decreases, because exp(— 1/x) - 0
asx - 0.

o - T
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BRI ek ase s
A process is reversible if carried out in such a
finitesimally closc to the equilibrium condition,
is a function of the volume, any change of volume
y that the entropy at any volume ¥ is closely equal
to the equilibrium entropy (V). Thus, the entropy is well defined at every
stage of a reversible process, and by reversing the direction of the change the
system will be returned to its initial condition. In reversible processes, the
condition of the system is well defined at all times, in contrast to irreversiblc
processes, where usually we will not know what is going on during the process.
We cannot apply the mathematical methods of thermal physics to systems
whose condition is undefined.

A volume change that leaves the system in the same quantum state is an
example of an isentropic reversible process. If the system always remains in the
same state the entropy change will be zero between any two stages of the pro-
cess, because the number of states in an ensemble {p. 31) of similar systems does
not change. Any process in which the entropy change vanishes is an isentropic
reversible process. But reversible processes are not limited to isen
cesses, and we shall have a special interest also in isothermal reversibl

Definition: Reversible process,

way that the system is always in
For example, if the entropy
must be carried out so slow}

tropic pro-
e processes.

PRESSURE : 77(/

Consider a system in the quantum state s of energy e,.

function of the volume of the system. The volume is decreased slowly from ¥

to ¥ — AV by application of an external force. Lot the volume change take

place sufficieatly slowly that the system remains in the same quantum state s

throughout the compression. The “same” state may be characterized by its

quantum numbers (Figure 3.5) or by the number of zeros in the wavefunction,
The energy of the state s after the reversible volume change is

We assume ¢, (0 be a

eV = AV) = &(V) ~ [de,JIVIAV 4 -- - [P}

Consider a pressure p, appied normal to all faces of a cube. The mechanical
work done on the system by the pressure in a contraction (Figure 3.6) of the
cube volume from Vio ¥V — AV appears as the change of encrgy of the system:

U = AV) - UY) = AU = —(defdV)aV. @

15 | ‘ Q
NN
NS
|

Volume, relalive scale

0

21
19

17

2
i

Pressure 65

www o 3

o

Figure 3.5 Dependence of energy on volume, for the encrgy levels of a free

1
particle confined to a cube. The curves are labeled by n? = #,2 + 1.} + n2,
as in Figure 1.2. The multiplicities ¢ are also given. The volume change here

is isotropic: a cube remains a cube. The encrgy range 3¢ of the states

represented in an easemble of systems will increass in a reversible

compression, but we know from the discussion in Chapter 2 that the width

the average energy that is important.

[P |

of the energy range itsel is of na practical impostance. It is the change in

Figure 3.6 Volume change — AV io uniform
campression of a cube.
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Here U denotes the energy of the system. Let 4 be the area of one face of the
cube; then
AAX + Ay + A5y = AV | 23)

if all increments AV and Ay = Ay = Az are take

i as positive in the compres-
sion. The work done in the compression is

AU = pA(dx + Ay + Az) = p,AV , (29

so that, on comparison with 22),

Py = —deJdV (25)

is the pressure on a system in the state s.

Weaverage (25) over all states of the ensemble 1o obtain the average pressure
{p>, usually written as p:

cu
= 2
p (c‘V}, . i (26}

U |

where U == (e).

The entropy o is held constant in the derivative because the
number of st

ates in the ensemble is unchanged in the reversible compression
we have described. We have a colleetion of systems, cach in some state, and
cuch remains in this state in the compression,

The result (26) corresponds to our mechanical picture of the pressure on a
system that is maintained in some specific state. Appendix D discusses the
result more deeply. For applications we shall need also the fater result (50) for
the pressure on a system maintained at constant temperature,

Welook for other expressions for the pressure. The number of states and thus
the entropy depend only on U and on V., for a fixed number of particles, so
that only the two variables U and V describe the system. The differential of

the entropy is
ia ‘a
Yy o= (12 e | dV. 27
da(U,V) (EU)V'IU + (5;'); 7

This gives the differential change of the entropy for arbitrary independent
differential chun:o U and dV. Assume now that we select dU and dV inter-
dependently, i such a way that the two terms on the right-hand side of (27)

H
s
i
{
i

Thermodynamic Identity

cancel. The overall entropy change do will be zero. If we denote these inter-
dependent values of dUJ and dV by (3U), and (8V),, the entropy change will
be zero:

Co 34
=Ax7 Y 3
0 (au)Y(‘W)‘ + (6 V>U(6V),. (28)
After division by (5V),,

_ (29 V), | (e
0= (cu> @, * (TV)U @)

But the ratio (SU),/8V), is the partial derivative of U with respect to ¥ at
constant a:

BUYLASV)Y, = Uy, (30)

With this and the definition 1/7 = (¢o/eUY,-, Eq. (29) becomes

31

(32)

Thermodynamic Identity

Consider again the dillerential (27) of the entropy; substitute the new result for
the pressure and the definition of ¢ to obtain

da:}du +§dv, 33

or

wlo = dU + pdV. (3a)
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Free Energy

This useful relation will be called the thermodynamic identity. The form with N
variable will appear in {5.38). A simple transposition gives

dU =g — pd¥, or  dU = TdS — pdV. (34b)
if the actual process of change of state of the system is reversible, we can
identify tdo as the heat added to the system and ~pd¥ as the work done on
the system. The increase of energy is caused in part by mechanical work and

in part by the transfer of heat. Heat is defined as the transfer of energy between
two systems brought into thermal contact {Chapter 8.

HELMHOLTZ FREE ENERGY

The function

(3%}

is called the Helmholtz free cnergy. This function plays the part in thermal
physics at constant temperature that the energy U plays in ordinary mechanical
processes, which are always understood to be at constant entropy, because no
internal changes of statc are alfowed. The frec energy tells us how to bafunce
the conflicting demands of a system for minimum cnergy and maximum en-
tropy. The Helmholtz frec energy will be a minimum for a system & in thermal
contact with a reservoir ®, if the volume of the system is constant.

We first show that F is an extremum in equilibrium at constant 7 and V.
By definition, for infinitesimal ible transfer from G to 8,

dFy = dU, - tdo, (36)

at constant temperature. But 1/r = (26,/2U; )y, so that dUy = 1ds at con-
stant volume. Therefore (36) becomes

dFy =0, (37

which is the condition for F to be an extremum with respect to all variations
at volume and temperature. We like F because we can calculate it from

. the energy cigenvalues g, of the system {see p. 72).

Helmholiz Free Energy

Comment. We can show that the extremum is a minimum. The total energy is U =
Uy + Uy Then the total entropy is

G =05 + 64 = ay(U — Uy} + ay(Uy)
= 0{U) = UylCau/iUsdn + oo Us). 68

4

We know that
(Con/cUs)yy = /1, 39)
50 that (38) becomes

o= oull) ~ B/t 0)

where Fg = Uy — tay is the free encrgy of the system..Now o,(U) is constant; and we
recallthat o = 65 + o5 in equilibrium is a maximum with respect to Uy . 1t follows from
{40)that F must be a minimum with respect 1o Uy when the system is in the most probabte
configuration. The free energy of the system at constant T, V will increase for any departuce
from the cquilibrivm configuration.

Ainimum property of the frec energy of a paramagncsic sypstem, Consider the
model system of Chapter 1, with Ny spins up and Ny spins down. Let N = N + Ny;
the spin excess is 25 = Ny — N,. The cntrapy in the Stiding approximation is found
with the help of an approximate form of (£.31):

U
ols) = AGN + x)!og(lz + ;\,) - (%"’ - 5)‘%(5 - ,:,> 1)

‘Fhe energy in a magnetic ficld B is — 2unB, where w is the magnetic moment ofan chemen-
tary maguet. The fee energy function (10 be called the Landau function in Chapter 10 is
Fi(r,s,B) = Ul5,B) ~ 10(s), or

1 I os 1 1 s
Fi{tsB) = —~2smB + (;N + s Jrlog R N + iN ~ sjrlog 3TN
42

Atthe minimum of F(x,5,B) with respect to s, this function becomes equal to the equilibeivm
free energy F(r,B). That is, Fo{1.{s),B) = F(1,B), because (s} is a function of r and B, The
minimum of F; with respect to the spin excess occurs when

N +2s
(CF /i) 5 = 0= -2mB + tlogm. 43
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Thus in the magnetic field B the thermal equilibrium valuc of the spin excess 25 is given by

N + sy R _ ofexp(2mB/t) — 1
N = asy ~ Sp@mb/) (25 = N (&ﬁz;:;ﬂ/r) ¥ 1) -

or, on dividing numerator and denominator by exp(mB/1),

{25y = N tanh(mB/r). (45)

The magnetization

M is the magnetic moment per unit volume. If n s the number of spins
per unit volume, thy

¢ magnetization in thermal equitibrium in the magnetic field is

M = QsdmjV = nmy tanh{mB/z). {46}

The free encrey of the s

ystem in equilibrium can be obtained by substituting (45) in (42).
It is easier, however,

10-obtain F dircetly from the partition function for one magnet;

Z = exp(mB/1) + exp(~mB/z) = 2cosh(mB/r). 47
Now use the relation F = —rtlog Z as derived below. Multiply by N to obtain the result
for N magnets. (The magnetization is derived more simply by the method of Problem 2)
[Cevions = e rasim ]
Differential Relations -
The differential of F is
dF = dU - wdo — qdt ,
or, with use of the thermodynamic identity (34a),
dF = —gdt — pdV . (48)
for which
[ ——
: L I (49)
AR V7 Al &

These relations are widely used.
The free energy F in the result p = ~(@F/éV), acts as the elfective cnergy
for an isothermul change of volume; contrast this result with (26). The result

Caleulation of F from 2

may be written as

2% g

=55+ (&), - e
byuseof F = U —~ 14, The two terms on the right-hand side of (50} represent
what we may call the energy pressure and the entropy pressure. The cnergy
pressure —(¢U/aV), is dominant in most solids and the entropy pressure
t{a/2V), is dominant in gases and in elastic palymers such as rubber {Problem
10). The entropy contribution js testimony of the importance of the entropy:
the naive feeling from simple mechanics that —~dU/dV must tell everything
about the pressure is seriously incomplete for a process at constant temperature,

because the entropy can change in response to the volume change even if the
energy is independent of volume, as for an ideal 83as at constant temperature.

Sinuive |

Mazxwell relution.  We can now derive one of a group of useful thermodynamic refations
catled Maxwell relations. Form the cross-derivativ e3GFIEV @tand 6 FJEc Y, which must
be equal to each other. It foltows from (49) that

(CafeV), = (@p/e), (59

& relation that is not at all obvious. Other Maxsell relations will be derived later at
appropriate points, by similar . The hodology of ining thermody-
namic relations is discussed by R. Gilmore, 3. Chem. Phys. 75, 5964 {1981).

Calculation of F from Z
Because F= U ~ wwand ¢ = —{¢F/dt)y, we have the differential equation
F=U +<8Fét)y, or ~ 2 (FjO)fée = U. 52
We show that this cquation is satisfied by
Fle = —logZ . (53

where Z is the partition function. On substitution,

0 = ~ClogZ,0t = ~Up? (54
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by (12). This proves that

- —
L F = —zlogZ (55)

satisfies the required differential equation (52).

Tt would appear possible for F/z 10 contain an additive constant « such that
F = —1tlogZ + «t. However, the entropy must reduce to logge when the
temperature is so low that only the g, coincident states at the lowest energy £y
are occupied. In that limit logZ - log g, — £5/r, so that o = —&Fjer —
&(tlog Z)/¢t = log gy only if « = 0.

We may write the result as

Z = exp{—F/1); (56)

and the Boltzmunn factor (11) for the occupancy probability of a quantum
state s becomes

Ple) = “J%l’ = exp(F ~ )] (57

IDEAL GAS: A FIRST LOOK
One atom ina box, We calculate the partition function Z, of one atom of

mass M free to move in a cubical box of volume V = L2, The orbitals of the
free particle wave equation —(h3/2M)V*Y = g are

Ylx,y,2) = Asin(nmx L) sin{mny/Lysin{n.nz/L) , {58)

where 1, n,, n, are any positive integers, as in Chapter 1, Negative integers do
not give independent orbitals, and a zero does not give a solution. The energy
values are

2 2
£y = %i (E) 02 + )2+ ) (59)

We neglect the spin and all other structure of the atom, so that a state of the
system is entirely specified by the values of n,, Ay, i

Ideal Gus: A First Look
The partition function is the sum over the states (59);
Zy= YN Y expl - b2 4 n? o+ n2MLY]. (60)
oy

Provided the spacing of adjacent energy values is small in comparison with «,
we may replace the summations by integrations:

Z, = f: dn, L " dn, f: dngexpl~ 22 + m? 4+ ny (o1)

The notation «* = h*n?/28 L%t is introduced for convenicnce. The exponential
may be written as the product of threc factors

%),

eXP(“d’lr,‘z)cxp(——1’11,2}‘cxp(— 2
so that
£ 3 @ 3
z-(f; nexpl=t) = wor(f; dxespl=x) =0

whence

|4
Zy = (z—&m—r—)ﬁ = ngV = no/n , {62)

in terms of the concentration n = V.
Here

ng = (My/2ah?)?
——

63)

is called the quantum concentration. It is the concentration associated with ane
atom in a cube of side equal to the thermat average de Broghe wavelength,
which is a length roughly equal to h/AM(pY ~ h{M1)Y Here <t is a thermal
average velocity. This concentration will keep turning up in the thermal physics
of gases, in semiconductor theory, and in the theory of chemical reactions.
For helium at atmospheric pressure at room temperature, n > 2.5 x
16"em™ and 1y ~ 08 x 10**cm ™3, Thus, nfng = 3 x 1075, which is very
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small compared 1o unity, 50 that helium is very dilute under normal conditions,
Whenever n/ng <« 1 we say that the gas is in the classicat regime. An ideal gas
is defined as a gas of noninteracting atoms in the classical regime.

The thermal average energy of the atom in the box is, asin (12),

Y. e,exp(—e,/7)
e = (3 log Z,f01) (64)
1

because Z, ™! exp(~ £,/1)is the probability the system is in the state n. From (62),
logZ, = —~3log(l/7) + terms independent of 7 ,

so that for an ideal gas of one atom

(65)

If 7 = kyT, where ky is the Boltzmann constant, then U = 3kyT, the well-
known result for the energy per atom of an ideal gas.

The thermal average occupancy of @ free purticle orbital satisfies the in-
cqualily

Z expl—e /1) < 2,7t = nng

which sets an upper limit of 4 x 1078 for the occupancy of an orbital by a
helium atom at standard concentration and temperature. For the classical
tegime to apply, this occupancy must be « 1. We note that ¢, as defined by (59)
is always positive for a free atom.

T T T e T T R0 ]

Example: N atoms ina box.  There follows now a tricky argument that we will use
temporarily until ¢ develop in Chapter 6 a powerful method 10 deal with the problen.) of
many noninteracting identical atorms in a bex. We first treat an ideal gas of N atoms in a
box, all atoms of different species o different isotopes. This is a simple extension of the
one atom result. We then discuss the major correction factor that arises when all atoms are
identical, of the same isotope of the same specics.

ldeal Gas: A First Look

B 3 e Y

Figure 3.7 An

A particle system of free particles with one particle in cach
of N boxes. The

energy is N times that for one particle in onc box.

LIS ) .
+50 Figure 3.8 Atoms of different species in g
v : single box,

1f we have dne atom in each of N distinct boxes (Figure 3.7

). the partition function is the
product of the separate one atom partition functions:

Zsves = ZUN Z (- Z(N) , (66)

because the product on the right-hand side

includes every independent state of the N
boxes, such as the state of energy

a0+ Q) 4 g Ny (67)

where x £,... ¢ denote the orbitul judices of stoms in the successive boxes. The result (66)
also gives the purtition function of N noninteracting

atoms all of diffecent species in 3
single box (Figure 3.8):

ZL@) ZDN Z,(+) -+ ZyA)

this being the same problem because the energy cigenvalues are the sume as for (67).11 the
masses of all these different atoms happened to be th
would be Z,%, where Z, is given by (62).

Whea we consider the more cemmon problem of N identical partictes in one box, we
have 1o correct Z,% because it overcounts the distinet states of the N identical particle
system. Particles of a single species are got distinguishable: electrons do not casry registra
tion numbers. For two labeled particles 8 uad » in a single bos, the stae D) + fde)
and the state g,(e) + 610 are distinet states, and both combinations must be counted in
the partition function. Bug far two identical particles the state of eneegy ¢, + g 1,
identical state as £ T &, and only one entry s to be made in the
function,

© same, the tolal partition function

state sumn in the partition
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Ifthe orbital indices are all different, cach entry will occur N times jn Z,%, whereas the
entry should oceur only ance if the panticles are identical, Thus, Z,¥ overcounts the states by
a factor of N1, and the cocrect pattition function for N identical particles is

. | 1 .
Sl Z,¥ e M (ngV)® (68)

in the classical regime. Here g = (Mt/2xh%)*2 from {63).

There is a step in the argument where we assumie thatall N occupicd orbitals are always
different orbitais. It is no simple matier to evaluate dircaly the error introduced by this
approximation, but later we will confirm by another method the validity of (68) in the
clussical regime n < ng. The N! factor changes the result for the entropy of the idcal gas.
The entropy is an experimentally measurable quantity, and it has been confirmed that the
N1 factor is corsect in this low concentration limit,

r

=3

Energy. The energy of the ideal gas follows from the N particle partition
function by use of (12):

U = }2log Zy/d1) = 3Nt , (69)
consistent with (65) for one particle. The free energy is

F= —tlogZy = ~zlogZ,¥ + tlogN!. (10}

With the eattier result Z, = nyV = (M/22h%**V and the Stirling approxima-
tionlog Nt =~ NlogN — N, we have
F = —tNlog[(M1/22h)¥2V] + tNlogN ~ tN. (1)

From the free energy we can calculate the entropy and the pressure of the ideal
gas of N atoms. The pressure follows from {49):

p = —{&FfaV), = Nx/V , (72)

or

pV =Nt (13)

{deal Gas: A First Look
which is called the ideal gas law. In conventional units,
pV o= Nk,T. (74)
The entropy follows from (49):
o = =(CF/et) = Nlog[(Mt/2nh)* V] + N — NlogN + N |, {75)

or

6 = Nfloglng/n} + 3] , (76)

with the concentration n = N/V. This result is known as the Sackur-Tetrode
equation for the entropy of a monatomic ideal gas. It agrees with experiment.
The result involves & through the term ng, so even for the classical ideal gas
the entropy involves 2 quantum concept. We shall derive these results again in
Chapter 6 by a direct method that does not explicitly involve the N1 or identical
particle argument. The energy (69) also follows from U = F + 10} with use of
(71) and (76) we have U = $Nc.

Example: Equipartition of energy. Theenergy U = 3Nt from (69) is ascribed to a contri-
bution §x from each “degree of freedom™ of each particle, where the number of degrees of
freedom is the number of dimensions of the space in which the atoms move: 3 in this
example. In the classical form of statistical mechanics, the partition function contains the
kinetic energy of the particles in an inte,

gral over the momentum components p,, Py Ps
For one free particle

Zy e« Hf@xp[— (2 + p,* + p2)2M)dp,dp, dp, , mn

3 result similar to (61). The limits of integration are +m for each companent, The thermal
average encrgy may be calculated by use of (12) and is equal to r.

The result is generalized in the classical theory. Whenever the hamiltonian of the system
ish of degree 2ina i p t, the classical limit of the
thermal average kinetic energy associated with that momentum will be {z. Further, if the
hamiltonian is homogencous of degree 2 in a position coordinate component, the thermal
average potential energy associated with that coordinate will also be §r. The result thus
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Figure 3.9 Heat capacity at constant volume of one molecule of H, in
the gas phase. The vertical scale is in fundamental units; to obtain a value
in conventional units, multiply by k. The contribution from the three
transtationat degrees of frecdom is 4; the conitribution at high temperatures
from the two rotational degrees of freedorm s 1 i and the contribution

from the polential and kinctic energy of the vibrational motion in the

high temperature fimit is 1. The classical limits are attained when

©» relevant enesgy level separations”

applies to the harmonic oscillator ia the classical limit. The quantum results for the har-
monic oscillator and for the diatomic rotator are derived in Problems 3 and 6, respeclively.
At high temperatures the classical linsits are aliained, as in Figure 3.9,

Example: Entropy of mixing. In Chapter 1 we calculated the number of possible arrange-
ments of A and B ina solid made upof N ~ tatoms A and 1 atoms B, We found in (1.20)

for the number of arrangements:

Nt %)
Ny = i
AN = )
The entropy associated with these arrangements is
6{(Ny1) = logg(N,1) = log Nt — log(N ~ 1)t — logt!, {79)

and is plotted in Figure 310 for & = 20, This contribution to the totad entropy of an alloy

Ideal Gas: A First Look

L R
] — NI . VN W
=
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i) S— N
() 02 04 06 08 io
X -

Alloy composition A,_, B,
Figure 310 Mixing enteopy of a random binary alloy as a function of
the proportions of the constituent atoms A and B. The curve plotted
was caleulated for a total of 20 atoms. We see that this entropy is a
maximum when A and B are present in equal proportions {x = 0.5),
and the entropy is zera for pure A or purc B,

system is called the entrapy of mixing. The result (79) may be put in a more convenient form
by use of the Sticling approximation:
a{Nyg) = NlogN —~ N — (N - OlogN — 0 + N — 1 ~ rlogr + ¢
= NlogN — (N ~ 1)log(N — ¢) — tlogt
= ~(N ~ glog(t ~ t/N) — tlog(t/N) ,

or, with x = /N,

6(8) = = N[(I ~ x)log(l — ») + vlogx}. (S0}

This result gives the eatropy of mixing of an alloy A, _ B, treated as a random (hamo-
geneous) solid soluiion. The problerm is Jvetoped in detait in Chapicr {1,

Weask: Is the homogencous solid solution the equilibeium condition of a mixture
and B atoms, or is the equilibrium a two-phase system, such as a misture of erysiall:
pure A and crystallites of pure B? The complete answer is the basis of much of the
of metallurgy: the answer will depend on the temperature and on the interatomic inser-
action energics Uy, Usg, and U g Inthe special case that the interaction cnergies batwsen
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AA, BB, and AB ncighbor pairs are all equal, the homogencous solid solution will have a
lower frez energy than the corresponding mixture of crystaltites of the pure elements, The
free energy of the solid solution A, _, 8, is

F = Fp—1o(x) = Fy + Nt[(1 — x)log{t - x) + xlogx}, (81)

which we must compare with
F=(l = x)Fg + xFy = F, 82)

for the mixture of A and B crystals in the proportion {1 — x} 10 x. The entropy of mixing
is always positive—all entropics are positive—so that the solid solution has the Jower
free energy in this special casc.

There is a tendency for at least a very small proportion of any clement B 1o dissalve in
any other element A, even if a strong repulsive encrgy exists belween a B alom and the
surrounding A atoms. Let this repulsive encrgy be denoted by U, a positive quantity. If a
very small proportion x « [ of B atoms is present, the total repulsive energy is XN U, where
XN is the number of B atoms. The mixing eatropy (80) is approximatety

@ = —xNlogx (83)

in this limit, so that the free cnergy is

F(x) = N(xU + txlogx) , (84}
which has a minimum when
EFféx = N(U + tlogx + 1) =0, (85)
or
X = exp{—1)exp(- U/z). (86)

This shows there is a natural impurity content in all crystals.

SUMMARY
1. The factor
Ple) = exp(~e,/1)/Z

is the probability of finding a system in a state s of encrgy £, when the system

e

Problems
s in thermal contact with a large reservoir at temperature 1. The number of
particles in the system is assumed constant.

2. The partition function is

Z = 3 exp(~e,f1).

w

. The pressure is given by

p= ~(eUV), = WV ),

4. The Helmholtz free encrgy is defined as F=U
cquilibrivm for a system held at constant 1, V.

- 0= —(@Ffe); p= —(CF2V),

F = —tlog Z. This result is very useful in cateul
such as p and ¢ derived from F.

~ 10 It is a minimum in

LY

ations of F and of quantitics

~

. For an ideal monatomic gas of N atoms of spin zero,

Zy = (ngVY'INT |

ifit = N/V « ny. The quantum concentration ng = (Mt/2uh**?, Further,

pV = Nt. o = N[loglug/n) + i Cr=13N.

i

8. A process is reversible if the system remains infinitesimally close to the
equilibrium state at all times during the process.

PROBLEMS

1. Free energy of a two state system.  (a) Find an expression for the free
encrgy as a function of 1 of a system with two states, one at encrgy 0 and one
atenergy ¢.(b) From the fice energy, find expressions for the cnergy and eatropy
of the system, The entropy is plotted in Figure 3.11.

2. Magnetic susceptibility, (a) Use the partition function to find an exact
expression for the magnetization Al wod the susceptibility y = dMMB as a
function of temperature and magnetic ficld for the model system of magnetic
moments in a magnetic ficld. The result for the magnetization is Af =
nuntanh(mB/t), as derived in (46) by another method, Here n is the particle

81
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Figare 311 Enwropy of 1 two-state system s a function
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Figure 312 Plot of the wowal magactic moment as a function
of mBt. Notice that at fow B/t the moment is a Kuear function
of mB/r, but at high mB.t the moment tends to saturate.

concentration. The result is plotted in Figure 3.12, (b} Find the free energy and
express the result as a function onlyof the parameter x = Af/mm. {c) Show
that the susceptibility is 7 = nn? T in the limit mB « 1.

3. Free energy of a harmonic oscillator. A one-dimensional harmonic oscil-
lator has an infinjte series of equaily spaced energy states, with g, = shw, where

Problems

2 —
.
ES)
B
Z
w

% 1 3 3

N —

Figure 3.13  Entropy versus temperature for harmonic
oscillator of frequency w.

s is a positive integer or zero, and o is the classical frequency of the osciltator,
We have chosen the zero of energy at the state s = 0. (4) Show that for a
harmonic oscillator the free energy is

F=rlog[l — exp(~haft)]. 87

Note that at high temperatures such that 1 » ha we may expand the argument
of the logarithm to obtain F ~ ¢ log{/io/1). (b) From (87) show that the entropy
is

hwft ,
= o — log[1 ~ - . 88!
4 P Tog[1 ~ exp(~haw/1)] (88)

The entropy is shown in Figure 3.13 and the heat capacity in Figure 3.14.

4. Energy fluctuations. Consider a system of fixed volume in thermal contact
with a reservoir. Show that the mean square fluctuation in the enerpy of the
system is

& = <Yy = 2@y, (89}
Here U is the conveational symbol for {e>. Hine: Use the partition function Z

to relate ¢U70t to the mean square fluctuation, Also, multiply out the term
(. Note: The temperature T of a system is a quantily that by definition docs

83
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for hurmonic oscillator of frequency . The
lwrizostal scale is in enits of 1, he, which is
ideatical with T 8¢, where 8, is called the
Einstein temperature. {n the high temperature
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timit Gy~ k. of Lin fundamentat waits. This &

valuz is known as the classical valee. At low =

: es Cy. decreases exponeriially. 3 4

remy Cp decreases y 2 o a5 0 o
LA S
fo O

not fluctuate in value when the system is in thermal contact with a reservoir.
Any other attitude would be inconsistent with our definition of the temperiture
of a system. The cnergy of such a system may fluctuate, but the temperature

does not. Some workers do not adhere to a rigorous definition of temperature.
Thus Landau and Lifshitz give the result

LAy = Cy ©0)

but this shou!d be viewed as just another form of (89) with At set equal to
AU/Cy. We know that AU = Cy Ar, whence {90) becomes ((AU)*) = 13Cy.,
which is our result (89).

5. Overhauser effect,  Suppose that by a suitable external mechanical or
electrical arrangement one can add e to the energy of the heat reservoir
whenever the reservoir passes to the system the quantum of energy ¢ The net
increase of energy of the reservoir is {x —~ 1)e. Here « is some numerical factor,

positive or negative. Show that the effective Boltzmann factor for this abnormal
system is given by

Ple) e exp[—(1 - e/t @1

This reasoning gives the statistical basis of the Overhauser effect whereby the
nuclear polarization in a magnetic field can be enhanced above the thermal
equilibrium polarization. Such a condition requires the active supply of energy
to the system from an external source. The system is not in equilibrium, but is
said 10 be in a steady state. Cf. A. W. Overhauscr, Phys. Rev. 92, 411 (1953).

6. Rotation of diatomic molecules. In our first look at the ideal gas we con-
sidercd only the translational encrgy of the particles. But molecules can rotate,

Problems

with Kinetic energy. The rotational motion is quantized: and the energy levels
of a diatomic molecule are of the form

ej) = j(j + eg (92)

where j is any positive integer including 2ero -« The multiplicity
of each rotational fevel is g(j) 2j + L (a) Find the partition function Zglt)
for the rotational states of one molecule, Remember that Z is a sum over ail
stutes, not over all levels—this makes a difference. (b) Evaluate Z
mately for 7% £, by converting the sum to an integral. (¢) Do the same for
T < g, by truncating the sum after the second term. (d) Give expressions for
the energy U and the heat capacity C, as functions of t, in both limits. Observe
that the rotational contribution to the heat capacity of a diatomic molecule
upproaches 1 {or, in conventional units, by when ¢ » £g.{e) Sketeh the behavior
of U(z) and Clx), showing the limiting behuviors for 1 — w0 and © - 0,

7. Zipper problem, A zipper has N finks:
closed with energy 6 and
howey:

k(1) approxi-

cach link has a state in which it is
wstate i which it is open with cnergy e We require,
e, that the zipper can only unzip from the left end, and that the link
number s can only open if all links to the Ieft (12...8 = Dare already open.
{a} Show that the partition function can be summed in the form

' /
N+ et ©3)
exp(—g/t)
(b In the limit ¢ » 7, find the average number of open links. The model is a
very simplified model of the unwinding of two-stranded DNA molecules—sce
C. Kittel, Amer. J. Physics 37,917 (1969).

8. Quantum concentration, Consider one particle confined to a cube of side
L; the concentration in effect is n = 1/L>, Find the kinetic energy of the particle
when in the ground orbital. There will be a value of the eoncentration for which
this zero-point quantum kinetic energy is equal to the temperature 7. (At this
concentration the occupancy of the lowest orbital is of the order of unity; the
lowest orbital always has a higher occupancy than any other orbital.) Show that
the concentration n, thus defined is cqual to the quantum cond

centration ng
defined by (63), within a factor of the order of unity.

9. Partition function for two systems. Show  that the partition function
Z(1 + 2} of two independent systems I and 2 in thermal contact at a common

temperature ¢ is equal to the product of the partition functions of the separate
systems:

Z(1 + 2) = Z(1)Z(2). ) 94
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10. Elusticity of polymers. The thermodynamicidentity for a one-dimensional
system is

wa = dU ~ fll ©5)

when [ is the external force exerted on the line and di is the extension of the
line. By analogy with (32) we form the derivative to find

(%
T <al>,,‘ 0

The direction of the force is opposite to the conventional direction of the
pressure.

We consider a polymeric chain of N links each of length p, with each link
equally likely to be directed to the right and to the left. (a) Show that the number
of arrangements that give a head-to-tail length of | = 2slp is

! Y -
gIN,—3) + g(N,5) = rgaN o ©n

{b) For Is| « N show that
o(l) = log[2g(N.0)] — I/2Np2, 98)
(c) Show that the force at extension [is
J = ItyNp* 99)

The force is proportional to the tempersture, The force arises because the
polymer wants to curl up: the entropy is higher in a random coil than in an
uncoiled configuration. Warming a rubber band makes it contract; warming a
steel wire makes it expand. The theory of rubber clasticity is discussed by
H. M. James and E. Guth, Journal of Chemical Physics 11, 455 (1943); Journal
of Polymer Science 4, 153 (1949); see also L. R. G. Treloar, Physics of rubber
elasticity, Oxlord, 1958.

11. Oune-dimensional gas. Consider an ideal gas of N particles, each of mass
Al confined to a one-dimensionat line of length L. Find the entropy at empera-
ture ©. The pasticles have spin zero.
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Planck Distribution Funetion 89
{ive cm.xsid'cr] the d[S'lI.ib.lllian .Dflh! energy U among N oscillators of frequency PLANCK DISTRIBUTION FUNCTION
v, If U is ciewed as divisible without limit, then an infinite number of
dr:l'ubxu/zor;s ar;' p‘on'tblc. We cons;der hower ET—-‘mkl lL/{u: is ll]e ;ssenubal point The Planck distribution dcscnbcs)y'e spectrum of the electromagnetic radiation
oj{ e wihole calculation—U a5 made up of an entirely determine Jum er_o[’ in thermal equilibrium within a cavity. Approximately, it describes the emission
finite equal parts, and we make use of the nawral constant h = 6.55 x 10 . P
! . spectrum of the Sun or of metal heated by a welding torch. The Planck distribu-
erg-sec. This constant when multiplied by the common frequency v of the : he first licati ¢ h | shysics. Tt el
oscillators gives the element of energy e inergs . . .. tion waAs 4 e. |:s gpp ication of quantum f ervma' physics. 1erm::x geclro-
" magnetic radiation is often called black body radiation. The Planck distribution
M. Planc] also describes the thermal energy specirum of lattice vibrations in an clastic

solid.

The word “mode” characterizes a particular oscillation amplitude pattern in
the cavity or in the solid. We shall always refer to w = 2af as the frequency of
the radiation. The characteristic feature of the radiation probiem is that a mode
of oscillation of frequency w may be excited only in units of the quantum of
energy ho. The energy ¢, of the state with s quanta in the mode is

g = shw , (8]

where s is zero or any positive integer (Figure 4.1). We omit the zero point
energy Jho.

These energies are the same as the energies of a quantum harmonic oscillator
of frequency o, but there is a difference between the concepts. A harmonic

4e
b § = 3
Figure 4.1 States of an osciflator that
H 3 represents a mode of (requency w of an
s=2 1 ic field. When the oscillator is in
’ the orbital of energy show, the state is equivalent
2 to 5 photons in the mode.
s=1
s=0



90

Chapter 4: Thermal Radiation and Planck Distribution

4

“y
& = fiw, £ = fius,
@y Wy
€ = 2w, € = i,
Figure 4.2 Rep ion in one di of two electr

modes a and b, of frequeney o, and w,.
miagnatic field is suggested in 1}
occupancy of each mode,

The amplitade of the electro-
he figures for one photon and two photon

oscillator is a localized oscillator, whereas the electric and magnetic energy of
an electromagnetic cavity mode is dislr:ibulcd throughout the interior of the
cavity {Figure 42). For both problenis the energy cigenvalues arc integral
multiples of fiey, and this is the reason for the similarity in the thermal phy
the two problems. The language used to describe an excitation is different: s for
the oscillator is called the quantum number, and s for the quantized electro-
magnetic mode is called the number of photons in the mode.

We first calculate the thermal average of the number of photons in a mode,
when these photons are in thermal equilibrium with a reservoir atatemperature
t. The partition function (3.10) is the sum over the states {1y

sics of

st}

Z =y exp(~shwft). 2
=0

This sum is of the form TS withx = exp(—~he/7). Because x is smaller than 1,
the infinite series may be summed and has the value 1/(1 — x), whence

1
Z= 1 — exp(— hayfr) ) &

Planck Law and Stcfan-Boltzmann Law 9

The probability that the system is in the state 5

of energy shew is given by the
Boltzmann factor:

Pls) ; exp( ‘Zjhm/g

)
The thermal average value of s is
{s> = Y sP(s) = Z7 'Y sexp(—stwfr). (5)
=0
With y = he'r, the summation on the right-hand side has the form:
X " Lod Tex .
Sexp{—sy) = —:E“LW(“’\")
o 1 ~ exp(— \L
Ty S expl—y)) {1 = exp(= )
From (3} and (5) we find
sy = S0
U~ exp{—y)°
or
—
! | :
= 6)
exp{hoT) — 1 ;
——

This is the Planck distribution function for the thermal average number of
photons (Figure 4.3) in a single mode of frequency o. Equally, it is the average

number of phonons in the mode. The result applies to any kind of wave field
with energy in the form of (1),

PLANCK LAW AND STEFAN-BOLTZMANN LAW
The thermal average energy in the mode is

hew

€2 = (o = exp{hwft) ~ 1’ o



Figure 4.3  Planck distribution as a function
of the reduced temperatuee 15w, Here (s{w))
is the thermal average of the number of
photons in the mods of frequency . A plotof o
(slea)y + s also given, where § is the effective ; 4
2¢10 point occupancy of the mode; the dashed o )
line is the classical asymplote. Note that we 4

write

sy + § = 4 coth(lonf2). ’
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The high temperature Jimit t » ho is often called the classical limit. Here

exp(hw/t) may be approximated as 1 + hoft + <+ -, whence the classical
average energy is

& = ®

There is an infinite number of electromagnetic modes within any cavity. Each
mode n has its own frequency e,. For radiation confined within a perfectly

conducting cavity in the form of a cube of edge L, there is a set of modes of the
form

E, = Epsin i cos(nmx/L)sin(nmy/L) sin(nnz/L) , (9a)
E, = Eysinwtsin(nnx/LYcos(n,ry/L) sin(nnz/L) , {9b)
E, = E.qsinotsin(nmx/L)sin{nny/L) cos(n,nz/L). {9¢)

Here E,, E, and E, are the three electric field components, and E,q, E,p and
E.q are the corresponding amplitudes. The three components are not indepen-
dent, because the field must be divergence-free:

divE= %‘% 10)

Planck Law and Stcfan-Bolizmann Law

When we insert (9) into (10} and drop all common factors, we find the condition
Exoe + Eyony + Egon, = Eq-n = 0. [}

This states that the field vectors must be perpendicular to the vector n with
the components iy, n, and n,, so that the electromagnetic field in the cavity is a
transversely polarized field. The polarization direction is defined as the direction
of Eq.

For a given triplet n,, ny, n, we can choose two mutually perpendicular
polurization directions, so that there are two distinct modes [or cach iriptet
oty M

Ou substitution of (9) in the wave equation

with ¢ the velocity of light, we find

crdn? + 02+ on?) (13)

This determines the frequency  of the mode in terms of the triplet of integers
g, iy, 1. 1 we define

B (ka2 w2 14

then the frequencies are of the form
, = nxc/L. (15)

The total energy of the photons in the cavity is, from (7),

¥ explhw/t) =1

Us=Yy=Y ho, . (16)

The sum is over the triplet of integers #,, n,, n,. Positive integers alone will
doscribe all independent modes of the form (9). We replace the sum over n,

n,, n, by an integral over the volume clement dn, dir, dn, in the space of the mode
indices. That is, we set

z(“. = %j’:dmnz{lll(' =) an
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where the factor § = (3 arises be:
involved. We now multiply
two independent polarizat
sets of cavity modes). Thus

cause only the positive octant of the space is
the sum or integrat by a factor of 2 because there are
ions of the electromagnetic field {two independent

* hes,
U= L. BN
nj; dun Tyl

(mhe/L) j;w dnn® !

—_—
expllicunjLt) —~ 1 *

[

(18)

with (15) for w,. Standard practice is to transform the definite integral to one
over a dimensionless variable, We setx = nhenjLt, and (18) becomes

3
U = (3 he/L)(eLimhey® fn “ dx ‘_F‘: -+ (19)
X X -

The definite integral has the value 2*115; it is found in good standard tables
such as Dwight (cited in the gencral references). The encrgy per unit volume is

LU n*
Py T mpat 0
v

———— s
with the volume ¥ = 13, The result tHat the radian){ energy density is propor-
tional to the fourth power of the temperature is known as the Stefan-Boltzmann
law of radiation,

For many applications of this theory we decompose (20} into the spectra)
density of the radiation, The spectral density is defined as the energy per unit
volume per unit [requency range, and is denoted as u,. We can find u,, from
(18) rewritten in terms of o

R w*
UV = {dou, = —_ e 21
/ fuc)um e J dow SeheT T (2n

so that the spectral density is
-
h ®

= g 22
“ 7’ explhoyt) — 1 22

|

Planck Law and Stcfan-Boltzmans Law

0.8 f—f-f—f——] \ —
06—tk ||

os—ft L LN

[ 1 2 3 4 s 6 7 8
fia /7
Figure 4.4 Plot of x3/(e* ~ 1) with x = hew/t. This

function is involved in the Planck radiation law for the
speeteal density u,. The temperature of a black body may
be found from the frequency wg,, at which the radiant
energy density is a maximum, per unit frequency range.
This frequency is direcily proportional to the temperature,

This result is the Planck radiation law; it gives the frequency distribution of
thermal radiation (Figure 4.4). Quantum theory began here.

The entropy of the thermal photons can be found from the relation (3.34a)
atconstant volume: do = dU/r, whence from (20),

dn'y
= Toes

Thus the entropy is
o(7) = (4n2V/45)(x;hc)’. (23)

The constant of integration is zero, from (3.55) and the relation between Fand o.
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A process carricd out al constant photon entropy will have V1* = constant,

The measurement of high temperatures depends on the flux of radiant energy
from a small hole in the wall of a cavity maintained at the temperature of
interest. Such a hole is said to radiate as a black body-—which means that the
radiation emission is characteristic of a thermal equilibrium distribution. The
energy flux density Jy is defined as the rate of energy emission per unit arca.
The flux density is of the order of the energy contained in a column of unit
area and length equal to the velocity of light times the unit of time. Thus,

Ju = [eU@E)/V] x (geometrical factor). (24)

The geometrical factor is equal to §; the derivation s the subject of Problem 15.
The final result for the radiant energy flux is

ity et
CT T T @)
by use of (20) for the energy density U/V. The result is often written as

Jy = oy (26)

the Stefan-Boltzmann constant
ap = nky* 600 c? (26a)

has the value 5670 x 1078 W m™2 K™% or 5670 x 10™% erg cm ™2 s K~%,
(Here o5 is not the entropy.) A body that radiates at this rate is said to radiate
as a black body. A small hole in a cavity whose walls are in thermal equilibrium
at temperature T will radiate as a black body at the rate given in (26). The rate

is independent of the physical constitution of the walls of the cavity and de-
pends only on the temperature,

Emission and Absorption: Kirchhoff Law

The ability of a surface to emit radiation is proportional to the ability of the
surface to absorb radiation. We demonstrate this relation, first for a black body
or black surface and, second, for a surface with arbitrary properties. An object
is defined to be black in a given frequency range if all electromagnetic radiation
incident upon it in that range is absorbed. By this definition a hole in a cavity is
black if the hole is small enough that radiation incident through the hole will

i
i

Estimation of Surface Temperature

reflect enough times [rom the cavity walls to be absorbed in the cavity with
negligible loss back through the hole.

The radiant energy flux density Ji; from a black surface at temperature ¢ is
equal to the radiant energy flux density J,; emitted from a small hole in a cavity
at the same temperature. To prove this, let us close the hole with the black
surface, hereafter called the object. In thermal equitibsium the thermal average
cnergy flux from the black object 10 the interior of the cavity must be equal,
but opposite, to the thermal average energy flux from the cavity to the black
object.

We prove the following: If a non-black object at temperature 1 absorbs a
fraction a of the radiation incident upon it, the radiation flux emitted by the
object will be a times the radiation flux emitted by a black body at the same
temperature. Let a denote the absorptivity and e the emissivity, where the
cmissivity is defined so that the radiation flux cmitted by the object is e times
the flux emitted by a black body at the same tcn\;;‘craturc, ‘The object must emit
at 1he same rate as it absorbs if equilibritim is to be maintained. It follows that
a = e. This is the Kirchhoff law. For the special case of a persfect reflector, a is
zero, whence e is zero. A perfect reflector docs not radiate.

The arguments can be gencralized to apply to the radiation at any frequency,
a5 between w and @ + dew. We insert a filler between the object and the hole in
the black body. Let the filtcr reflect perfectly outside this frequency range, and
fet it transmit perfectly within this range. The flux cquality arguments now
apply to the transmitted spectral band, so that a(w) = e{w) for any surface
in thermal equitibrium.

Estimation of Surface Temperature

One way to estimate the surface temperature of a hot body such as a star is
from the frequency at which the maximum emission of radiant energy takes
place (see Figure 4.4). What this frequency is depends on whether we look at the
energy flux per unit frequency range or per unit wavelength range. For u,,, the
cnergy density per unit frequency range, the maximum is given from the Planck

law, Eq.(22),as
d x3
I\"(Cxpx - 1) =0.

3 — 3exp(~x) =

or
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This equation may be solved numerically. The root is

L

e 282, @n

as in Figure 4.4.

T3
Example : Cosmic black body background radiation, A major recent discovery s that the
universe accessible (o us s filled with radiation approximately like that of a black body
Al 29K, The existence of this radiati; E i

cosmologi:

an cirrly cpach when he universe was compascd prinuirily
A lemperature of ahout 4000 K, The plasma of elections
protons interacted sirongly with clectromagnetic radiation a1 il import
s that the matter and the black body rudiation were in thermal equilibeium, By the time
the universe had cooted 10 3000 K, the matter was prinarity in the form oftomic hydrogen,
This interacts with bluck body radiation only at the fiequencies of the hydrogen spectrat
fines. Most of the black body radiation energy thus was effectively decoupled from the
matter. Thereafter the radiation evolved with time in a very simple way: the photon gas
was cooled by expansion at constant entropy 1o a lemperature of 2.9 K. The photon gas wilj

n

occupancies determine the entropy. .

After the decoupling the evolution of matier into heavier atoms (which are organized
into galaxics, stars, and dust clouds) was more complicated than before decoupting,
Electromagnetic radiation, such as starlight, radiated by the matter since the decoupling
is superimposed on the cosmic black body radiation.

e

ELECTRICAL NOISE

As an important example of the Planck |
spontancous thermal fluctuations in volt
which are called noise, were discovered by J. B. Johnson and explained by
H. Nyquist* The characteristic property of Johnson noise is that the mean-
square noise voltage is. proportional ta the value of the resistance R, as shown
by Figure 4.6. We shall see that (¥*) is also ditectly proportional to the tem-

aw in one dimeasion, we consider the
8¢ across a resistor. These fluctuations,

* H. Nyquist, Phiys. Rev.32, 110 (1928): 4
tical physics, Wiley, 1939, Sections 2

deepar discassion i given by C. Kittel, Elementary staris.
0.

Electrical Noise

1071 B T T
I Microwave
T Interstellar CN
[ 1R measurements

1071~ I
i
g
g
g
51072 7
]
E
®
=
Z
» 107U !
&
'._'E
3
&

29K Black body—"] |
1014}~
107 : 100
0.01 0.1 1 10

Frequency (cm™%)

Figure 4.5 Experimental measurements of the dpectrum ol'_ the cosmic black
body radiation. Observations of the flux were made with microwave heterodyne
receivers at frequencies below the peak, were deduced from optical nieasurements
of the spectrum of interstellar CN molecules newr the peak, und were measured
with a bulloon-barne infrared spectrometer at frequencics above the peak.
Courtesy of P. L. Richards.

perature rand the bandwidih Af of the circuit. (This section presumesa knowl-
edge of clectromagnetic wave propagation at the intermediate level) )
i"hc Nyquist theorem gives a quantitative expression for the lhc-rmul noise
voltage generated by a resistor in thermal equilibrium. The theorem is ll-icrururc
needed in any estimate of the limiting signal-to-noise ratio of an experimental
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5 % 10712
4
u of
) v
E 3 /
& / i
N A @ Carbon filament |
= + Advance wire
v / «CuS0, in H,0
: vNaCl in H,0
! @K (10, in 1,07
/ 0 Ca(NO,), intl,0
| |

0 0.1 0.2 0.3 0.4 0.5

Resistance component, in MQ

Figure 4.6  Voitage squared versus resistance for various
Kinds of conductors, including clectrotyies. After
J.B. Johason.

apparatus. In the original form the Nyquist theorem states that the mean
square voltage across a resistor of resistance R in thermal cquilibrium at
temperature 1 is given by

(VY = 4RrAf, (28)

where Af is the frequency* bandwidth within which the voltage fluctuations
are measured; all frequency components outside the given range are ignored.
We show below that the thermal noise power per unit frequency range delivered
by a resistor to a matched load is t; the factor 4 enters where it does because in
the circuit of Figure 4.7, the power delivered to an arbitrary resistive load R’ is

R

1R 25
(DR = o )

which at match (R* = R) is (V2)/4R.

* In this section the word frequency refers to cycles per unit time, and not to radians per unit time.

Electrical Noise
Noise generator

S

R R'{termination
resistance)

Figure 4.7 Equivalent circuit for a resistance R with
a generator of thermal noise that delivers powerto a
foad R’. The current

14
] = it |
R+ R
50 that the mean power dissipated in the loud s
(YHR
P o= DR = AR
#o= DR &+ R

which is a maximum with respect to R when R = R.
I tiis condition the foxd is said 1o be matched to the
pawer supply. At match, # = (V2)/4R. The filter
enables us to limit the frequency bandwidth under
consideration; that is, the bandwidth to which the mean
square voltage fluctuation applies.

Consider as in Figure 4.8 a lossless transmission line of length L and charac-
teristic impedance Z, = R terminated at each end by a resistance R. Thus the
line is matched at each end, in the sense that all energy traveling down the line
will be absorbed without refiection in the appropriate resistance. The entire
circuit is maintained at temperature t.

A transmission line is essentially an elect gneticsy inonedi X
We follow the argument given above for the distribution of photons in thermal
equilibrium, but now in a space of one dimension instead of three dimensions.
The transmission line has two photon modes (one propagating in each direction)

of frequency 2nf, = 2nn/L, from {15), so that there are two modes in the fre-
quency range

& =L, (30)
where ¢’ is the propagation velocity on the line. Each mode has encrgy
he
exp(hw/t)

[€1)]
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account for the general trend of the observed results in many solids, with a
minimum of computation.

There are two important features of the ex perimental resulis: the heat capacity
of a nonmetallic solid varics as t* at low temperatures, and at high temperatures
the heat capacity is independent of the temperature. In metals there is an extra
contribution from the conduction clectrons, treated in Chapter 7.

Number of Phonon Modes

There is no limit to the number of possibl

¢ clectromagnetic modes in a cavity,
but the number of elastic modes in a finite

solid is bounded. If the solid consists
of N atoms, each with three degrees of freedom, the total number of modes is
3N. An clastic wave has three possible polarizations, two transverse and one
fongitudinal, in contrast to the two possible polarizations of an electromagnetic
wave. In a transverse elastic wave the displaccment of the atoms is perpendicular
to the propagation direction of the wave; in a longitudinal wave the displace-
ment is parallel to the propagation direction. The sum of a quantity over all
modes may be written as, including the factor 3,

Sty= %J‘-imlz dn(-+), 66)

by extension of (17). Herc n is defined in terms of the triplet of integers n,, 1y, Ny

exactly as for photons. We want to find Neae SUCh that the total number of
clastic modes is equal to 3N

2 fo dmntdn = 3N, 37

In the photon problem there was no corresponding limitation on the total

number of modes. It is customary to write np, after Debye, for n,,. Then (37)
becomes

drng® = 3N; = (6N/m)', (38)

The thermal energy of the phonons is, from (16),

.
U= =Y oo, = Yt (39)

{

Number of Phonon Modes

or, by (36) and (38),

T (40}
By analogy with the evaluation of {19), with the velocity of sound v written in
place of the velocity of light ¢,
N < (o x3
U = (3n2huf2L)(cLinh) fo T @1

where x = rhrn/Lt. For L3 we write the volume V, Here, with (38), the upper
limit of intcgration is

Xp = mheny/Le = h(6rN, 1)1, {42)
usually written as
Np = 0/T = kOjz (43}
where 0 is called the Debye temperature:
0 = (hofkg)(6n> NjV) 3. (44}
The result (41) for the energy is of special interest at low temperatures such
that T « 0. Here the limit x, on the integral is much larger than unity, and x,

may be replaced by infinity. We note from Figure 4.4 that there is little contri-
bution to the integrand out beyond x = 10. For the definite integral we have

-

3
@ X k3
PG I 45
fodxexpx—l 5 “3)
as carlier. Thus the energy in the low temperature limit is

3N 3t NE, T

u) = S(ks0) T s (46)

proportional to T The heat capacity is, for © « k0 or T <« g,

¢U 122°N [« \?
A A . 47:
R (az), 5 (k,,o) ()
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2223
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!
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Heat capacity, in mJ mol~? K1

|

0 1.33 2.66 3.99 532 6.65 7.98
T3, in K3

Figure 410 Low temperature heat capacity of solid argon, plotted against
T* to show the excellent agreement with the Debye T2 faw. The value of ¢
from these data is 92 K. Courtesy of L. Finegold and N. E. Phillips,

In conventional units,

SNE /TS
- lanM,. (_}) (47b)

This result is known as the Debye 72 law.* Experimental results for argon are
plotied in Figure 4.10. Representative experimental values of the Debye tem-
perature are given in Table 4.1, The calculated variation of Cy versus T/0 is
plotted in Figure 411, The high temperature limit T 0 is the subject of
Problem 11. Several related thermodynamic functions for a Debye solid are
given in Tabie 4.2 and are plotted in Figure 4.12.

* P Debye, Annatinder Physik 39, 789(1912); M. Born and T. v. Kirmdn, Physikalische Zeitschrift
13,297 (1912); 14,65 (1913), .
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25 -‘ T
L /T
/
= 20
L 4
i
G
Figure 4.11  Heat capacity €, of a solid, 3 15
according to the Debye approximation. The -
vertical scale is in J mol™" K%, The £
horizontal scale is the temperature 2
normalized to the Debye e 0. The g 10
region of the T3 law is below 0.10. The 5
asymplotic vatue at high values of 7,0 is %
24943 Jmol ™' K™%, 2 s
0,
o 0.2 0.4 0.6 0.8 Lo 12
T
v
Table 4.2 Values of Cy, $, U, and F on the Debye theory. in units ] mol ™! K ™4
T Cy S = kyo u,0 Fjo
0 24943 w L
0.1 2493 90.70 240.2 ~666.8
92 2489 7343 1156 -~251
0.3 2483 6334 M2 ~137
04 2475 56.21 535 ~87
05 24.63 50.70 4116 ~60.3
0.6 24.50 46.22 329 —44.1
0.7 2434 4246 271 —335
08 24.16 39.22 28 ~262
09 2396 3638 19.5 -209
1.0 2374 3387 16.82 -17.05
15 2235 2449 9.1 -723
2 20.59 18.30 55 -364
3 16.53 1071 236 -121
4 12.55 6.51 113 ~0.49
5 9.20 4.08 0.58 -023
6 623 264 0323 -0.118
7 476 177 0.187 ~0.066
8 345 122 0114 ~0.039
9 253 0.874 0073 —0.025
10 1.891 0.643 0048 —0016
5 0.576 0.192 0.0096 -0.0032

J mol=1K~?

Sl

-30

—40
0 0.5 Lo

=N

Figure 412 Encrgy U and free energy F = U — g ofa

solid, according to the Debye theory. The Debye temperature
of the solid is 8.

SUMMARY

1. The Planck distribution function is

& :

T epi/) ~ 1

Summary

for the thermal average number of photons in a cavity mode of frequency s

2. The Stefan-Boltzmann law is

for the radiant energy density in a cavity at temperature 1.
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3. The Planck radiation law is

_ - h ?
to = 223 explhoft) — 1

for the radiation energy per unit volume per unit range of frequency.

&

The flux density of radiant energy is Jy=0,T*, where g, is the Stefan-
Boltzmann constant n*ky*/60h3¢2.

w

. The Debye low temperature limit of the heat capacity of a dielectric solid
is, in conventional unils,

122 Nky (T\?
Cy = —5—35)

where the Debye temperature

8 = (hefk, 6REN/V 3,

PROBLEMS

1. Number of thermal photons. Show that the number of photons 3 (s> in
cquilibrium at temperature 7 in a cavity of volume V is

N = 2.404n" 2V (z/hc). (48)

From (23) the entropy is ¢ = (4n*V/45)(z/hc)®, whence o/N = 3.602. Tt is
believed that the total number of photons in the universe is 109 larger than the
total number of nucleons (protons, neutrons). Because both entropics are of
the order of the respective number of particles (see Eq. 3.76), the photons
provide the dominant contribution to the entropy of the universe, although
the particles dominaic ¢ total energy. We believe that xhp entropy of xh'e
pliotons is essentially constant, so that the entropy of the universe is approxi-
mately constant with time,

2. Surface temperature of the Sun. The value of the total radiunt cuergy flux
density at the Easth from the Sun normal to the incident rays is ca]l:x_i the solar
constant of the Earth. The observed value integrated over all emission wave-
tengihs and referred to the mean Earth-Sun distance is:

solar constant = 0.136Js *em ™2 49)

Problems

(a) Show that the total rate of energy generation of the Sun is 4 x 10% J5-1,
(b) From this result and _the Stefan-Boltzmann constant g =567 x
10712 557t cm™2 K%, show that the effective temperature of the surface of the
Sun treated as a black body is T & 6000 K. Take the distance of the Earth from
the Sunas 1.5 x 10!* cm and the radius of the Sunas7 x 10*°cm,

3. Average temperature of the interior of the Sun. (2}
sional argument or otherwise the order of magnitude of the gravitational self-
cnergy of the Sun, with Mg = 2 x 103 gand Ro = 7 x 10'° cm. The gravi-
tational constant Gis 6.6 x 10~2 dyne cm? g =2 The self-energy will be negative
referred to atoms at rest at infinite separation. (b} Assume that the total thermal
kinetic energy of the atoms in the Sun is equal to ~} times the gravilational
encrgy. This is the result of the virial theorem of mechanics. Estimate the average
temperature of the Sun. Take the number of particles as | x 107, This estimate
gives somewhat too low a temperature, because the density of the Sun is far
from uniform. “The range in central temperature for different stars, excluding
only those composed of degenerate matter for which the law of perfect gases
does not hold {white dwarfs) and those which have excessively small average
densities (giants and supergiants), is between 1.5 and 3.0 x 107 degrees.”
(O. Struve, B. Lynds, and H. Pillans, Elementary astronomy, Oxford, 1959.)

Estimate by a dimen-

4. Ageofthe Sun. Suppose 4 x 1075~ is the total rate at which the Sun
radiates energy at the present time, (a) Find the total energy of the Sun available
for radiation, on the rough assumptions that the energy source is the conversion
of hydrogen (atomic weight 1.0078) to helium {atomic weight 4.0026) and that
the reaction stops when 10 percent of the original hydrogen has been converted
to helium. Use the Einstein relation E = (AAN)e®. (b) Use (a) to estimate the
life expectancy of the Sun. It is believed that the age of the universe is about
10 x 10° years. (A good discussion is given in the books by Pecbles and by
Weinberg, cited in the general references.)

S. Sutface temperature of the Earth, Calculate the temperature of the surface
of the Earth on the assumption that as a black body in thermal equilibriom it
recadiates as much thermal radiation as it receives from the Sun. Assume also
that the surface of the Earth s at a constant temperature over the day-night

ceycle. Use T = S800K; Ry = 7 x 10*%em; and the Earth-Sun distanee of
L5 % 10" e

6. Pressure of thermal vadiation. Show for a photon gas that:

(@) P = —@URY), = =Y spidodv) (50)
i
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where 5, is the number of phiotons in the mode j;
) dofdV = —a,f3V; (51
() p=Upv. (52

Thus the radiation pressure is equal to 4 x (energy density).

(d) Compare the pressure of thermal radiation with the kinetic pressure of a
gas of H atoms at a concentration of I moleem™? characteristic of the Sun.
AL what temperature (roughly) are the two pressures equal? The average
temperature of the Sun is believed (o be near 2 x 107 K. The concentration is
highly nonuniform and rises to near 100molecm ™ at the center, where the
Kinetic pressure is considerably higher than the radiation pressure,

7. Free encrgy of a photon gas. (a) Show that the partition function of a
photon gas is given by

Z =TIl = exp{~hw,)]", (53)

where the product is over the modes n. (b) The Helmholtz free enargy is found
directly from (33) as

F =13 loglt — exp(—how,/d)}. (54)
Transform the sum to an integral; integrate by parts to find
F = —n?Ve*/4shicd. (55)

8. Heat shiclds. A black (nonrefiective) plane at temperature T, is paraiiel
to a black plane at temperature T,. The net energy flux density in vacuum be-
tween the two planesis Jy = 65(T,* — T)*), where g is the Stefan-Boltzmann
constant used in (26). A third black plane is inserted between the other two and
is allowed to come to a steady state temperature T,,. Find T,, in terms of T,
and T;, and show that the net energy flux density is cut in half because of the
presence of this plane. This is the principle of the heat shield and is widely
used to reduce radiant heat transfer. Comment: The result for N independent
heat shields floating in temperature between the planes T, and T is that the
netenergy flux density is Jy = a5(T,* — TN + 1).

9. Photon gas in one dimension. Consider a transmission line of length LAon
which electromagnetic waves satisfy the one-dimensional wave equation
v?G2Efex? = *E/ér?, where E is an electric field component. Find the heat
capacity of the photons on the line, when in thermal equilibriem at temperature

Problems

t. The cnumeration of modes proceeds in the usual way for one dimeusion:

take the solutions as stunding waves with zero amplitude at cach end of the
tine.

10. Heat capacity of intergalactic space. Iutergatactic space is believed to be
occupied by hydrogen atoms in a concentration = 1 atomm™>, The space is
also occupied by thermal radiation at 29 K, from the Primitive Firebail. Show
that the ratio of the heat capacity of matter to that of radiation is ~ 10-2,

11. Heat capacity of solids in high temperature limit.  Show that in the limit
T >» 0 the heat capacity of a solid goes towards the Hmit Cy — 3Nky, in
conventional units. To obtain higher accuracy when T is only moderately

larger than 0, the heat capacity can be expanded as a power series in 1/T, of
the form

Cy = 3Nkp x [1' - Zh,,,/T“:I. (56)

Determine the first norvanishing term in the sum. Check your resultby inserting
T = 0 and comparing with Table 4.2.

12. Heat capacity of photons and phonons. Consider a diclectric solid with a
Debye temperature equal to 100K and with 10*? atomsem™ 3. Estimate the
temperature at which the photon contribution to the heat capacity would be
equal to the phonon contribution evaluated at 1 K,

3. Energy fluctuations in a solid at low temperatures. Consider a solid of N
atoms in the temperature region in which the Debye T law is valid. The solid
is in thermal contact with a heat reservoir, Use the results on energy fluctuations

from Chapter 3 to show that the root mean square fractional energy fluctuation
F Is given by

3
TP = (e - (DD = %‘;Z(%) . (57}

Suppose that T = 1072 K; 0 = 200K; and N = 10'® for a particie 0.01 cm on

aside; then & ~ 0.02. At 1075 K the fractional fluctuation in energy is of the
order of unity for a dielectric particle of volume 1 cm?.

14. Heat capacity of liquid *He at low temperatures. The velocity of longitu-
dinal sound waves in liquid *He at temperatures below 0.6 K is 2.383 x 10*cm
s7'. There are no transverse sound waves in the liquid. The density is
0.145gem ™2, (a) Caleulate the Debyc temperature. (b) Calculate the heat
capacity per gram on the Debye theory and compare with the experimental
value Cy = 00204 x T%inJg™* K=, The T* dependence of the experimental
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value suggests that phonons are the most important excitations in liquid *He
below 0.6 K. Note that the experimental value has been expressed per gram of
liquid. The experiments are due 10 J. Wicbes, C. G. Niels-Hakkenberg, and
H.C. Kramers, Physica 32,625 £1957).

15. Angular distribution of radiant energy flux, (a) Show that the spectral
density of the radiant cuergy flux that arrives in the solid angle dQ is
€, €08 0+ dQ/dn, where 0 is the angle the normal to the unit area makes with
the incident ray, and u,, is the energy density per unit frequency range, {b) Show
that the sum of this quantity over all incident rays is Yeu,.

16. Image of a radiant object. Let a lens image the hole in a cavity of area
Ay on a black object of area As. Use an equilibrium argument to relate the

product 4,0, 10 Ag€ Where Q,; and Qg are the solid angles subtended by the .

leas as viewed from the hole and from the object. This general property of
focusing systems is casily derived from geometrical optics. It is also truc when
diffraction is important, Make the approximation that all rays are ncarly
parallel (all axial angles small).

17. Entropy and occupancy.  We argued in this chapter that the entropy of the
cosmic black body radiation has not changed with time because the number
of photons in each mode has not changed with time, aithough the frequency of
each mode has decreased as the wavelength has increased with the expansion
of the universe, Establish the implied connection between entropy and oc-
cupancy of the modes, by showing that for one mode of lrequency w the entropy
is a function of the photon occupancy sy only:

7= s 1) l0g¢s + 1) ~ (s)log(s. (59)
Tt is convenient to start from the partition function.

18. Isentropic expansion of photon gas. Consider the gas of photons of the
thermal equilibrium radiation in a cube of volume ¥ at temperature . Lot the
cavily volume increasc; the radiation pressure performs work during the expan-
sion, and the temperature of the radiation will drop. From the result for the
cntropy we know that 1V is constant in such an expansion. {a) Assume that
the temperature of the cosmic black-body radiation was decoupled from the
temperature of the matter when both were at 3000 K. What was the radius of
the universe at that time, compared to now? If the radius has increased lincarly
with time, at what fraction of the present age of the universe did the decoupling
take place? (b} Show thut the work done by the photons during the expansion
is

W LB — 1)),

The subscripts § and f refer to the initial and final siates,

Problems

19, Reflective heat shield ang Kirehhoffs luw.  Consider a plane sheet of mate-
rial of absorptivity a, cmissivity e, and reflectivity ¢ = 1 — a. Let the sheet be
suspended between and parallel with two black sheets maintained at tempera-
tures 7, and 7,. Show that the ncet flux density of thermal radiation between the
black sheets is (1 — 1) times the flux density when the intermediate sheet js
also black as in Problem 8, which means with ¢ = e = 1;r = 0. Liquid helium
dewars are often insulated by many, perhaps 100, layers of an aluminized
Mylar film called Superinsulation.

SUPPLEMENT: GREENHOUSE EFFECT

The Greenhouse Effect describes the warming of the surface of the Earth
caused by the interposition of an infrared absorbent fayer of water, as vapor
and in clouds, and of carbon dioxide in the atmosphere between the Sun and
the Earth. The water may contribute as much 90 percent of the warming
effect.

Absent such a layer, the temperature of the surface of the Eanth is
determined primarily by the requirement of energy balance between the flux
of solar radiation incident on the Earth and the flux of reradiation from the
ture of the Earth, as in (4.26). This energy balance is the subject of Problem
4.5 and leads to the result Tp= (Rg/2Dg)*AT, where T is the temperature
of the Earth and T is that of the Sun; here Ry is the radius of the Sunand Dy,
is the Sun-Earth distance,

The result of that problem is Tg = 280 K, assuming T = 5800 K. The
Sun is much hotter than the Earth, but the geometry (the small solid angle
subtended by the Sun) reduces the solar flux density incident at the Eacth bya
factor of roughly (1/20)%,

We assume as an example that the atmosphere is a perfect greenhouse,
defined as an absorbent layer that transmits all of the visible radiation that
falls on it from the Sun, but absorbs and re-emits all the radiation {which lies
in the infrared), from the surface of the Earth. We may idealize the problem
by neglecting the absorption by the layer of the infrared portion of the
incident solar radiation, because the solar spectrum lics almost eatirely at
higher frequencies, as evident from Figure 4.4, The tayer will emit enerey flux
I up and 1, down; the upward flux will balance the soiar Jux I5, su ihat
I = Is The net downward flux will be the sum of the solar flux /g and the
flux 7, down from the layer. The latter increases the net thermal flux incident
at the surface of the Earth. Thus

Tee=Is+ I, =21, (59)

where I, is the thermal flux from the Earth in the presence of the perfect
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greenhouse effect. Because the thermal flux varies as T+, the new temperature
of the surface of the Farth is

= 2T = (1.19) 280 K = 333K, (60)

so that the greenhouse warming of the Earth is 333 K — 280 K = 53 K for
this extreme example.*

* For detailed discussions see Climate change and Climate change 1992, Cambridge U.P,, 1990
and [992: J. T Houghton et al, editors.
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