Inicoduction

This particular result is known as the Fermi-Dirac distribution function and
is used particularly in the theory of metals to describe the electron gas at low
temperature and high concentration (Chapter 7).

The classical distribution function used in the derivation of the ideal gas law
is just the limit of (10) when the occupancy P(1,e) is much less than 1:

P(1,8) = exp(n ~ e)ft. (n

The properiies of the ideal gas are developed from this result in Chapter 6.

The Helmholtz free energy F = U ~ 1o appears as an important computa-
tional function, because the relation (§F/ét)yy = —o offers the easicst method
for finding the entropy, once we have found out how to calculate F from the
cnergy cigenvalues (Chapter 3). Other powerful tools for the calculution of
thermodynamic functions are developed in the text. Most of the remainder of
the text concerns applications that are useful in their own right and that illumi-
nate the meaning and wtility of the principal thermodynamic functions.

Thermal physics connects the world of everyday objects, of astronomicul
objects, and of chemicul und biologicad processes with the world of molecutar,
atomic, und electronic systems. It unites the two parts of our world, the micro-
scopic and the macroscopic.
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Chapter I: States of a Model System

But although, as a marter

; of history, statistical mechanics owes irs origin to
investigations in thermody

'Hamics, it seems eminently worthy of an independent
development, both on account of the elegance and simplicity of its principles,
and because it yields new resulrs and places old truths in @ new light in
departments quite outside of thermodynamics.

JW. Gipbs

A theory is the more bnpressive the greater the simplicity of its premises, the
more different kinds of things it relates, and the more extended its area of
applicability. Therefore the deep impression that classical thermodynamics made
“pon me. It is the only physical theory of universal content which I am convinced
will never be overthroy m, within the framework of applicability of its basic
concepts.

A. Einstein

Chapter 1: States of a Modcl System

Thermal physics is the fruit of the union of statistical and mechanical principles.
Mecchanics tells us the meaning of work ; thermal physics tells us the meaning of
heat. There are three new quantities in thermal physics that do not appear in
ordinary mechanics: entropy, temperature, and free energy. We shall motivate
their definitions in the fist three chapters and deduce their eonsequences
thereafter,

Our point of departure for the development of thermat physics is the concept
of the stationary quantum states of a system of particles. When we can count
the quantum states accessible to 2 system, we know the entropy of the system,
for the entropy is defined as the logarithm of the number of states (Chapter 2).
The dependence of the entropy on the energy of the system defines the tempera-
ture. From the entropy, the temperature, and the free energy we find the pressure,
the chemical potential, and all other thermodynamic properties of the system.

Forasystemina stationary quantum state, all observable physical properties
such as the energy and the number of particles are independent of the time. For
brevity we usually omit the word stationary; the quantum states that we treat
are stationary except when we discuss transport processes in Chapters 14-15.
The systems we discuss may be composed of a single particle or, more ofien,
of many particles. The theory is developed to handle general systems of inter-
acting particles, but powerful simplifications can be made in special problems
for which the interactions may be neglected.

Each quantum state has a definite energy. States with identical energies arc
said to belong to the same energy level. The multiplicity or degeneracy of an
energy level is the number of quantum states with very nearly the same encrgy.
It s the number of quantum states that is important in thermal physics, not
the number of erergy levels. We shall frequently deal with sums over all quantum
states. Two states at the same encrgy must always bs counted as two statcs,
not as one level.

Letus look at the quantuim states apd vaergy fevels alseveral atomic syatems,
The simplest is hydrogen, with one clectron and oie proton. The law-lying
energy fevels of hydrogen are shown in Figure 1.1, The zero of energy in the
figure is taken at the state of lowest encrgy. The number of quantum states
befonging to the same energy level is in parentheses. In the figure we overlook
that the proton has z spin of } and has two independent orientations, paraliel




Chapter 1: States of @ Model System

~- L
14 L

T
oy
. S,
32)
L ———s
12 s o ey
————(8)
10~ ST L S ————y
I
(6)
Q)
4= e {10) Cind
T
m——— (12)
m——— (2}
Elnd 3
4 L -
2 ——— 2
2 - '
ol () 0 @ 0 5
Hydrogen Lithism Boron

Figure 1.1 Low-lying energy levels of atomic hydrogen, lithium, and boron. The
energies are given in electron volts, with 1 eV = 1602 x 1012 erg. The numbers in
parentheses give the number of quantum states having the same cnergy, with no account
takea of the spin of the nucleus. The zero of energy in the figure is taken for convenience
at the lowest energy state of each atom,

or antiparallel to the direction ofan arbitrary external axis, such as the direction
of a magnetic field. To take account of the two orientations we should double
the values of the multiplicitics shown for atomic hydrogen,

An atom of lithium has three electrons which move about the nucleus. Each
electron interacts with the nucleus, and each electron also interacts with all the

Chaprer 12 States af @ Model System
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Figure 1.2 Encrgy levels, multiplicities, and quantum numbers
ny, 1, 1, of a particle confined to a cube,

other electrons. The energies of the levels of lithinm shown in the figure are the
collective energics of the entire system. The energy levels shown for boron, which
has five electrons, are also the energies of the entire system.

The energy ofa system is the total energy of all particles, kinetic plus potential,
with account taken of interactions between particles. A quantum state of the
system is a state of all particles. Quantum states of a one-particle system are
called orbitals. The low-lying energy levels of a single particle of mass M con-
fined to a cube of side [ are shown in Figure 1.2. We shall find in Chapter 3
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that an orbital of a free particle can be characterized by three

positive integral
quantum numbers »_, My, 0. The energy js .

2 2
£ = zifﬁ (%) (n? + 12 4 02 1)

The multiplicities of (he levels are indica

ted in the figure. The three orbitals
with (01, .0

sequal 1o (4,1,1), (1,4,1), and (1,1 4)allhave n,? + nt+nt =g,
the corresponding energy level has the multiplicity 3.

To describe the statistical properties of a system of N'
to know the set of values ofthe energy &(N), where ¢ is the energy of the quantum
state softhe N particle system. Indices such as s may be assigned to the quantum
states in any convenient arbitrary way, but two different states should not be
assigned the same index.

It is a good idea 1o start our program by studying the properties of simple
model systems for which the energies £, () cun be calcutated exactly, We choose
as a model a simpic binary system because the general statistical properties
found for the model system are believed to apply equally well to any realistic
0 predictions that always agree with

physical system. This assumption leads 1
perties are of concern will become clear

particles, it is essential

experiment. What general statisticaf pro
as we go along,

BINARY MODEL SYSTEMS

The binary model system is illustrated in Figure 1.3, We assume there ate N
separate and distinct sites fixed in space, shown for convenience on a line.
Altached to each site is an elementary magnet that €an point only up or down,
corresponding to magnetic moments Em. To understand the system means to
count the states. This Tequires no knowledge of magnetism: an element of the
system can be any site capable of two states, labeled as yes or no, red or blue,
oceupied or unoccupicd, zcro or one, plus one or minus one. The sites are
numbered, and sites with different numbers are supposed not to overlap in
physical space. You might even think of the sites as numbered parking spatces in
acar parking lot, as in Figure 1.4, Each parking space has two states, vacant or
oceupied by one car.

Whatever the nature of our objects, we may designate the two stutes by
arrows that can only point straight up or straight down. If the magnet points

up, we say that the magnetic moment is 4, If the magnet points down, the
MAagnetic momeny js — AL

Binary Model Systems

3 4 5 6 7 8 9 10
Number of the site

Figure 1.3 Model system composed of 10 elementary
magnets at fixed sites on a line, cach having magnetic
moment £m. The numbers shown are attached 1o the sites;
each site has its own magnet. We assume there are no
interactions among the magnets and there is no externat
magnetic field. Each magnetic moment may be oriented in
two ways, up or down, so that there are 21¢ distinct

arr of the 10 magneti shown in the

figure. If the Arrangements arc selected in a random process,

the probability of finding the pacticular arrangement shown
is 17210,

Figure 1.4 State of 4 parking lot with 10 numbered parkiag
spaces. The ©°5 denote spaces occupied by a car; the Qs
denote vacant spaces, This particular state is equivalent to that
shown in Figure 1.3,

Now consider N different sites, cach of which bears a moment that may
assume the values +m. Each moment may be oriented in two ways with a
probability independent of the orientation of all other moments. The total
number of arrangements of the N moments is 2 x 2 x 2 x
state of the systen i specified by giving the oricntation of the moment on eacly
site; there are 2¥ states, We may use the following simple notation for a single
state of the system of N sites:

i, @
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Figure 15 The four different states of a

system of two clements numbered 1 and 2,

where each element can have two conditions.

The element is a magnet which can be in

condition | or condition }. i o2 i

g T——

[y

The sites themselves are assumed 10 be arranged in a definite order. We may
numberthem in sequence from left to right, as we did in Figure 1.3. According
to this convention the state (2) also can be written as

ilalslalstelatalotio . ®

Both sets of symbols (2) and (3) denote the same state of the system, the state
in which the magnetic moment on site 1 is -+ m; on site 2, the moment is +m;
onsite 3, the moment is —m; and so forth.

It is not hard to convince yourse!f that every distinct state of the system is
contained in a symbolic product of N factors:

M+ 1002 + LS + 1) (e + L) @)

The multiplication rule is defined by

Mo+ L)+ L) = Tta + Tl + Lt + Ll )

The function (4) on multiplication generates a sum of 2% terms, one for each of
the 2" possible states. Each term is a product of N individual magnetic moment
symbols, with one symbol for each elementary magnet on the line. Each term
denotes an independent state of the system and is a simple product of the form
TiTabs - 1y, for example.

For a system of two clementary magnets, we multiply (T, + |,)by ({; + I
to obtain the four possible states of Figure 1.5:

Tt LI+l =Tl + Tl + Ll + Lils (6)

The sum s not a state but is a way of listing the four possible states of the system.
The product on the left-hand side of the equation is called a generating function:
it generates the states of the system. S .

Binary Aodel Systems
The generating function for the states of a system of three magnets is

T+ 12 + 1) + L)

This expression on multiplication generates 2* = 8 different states:

Three magnets up: hilals
Two magnets up: Tilals Tilals Lilatls

Onemagnetup: 1,050y LiTaly Ll
WNone up: Llalse

The total magnetic moment of our_r'podcl system of N magnets each of
magnetic moment m will be denoted by Af, which we wiil relate to the energy
in a magnetic field. The value of M varies from Nm to — Nm. The set of possible
values is given by

M= Nm, (N—=2m (N~4m (N~6m -+, —Nm (7)

The set of possible values of M is obtained if we start with the state for which all
magnets are up (M = Nm)and reverse one at atime. We may reverse N magnets
to obtain the ultimate state for which ail magnets are down (A = - Nm).
There are N + 1 possible values of the total moment, whereas there are 2%
states. When N > 1, we have 2% » N + 1. There are many more states than
values of the total moment. If N = 10, there are 2'° = 1024 states distributed
among 11 different values of the total magnetic moment. For large N many
different states of the system may have the same value of the total moment M.
We will calculate in the next section how many states have a given value of M.
Only one state of a system has the moment M = Ni; that state is

-t ®)
Theee are N ways to form a state with onc magnet down:

[SARRRER (O]
is onc such state; another is

Tt ' {10)
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and the other states with one magnet down are for

med from (8) by reversing
any single magnet. The states (9) and (10) have tot

al moment M = Nuy — 2,

Enumeration of States and the Multiplicity Function

We use the word spin as a shorthand for clementary magnet. It js convenient to
assume that N is an even number. We need 2 mathematical expression for the
number of states with N, = N + s magnets up and Ny = N — 5 magnets
down, where sis an integer. When we turn one magnet from the up to the down
orientation, 4N + s gocs to IN+s-land N~ goes to N — s 4 1.
The difference (number up —~ number down) changes from 2s to 25 — 2. The
difference

Ny = N, =2 1y
is called the spinexcess, The spin excess of the 4 states in Figure 1.5is2,0,0, 2,
from left to right. The factor of 2in {11) appears to be a nuisance at this stage,
but it will prove to be convenient.

The product in (4) may be written symbolically as

IS
We may drop the site labels (the suBscripts) from (4) when we are interested
only in how many of the magaels in a state are up or down, and not in which

particular sites have magnets up or down. [t we drop the labels and neglect
the order in which the Arrows appear in a given product, then (5) becomes

T+ D=1t +21 + 1y

{urther,

D7 =107+ 3070+ 3100 + 11y

We find (1 + |)¥ for arbitrary N by the binomial expansion

Y = Y N Ny DAVt g g gy

Nt

(12)

Enumeration of States and the Multiplicity Function

We may write the exponents of xand y in a slightly different, but equivalent,
form by replacing £ with IN — s

(x4 g = § A AN e 3
ST BN E g gN — et T

With this result the symbolic expression (1 + ])* becomes

N o N1 {N+3 iN-3
0+ it= ng + AN ~ 3)!’ b 4

The coeficient of the term in 47+ 1% is the number of states having
Ny =IN + s magnets up and Ny = 1N — s magnets down. This class of

states has spin excess N, ~ Ny = 25 and net magnetic moment 2sm. Let us
denote the number of states in this class by g(N,s), for a system of N magnets:

—
nﬂ}\Q
OV Nt Nt )
% T T R B e 5
2 s R S AEA] 13
ANy
Thus (14) is written as
w
T+ DY = ¥ gV s pav-e (16)
5= -gN

We shalt call g(N,s) the multiplicity function; it is the number of states having
the same value of s. The reason for our definition emerges when a magnetic
field is applied to the spin system:ina magnetic field, states of different values of
s have different values of the energy, so that our g is equal to the multiplicity
of an energy level in a magnetic field. Until we introduce a magnetic field, all
states of the model system have the same energy, which may be taken as zero.
Note from (16) that the total number of states is given by

=4y

gINS) = (1 + 1)¥ = 2%, (1]
S

Examples related to g(N,s) for N = 10 are given in Figures 1.6 and 1.7. For a
coin, “heads” could stand for “magnet up” and “tails” could stand for “magnet
down.”
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[———
210 210
—
Figure 1.6 Number of distinct arrangements
of 5 4+ sspinsupand 5 — s spins down,
Values of y(N,s) are for N = 10, where 25 is
the spin excess N T N1 The total number of
states is 120 120
, [
2= F gllog
PR
The valucs of the g's are taken from a table of
the binomial coefficients.
45 45
10, 0
| 1
|=$1-4T02463810
~10 -6 -2

Spin excess 25

Binary Alloy System

To iltustrate that the exact nature of the two States on each site is irrelevant to
the result, we consider an alternate system-—an alloy crystal with N distinct
sites, numbered from 1 through 12 in Figure 1.8. Each site is occupied by either
an atom of chemical species A or 2n atom of chemical species B, with no provi-
sion for vacant sites. In brass, A could b

< copper and B zinc. In analogy to (3),
a single state of the alloy system can be written as

AIBZB§A{BSA6B7BSB9AMAIlAll . ~ (18)

w
=3

Binary Allay System 17

3
S

-

3

Number of times in 100 throws
a given number of heads occurred

ol

012345678910

Number of heads

Figure L7 An experiment was done in which 10 pennies
were throwa 100 times. The number of heads in each

throw was recorded.

oNoNoNo
© 000
oNoNoNG

Figure 1.8 A binary alioy system of two
chemical components A and B, whose atoms
occupy distinet numbered sites.
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Every distinct state of a binary alloy system on N sites is contained in the
symbolic product of N factors:

(Ar 4 BuA; + Bo)(A; + By~ (Ay +B,) , (19)

in analogy to (4). The uverage composition of a bina
ventionally by the chemical formula Ay -,B,, which means that out of a total
of N atoms, the number of A atoms is N, = (1 —x)N and the number of B
atoms is Ny = xiV. Here x lies between 0 and 1.

The symbolic expression

ry alloy is specified con-

I L LIS 0)
AT AT :

is analogous to the result (12). The coefficient of the term in A¥~' B’
number g(N,1) of possible arrangements or states of N
atoms B on N sites:

gives the
— { atoms A and 1

Nt Nt
oD = T ALK @n

which is identical to the result (15) for the spin model system, except for notation,

Sharpaess of the Multiplicity Function

We know from common experience that systems held at constant temperature
usually have well-defined properties; this stability of physical properties is a
major prediction of thermal physics. The stability follows as a consequence of
the exceedingly sharp peak in the multiplicity function and of the steep variation
of that function away from the peak. We can show explicitly that for a very
farge system, the function g(N,s) defined by (15) is peaked very sharply about
the value s = 0. We look for an approximation that allows us to examine the
form of g(N,s) versus s when N » 1 and Is] « N. We cannot fook up these
values in tables: common tables of factorials do not go above N = 100, and we
may be interested in N x 1079, of the order of the number of atoms in a solid
specimen big enough to be seen and felt. An approximation is clearly nceded,
and a good one is available,

It is convenient to work with logg. Except where otherwise specified, all
logarithins are understood to be log basc e, written here as log. The international
standard usage is In for log basc ¢, but it is clearer to write log when there i§ no
ambiguity whatever. When you confront a very, very large number such as

Sharpness of the Multiplicity Function

2%, where N = 10%, it is a simplification to look at the fogarithm of the number.

We take the logarithm of both sides of (15) to obtain
logg{N.s) = log Nt — logliN + sH - log(N ~ 5)1 {22)
by virtue of the characteristic property of the logarithm of a product:
logxy = logx + logy; log(x/y) = logx ~ logy. (23)
With the notation
Ni=i4N+s;  No=IN-s (24)
for the number of magnets up and down, (22) appears as
logg(N,s) = log N! — log Nt — fog N, L (25)
We evaluate the logarithm of N1 in (25) by use of the Stirling approximation,
according to which 8 v ZyhGo /‘“9’)
NUx QuN)'PNYexp[ ~N + 1/(12N) + -] , (26)

for N > 1. This result is derived in Appendix A. For sufficiently large N, the
terms 1,(12N) + - in the argument may be neglected in comparison with N.
We take the logarithm of bath sides of (26) to obtain

log N = Jlog2n + (N + $)logN — N. @n

Similarly
log V! 2 Jlog2n + (N, + Y)log Ny — Ny; 28
log Nit = {log2n + (N1 + §)log N, — N, (29)

After rearrangement of (27),
log Nt = HogQmN) -+ (N + 4 + N, + Dlog ¥ ~ (¥, + ), (i

wherewehaveused N == Ny 1 N We sobtracet 28) and (29} from (30) to oblain
for (23):

logg = og(172xN) ~ (N, + Dlog(Ny/N) ~ (¥, + Ylog(NyN). (31)
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This may be simplified beeause

Tog(Ny/N) = logd(l + 2s/N) = ~log2 -+ log(l + 25/N)
= —log2 + (25/N) ~ (25%/NY) (32)
by virtue of the expansion log(l + N} = x~ §x2 4 ---, valid for x « 1.
Similarly,
log(Mi/N) =logd(1 — 25/N) = —log2 — (25/N) — (2s/ND). 33)
On substitution in (31) we obtain
logg = $log(2/aN) + Nlog2 — 2s%N. (34)
We write this result as
LQ(N,S) = g(N.0yexp(-25?/N} , (35)
where
IN.0) = (2/mnyP2Y, (36)

Such a distribution of values of s is called a Gaussian distribution. The integral*
of (35) over the range — o to +eo for s gives the correct value 2¥Tor the fotal
number of states. Several useful integrals are treated in Appendix A,

The exact value of g(N,0) is given by (15) with s = 0:

Nt

o0 = g g o

* The replacement of a sum by an integral, such as ¥ (...} by [{.. s, usually doss not introduce
significant ecrors, For example, the ralio of g

N ‘
Y. s =4N? + N) to J‘.\sds = N2 A
¥=0 o

iscqualto 1 + (1/N), which approaches 1 as N approaches 0.

Shurpness of the Multiplicity Function

3

Figure 1.9 The Gaussian approximation to
the binomial coefficients g(100,5) plotied on 4
linear scale. On this scale it is not possible to
distinguish on the drawing the approximation
from the exact values over the range of s
plotted. The entire range of s is from — 5010
4 - - + 50, The dashed lines are drawn from the

A points at 1/¢ of the maximun vatue of g,

£(100, 5) X 107
o

o

For N = 50, the value of g(50,0) is 1.264 x 10'#, from (37). The approximate
value from (36)is 1.270 x 10'*, The distribution plotted in Figure 1.9 is centered
in 2 maximum at s = 0. When s* = {N, the value of g is reduced to e™ ! of the
maximum value. That is, when

SIN = (1/2NY#2 | (38)

the value of g is e™* of g(N,0). The quantity (1/2N)!/? is thus a reasonable mea-
sure of the fractional width of the distribution, For N = 1022, the fractional
width is of the order of 107!, When N is very large, the distribution is exceed-
ingly sharply defined, in a relative sense. It is this sharp peak and the continucd
sharp variation of the multiplicity function far from the peak that will lead to a
prediction that the physical properties of systems in thermal equilibrium are
well defined. We now consider one such property, the mean value of 5%

21
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AVERAGE VALUES

The average value, or mean value, of
distribution function P(s} is defined as

a lunction f(s) taken over a probability
D=3 [ PGs), 39)
provided that the distribution function is normalized to unity:
LPE =1 (40)
The binomial distribution (15} has the property (17) that

2oNs) = 0¥, (1)

and is not normalized 1o unity. If all states are e
9(N.5)/2%, and we have 2P =
will be

qually probable, then P(s) =
L. The average of f{s) over this distribution

Iy =Y fis) P(N,s). (42)

Consider the function (s} = 5% In the 4pproximation that led to (35) and

(36), we replace in (42) the sum Y. over s by an integral -+ ds between — oo
and +w, Then

(2/nNyH2 2%

¢ <2 3
@ J' ds 5 exp(—25/N)
Tﬁ“ >
= Qi) (N2 [ dexamst
= (QfN) R (N (rpaye
whence

Py = 4y @25 = N. {43)

The quantity (2

5)7) is the mean square spin excess. The root mean square
Spin excess is

R = fN . (44)

Energy of the Binary Magnetic System

and the fractional fluctuation in 2s is defined as

(45)

The larger N is, the smaller is the fractional fluctuation. This means that the
central peak of the distribution function becomes relatively more sharply
defined as the size of the system increascs, the size being measured by the
number of sites N. For 10% particles, 7 = 10719 which is very small.

Encrgy of the Binary Magnetic System

The thermal propertics of the model system become physically relevant when
the elementary magnets are placed in a magnetic ficld, for then the energics of
the different states are no longer alt equal. If the cenergy of the system is specified,
then only the states having this energy may oceur. The energy of interaction
ofa single magnetic moment m with a fixed external magnetic field B is

U= ~m-B. (46)

This is the potential energy of the magnet m in the ficld B,
For the model system of N clementary magnets, each with two allowed
orientations in a uniform magnetic ficld B, the total potential energy U is

. .
A A K‘ \1

U= Y Ui=~B- Ym={ ~20mB ) ~MB, 7
= L= - S {2

using the expression A for the total magnetic moment 2sm. In this example the
spectrum of valucs of the energy U is discrete. We shall sec later that a con-
tinuous or quasi-continuous spectrum will create no difficulty. Furthermore,
the spacing between adjacent energy levels of this model is constant, as in
Figure 1.10. Constant spacing is a special feature of the particufar model, but
this feature will not restrict the generality of the argument that is develaped in
the following sections.

The value of the energy for moments that interact only with the external
magnetic field & comrlacly determined by the value of 5. This functional
dependence 1 Ludicaty by writing U(s). Reversing a single moment lowers
25 by -2, lowers the total magaetic moment by —2m, and raises the cnergy
by 2mB. The energy diflerence between adjacent levels is denoted by A, where

Ae = Uls) = Us + 1) = 2B, (48)

23
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s Usy/mB  g(s) log g(s)
=5 m——— 40 1 o
S 230
=3 ————— 46 45 38t
e 120 4.79
T 20 535
0 ———— 32 553
T 20 535
2 4 120 479
+3 —— g 45 3.81
+4 ——— _3 10 230
+5 m———— )0 1 0

Figure 110 Energy levels of the model system of 10
magnetic noments m in a magnetic field 8. The levels
ase labeled by their s values, where 2s is the spin excess
and A_N + 5 =5 + sis the number of up spins. The
encrgics U(s) and multiplicities g(s) ace shown, For this
problem the encryy fevels are spaced equitly, with
separation Ac = 2mB between adjucent tevels,

Example: Multiplicity function for havmonic oscillators,
system is the simplest problem for which an exact soluti
known. Another cxactly solvable problem is the harmoni
was originally given by Max Planck. Th
simple. The beginning student need not
do the problem is given in Chapter 4 and is simple.
The quantum states of a harmonic of

The problem of the binary modet
on for the multiplicity function is
! c oscillator, for which the solution
< original derivation is often felt to be not entirely

worty ubout this derivation. The modern way to

scillator have the energy cigenvalues

& = shw , (49)

Energy of the Binary Magnetic System

can be distributed among the oscillators. That is, we want the muftiplicity function g{(¥,n)
for the N oscillators. The oscillatar multiplicity function is not the same as the spin multi-
plicity function found earlier.

We begin the analysis by going back to the multiplicity function for a single oscillator,
for which g{1,n) = | {orall values of the quantum number s, here identical 1o n. To solve the
problem of (53) below, we need a function to represent ar generate the series

i gLy = i * {s1)
"=0 az0

Al ): rua from 0 to w. Here ¢ s just a temporary tool that will help us find the result
{53), but  does not appear in the final result. The answer is

2

provided we assume §if < 1. For the problem of N oscillators, the generating function is
1 N @ N =

<__> - (E ,:) = ¥ gtvae &)
T—t $=0 ne0

becinse the number of ways a term 1 can appéar in the N-fold product is precisely the
munber of ordered ways in which (he integer 1 can be formed as the sum of N non-negative
intepers.

We observe that

Ay = i
o) = tim & (T) 5

L1 [dY -5
_:ﬂm(m) {1~

%N(N FON+ 2 (N4 1) (59)
ni

)

Thus for the system of oscillators,

_ Q\L+ n— 1) 55
o) = =R D 69

This result will be nceded in solving a problem in the next chapter,
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SUMMARY

1

N

- Ifall states of the model spin ;

+ The multiplicity function fo

T a system of N magnets with spin excess 2s =
Ny — Nyis

oN.g) = Nt Nt

OGN+ 9IGN =39 T TN T
In the limit /N « 1, with N » I, we have the Gaussian approximation
g{N,s} ~ Zl’xN)mZ“'exp(—Zsz/N),

d ysten are equatly fikely, the average value of
$°Is

(s?) = J:irisS’g(?\’,s)/fi}dsg(:\',s) = 1N,

in the Gaussian approximation.

. The fractional fluctuation of s? is defined as (SDYYN and is equal to

12NY2,

. The energy of the model spin system in a state of spin excess 25 is

U(s) =:=2smB |

where m is the magnetic moment of one spin and B is the magnetic field.
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Chapter 2: Entropy and Temperature

One should not imagine that 1wo
will mix, then again after a few

the contrary, one finds .
101"

gases ina 0.1 liter container, initially wnmixed,
days separate, then mix again, and so forth, On
- that not until a time enormously long compared 1o
years will there by any noticeable unmixing of the gases. One may
recognize thar this is practically equivalent 10 never. . . .

L. Bolizmann
If we wish 1o find in rational mechanics an a

of thermodynamics, we must see
entropy.

priori foundation for the principles
k mechanical definitions of temperature and

J. Y. Gibbs

The general connection between energy and temperature may only be established
by probability considerations. [ Two systems} are in statistical equilibrium when
a transfer of energy does not increase the probability.

M. Planck

Fundamental Assumplion

We start this chapter with a definition of probability that cnables us to
define the average value of a physicul property of a system. We then consider
systems in thermal equilibrium, the definition of entropy, and the definition of
temperature. The second law of thermodynamics will appear as the Jaw of
increase of entropy. This chapter is perhaps the most abstract in the book. The
chapters that follow will apply the concepts to physical problems,

FUNDAMENTAL ASSUMPTION =

The fundamental assumption of thermal physics is that a closed system is equally
likely to be in any of the quantum states accessible to it. Al accessible quantum
states arc assumed to be equally probable—there is no reason to prefer some
accessible states over other accessible states.

A closed system wifl have constant eaecrgy, a constant number of particles,
constant volume, and constant values of all external parameters that may
influence the system, including gravitational, electric, and magnetic fields.

A quantum state is accessible if its propertics are compatible with the physical
specification of the system: the energy of the state must be in the range within
which the energy of the system is specified, and the number of particles must be
in the range within which the number of purticles is specified. With large systems
we can never know either of these exactly, but it will suffice to have UJU « 1
and SN/N « 1.

Unusual properties of a system may sometimes make it impossible for
certain states to be accessible during the time the system is under observation.
For example, the states of the crystalline form of SiO, are inaccessible at low
temperatures in any observation that starts with the glassy or amorphous
form: fused silica will not convert to quartz in our lifetime in a low-temperature
experiment. You will recognize many exclusions of this type by common sease.
We treat all quantum states as accessible unless they are excluded by the
specification of the system (Figure 2.1) and the time scale of the measurement
process. States that are not accessible are said to have zero probability.

Of course, it is possible to specify the configuration of a closed system to a
point that its statistical properties as such are of no interest. If we specify that the
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ation of the system -}

Figure 1A pucely symbolic diagraim: coch sofid spot
fepresents an accessible quantum state of 2 closed system. The
fund:xanxslnl assumption of statistical physies is that a closed
system is cqually likely to be in any of the quantum states
accessible 1o it. The empty circles Tepresent some of the stales
that are not accessible because their properties do not satisfy
the specification of the SYStEm. JLovG i o1

system is exactly in a stationa

TY quantum state s, no statistical aspect is left in
the problem.

PROBABILITY

Suppose we have a closed system that we know is equatly likely to be in any
ofthe 4 accessible quantum states. Let she a general state label (and not one-half
the spin excess). The probability P(s) of finding the system in this state is

Pls) = 1/ n
if the state s is accessible and P(s) =0 otherwise, consisient with the fun-
damental assumption. We shall be concerned later with systems that are not
closed, for which the energy U and particle number N may vary. For these

systems P(s)will not be a constant as in (1), but will huve a functional dependence
on Uuand on N,

Probubility

The sum Y P(s) of the probability over all states is always equal to unity,
because the total probubitity that the system is in some state is unity:

s
TP = 1. °

The probabilitics defined by (1) lead to the definition of the average value of
any physical property. Suppose that the physical praperty X has the value
X(s) when the system is in the state 5. Here X might denote magnetic moment,
energy, squace of the energy, charge density near a point r, or any property that
can be observed when the system is ina quantum state. Then the average of the

observations of the quantity X taken over a system described by the proba-
bilitics P(s) is

X = T X(Ps). ] )

¥
——

This equation defines the average value of X. Here P(s) is the probability that
the system is in the state s. The angular brackets {-*-) are uscd to denote
average value. -

For a closed system, the average value of X is Fene »7 -

<X = T X6)1/g) )

3

because now all g accessible states are equally likely, with P(s) = 1/g. The
average in (4) is an elementary example of what may be calied an ensemble
average: we imagine g similar systems, one in each accessible quantum state.
Such a group of systems constructed alike is called an ensemble of systems. The
average of any property over the group is called the ensemble average of that
property. I vyt g

An ensemble of systems is composed of many systems, ali constructed alike,
Each system in the ensemble is a replica of the actual system in one of the
quantum states accessible to the system. If there are g accessible states, then
there will be g systems in the ensemble, one system for each state. Each sysiem
in the ensemble is equivalent for all practical purposes to the actual system.
Each system satisfics all external requirements placed on the original system
and in this sense is “just as good” as the actual system. Every quantum state
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Figure 2.2 This ensemble « througls j represents a system
of 10 spins with cenergy —Smdf and spin excess 25 = §,
The multiplicity ¢(& ) is 9110,4) = 10, so that the
fepresentative cusamble must cotain 10 systems, Fhe
ordes in which the various systems in the ensemble are
listed has no significance.

accessible to the actual system is represented in the ensemble by one system ina
stationary quantum state, as in Figure 2.2. We assume that the ensemblc
represents the real system—this is implied in the fundamentat assumption.

N

Most Probuble Configuration

Figure 2.3 The ensemble represents a system with N = S spins and spin excess 25 = 1,

Figure 24 With N = Sand 25 = 5.2 single
4 system may represent the ensemble. This is not
a typicat situation,

Quantum states at this energy. The number of such states is given by the multiplicity function
(L15): '

The 10 systems shown in Figure 2.3 make up the ensemble,

11 the encrgy in the magnetic field were such that 2 = $, then « single system comprises
e ensemble, as in Figure 24, 1n zero niagnetic field, afl eneegies of all 2% = 2% = D gpates
are equal, and the new ensemble must represeit 32 systems, of which | system has 25 = 5
3 systems have 2s = 3; 10 systems have 25 = 1: 10 systems have 25 = ~1; 5 systems
have 25 = —3;and | system has 25 = —5.
£

Most Probable Configuration

Let two systems 8, and 3, be brought into contact so that enerey can be
trunsfereed frecly from onc to the other. This is called thermal contact (Figure
2.5). The two systems in contact form a larger closed system 8 = 8, + 3,
with constant energy U = U, + U,. What determines whether there will be a
net flow of energy from one system to another? The answer leads to the concept
of temperature. The direction of energy flow is not simply a matter of whether
the energy of one system is greater than the energy of the other, because the
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Two closed
systems not
in contact

Insulation

The systems are in
thermal contact

Ui+ Uy = Uy + U,

Insulation  Thermal conductor allows
exchange of encrgy

Figure 2.5 Establishment of theemal contact between two systems &, and 3,

systems can be different in size and constitution. A constant total energy can be
shared in many ways between two systems,

The most probable division of the total energy is that for which the combined
system has the maximum number of accessible states. We shall cnumerale the
accessible states of two modet systems and then study what characterizes the
systems when in thermal contact. We first solve in detail the problem of thermal
contact between two spin systems, Land 2, ina magnetic field which is intcoduced
in order to definc the energy. The numbers of spins N, N, may be different, and
the values of the spin excess 255, 25, may be different for the two systems, All
spins have magnetic moment . The actuat exchange of energy might take place
via some weak (residual) coupling between the spins near the interface between
the two systems, We assume that the quantum states of the total system $ can
be represented accurately by a combination of any state of 8, with any state of
3;. We keep W, N, constant, but the vatues of the spin excess are allowed to
change. The spin excess of a state of the combined system will be denoted by 2s,
where s = 5, + 5,. The energy of the combined system is dircctly proportionai
to the total spin excess:

Uls) = Uy(s) + Uylsy) = ~2mB(sy + 5,) = ~2mBs. {5)

The total number of particles is N = Ny + N,

Most Probable Configuration

We assume that the encrgy splittings between adjacent energy levels are equal
to 2mB in both systems, so that the magnetic encrgy given up by system [ when
one spin is reversed can be taken up by the reversal of one spin of system 2 in
the opposite sense. Any large physical system will have cnough diverse modes of
energy storage so that energy exchange with another system is always possible,
The value of s = s, + s, is constant because the total encrgy is constant, but
when the two systems are brought into thermal contact a redistribution is
permitted in the scparate values of s,, 5, and thus in the energies U,, U..

The multiplicity function g{N,s) of the combined system 8 is related 15 the
product of the multiplicity functions of the individual systems 8, and 3, by
the refation:

g(N,5) = ng(Nxvsn)gz(NzyS =5, )

where the multiplicity functions g,, g, are given by expressions of the form of
(1.15). The range of s, in the summation is from —INJ O INL TN, < N,
To sce how (6) comes about, consider first that configuration of the combined
system for which the first system has spin excess 2s; and the second system has
spin excess 2s;. A configuration is defined as the set of all states with specified
values of s, and s;. The first system has 9:(N,5,) accessible states, cach of which
may occur together with any of the g,(N,,s;) accessible states of the second
system. The total number of states in one configuration of the combined system
is given by the product g,(Ny,5,)g,(N,s,) of the multiplicity functions of 8,
and 8,. Because 5, = s ~ s,, the product of the ¢'s may be written as

91N 051)9a(N s = 5)). M

This product forms one term of the sum ).

Different configurations of the combined system are characterized by different
values of s;. We sum over all possible values of s, to obtain the total number of
states of all the configurations with fixed s or fixed energy. We thus obtain (6),
where g(V,s) is the number of accessible states of the combined system. In the
sum we hold s, Ny, and N, constant, as part of the specification of thermal
contact.

The result (6) is a sum of products of the form (7). Such a product will be a
maximum for some value of s,, say §,, to be read as “s, hat" or “sy caret™.
The configuration for which g,g, is a maximum is called the most probable
configuration; the number of states in it is

iNL3)9:N,s - 5,). . ®
A

x k4S5 <L

Loyna
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8V, U
X g2 (N U — Uy

e
0
Thermal equilibrium

Figure 2.6 Schematic fepresentation of the dependence of the
configuration muktiplicity on the division of the total energy
between two sysiems, 3, and 3,.

If the systems are large, the maximum with res
extremely sharp, as in Figure 2.6, A refatively
will dominate the statistical properties of 1!
probable configuration alone wilt describe many of these properties,

Such a sharp maximum is a praperty of every realistic type of large system
for which exact solutions are available; we postulate that it isa general property
of alt large systems. From the shaspness property it follows that 'ﬂ\gclumions
about the most probable configuration are small, in a sense that we will define.

The important result follows that the values of the average physical properties
of a large system in thermat contact with another large system are accurately
described by the properties of the most probable configuration, the configura-
tion for which the number of accessible states is a maximum. Such average
values (used in either of these two senses) are called thermal equilibrium values.

Because of the sharp maximum, we may replace the average of a physical
quantity over all accessible configurations (6) by an average over only the most
probable configuration (8). In the cxample below we estimate the error involved
in such a replacement and find the error to be negligible.

pect to changes in s, will be
small number of configurations
he combined system. The most

Most Probable Configurarion

Example: Two spin systems in thermal contact.,
the sharpness of the product {7} near the maxjm
the multiplicity functions for 9N s,) and g,(N, 5,), both of the form of {1.33):

We investigate for the modz| spin system
um {8) as foflows. We form the product of

25,
T B ©

GNLs)gN, sy = y,(O)g:(O)exD(
whete ¢,{0) denotes g,(N,,0) and g,4(0) denotes 9:{N3.0). We replace s, by s — 5+

25 2As - 5)°
GN8N, s — 5) = g;(om:(mcxp(—»,ﬁ -= ~). (10}

This product® gives the number of states accessible {0 the combined system when the spin
excess of the combined system is 25, and the spin excess of the first system is 25,0

We find the maximum value of (10} as a function of s; when the total spin excess 2s is held
constant; that is, when the energy of the combined systems is constant. It is convenicnt
to use the property that the maximum of log ¥{x) occurs at the same value of x as the
maximum of y{x). The calculation can be done eithier way. From {10},

2s ~ 5,3*
10891(N15)gy(N .5 — 5y) = log g,{0)g,(0) ~ = (1)

This quaatity is an extremum when the first decivative with respect to s; is zero. An ex-
tremum may be a maximum, a minimum, or a point of inflection. The extremum is a

maximum il the second derivative of the function is negative, so that the curve bends
downward.

Al the extremum the first derivative is

ds; | Als - 5) _

3
o ' _ -
@, \]0391”\1:31)02(”1:3 i)} N, N,

o, (13

where Ny, N, and s are held constant as 5y is varied. The second derivative &

Equation {11} is
1o )
*“(}«37 N

* The product function of two Gaussian functions is always a Gaussian,
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andis ncgal%v:, so that the extrémum isa maximum. Thus the most probable configuration
of the combined system is that for which {(12) is satisfied:

(13)

Th_c twosystems arc in equilibrium with respect to interchange ofenergy when the fractional
spin excess of system 1 is equal ta the [ractional spin excess of system 2,
We prove that nearly all the accessible states of the combined systems satisly or very

nearly satisfy {13). If §, and §, denote the values of s, and s, at the muximum, then (13)
is written as

\‘2 R 3§ s
o= = 14
f;\S Ny N 49
T{? find the number of states in the most probable configuration, we insert (14) in 9) 1o
obtuin
619:23nsx = 0,61)gals ~ 5,) = 9:(0)g2(0) exp(— 2s*/N). (15)
To investigate the sharpncss of the maximum of g,g, at a given value of s, introduce §
such that

Sy = 3y + 9 5;=8,—-4. {16)
Here § measures the deviation of s,, s, from their valucs 51, 5 at the maximum of g,g,.
Square s,, s, 1o form

z

s 514258 + 5% 5 e 5~ 258 + 8,

which we subslitute in (9} and {£5) to obtain the number of states

DV 8)05(Nys) = (glg;),,mew(—f—— -

EARY

We know from (14) that 5N, =
deviation & from equilibrium is

Ny, 50 that the number of states in a :anﬁgur;uioxr

(17

2% 282
N, ’

GUNLS + 8)gyfNy,5, ~ §) = (g‘yz).m.e-\r(—‘* -

As a numerical example in which the fractional deviation from equilibrium is very small,
fet 2 Ny =10 and § = 10'?; that IS, 8Ny = 1070, Then 26%N, = 200, and the

Thermal Equilibrium

product g,g; is reduced (0 ¢*%° = 107174 of its maximum value. This is an extremely
large reduction, so that g,g, is truly a very sharply peaked function of 5. The probabitity
that the fractional deviation will be 1079 or furger is found by integrating (17) from
& = 10" out toa value of the order of s or of N, thereby including the area under the wings
of the probability distribution. This is the subject of Problem 6. An upper limit to the
integrated probability is given by N x 107174 = 10742, still very small. When two
syslems are in thermal contact, the values. of sy, 5 that occur most often will be very close to
the values of §;, §; for which the product 9,9y Is a maximum, It is extremely rare 1o find
systems with values of s,, 5, perceptibly different from . §,.

What does it mean to say that the probability of finding the system with a fractional
deviation farger than & Ny = 107*%is only 10”32 of the probability of finding the system
in equilibrium? We mean that the system will never be found with & deviation as much as
Fpartin 10'°, small as this deviation seems. We would have to sample 1013 similar systems
to have a reasonable chance of suceess in such an experiment. I we sample one system every
107 5 which is pretty fast wark, we would have to sample for 104 s, The age of the
universe is only 10" s, Therefore we say with geeat surety that the deviution deseribed will
never be observed. The estimate is rough, but the message is correct. The quotation from
Boluznwann given at the begianing of this chapter is relevant here.

We tmay expect 10 observe substantial fractionat deviations oaly in the propertics of a4
small system in thermal contact with a farge system or reservoir. The energy of a small
system, say a system of 10 spins, in thermal contact with a large reservoir may undergo
fluctuations that are large in a fractional sense, as have been observed in experiments on the
Brownian motion of small particles in suspension in liquids. The average energy of a smalt

system in contact with a large system can always be detesmined accurately by observations
at one time on a lacge number of identical small systenis or by obscrvations on one smalf
system over a long period of time.

THERMAL EQUILIBRIUM

The result for the number of accessible states of two model spin systems in
thermal contact may be generalized to any two systems in thermal contact, with
constant totai energy U = U, + U,. By direct extension of the carlier argu-
ment, the multiplicity g(.V,U} of the combined system is:

9NO) =Y g, (N U Ngu(N U = Uy (18}
&y

summed over all values of U, < U. Here g,(N,U,) is the number of accessible
states of system 1 at energy U, A configuration of the combined system is
specified by the value of Uy, together with the constants U, N, N;. The number
of accessible states in a configuration is the product g, (N, U )g,(N,U — U,).
The sum over i configurations gives g(N,U).
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The largest term in the sum in (18) governs the properties of the total system
in thermal equilibcium. For an extremum it is necessary that the differential® of
g(N,U) be zero for an infinitesimal exchange of energy:

29, &g,
lg = [—ZL L = 0 J =
dg (5‘U| x‘gsz. + 050 ‘hduz 0;  dUy +dU, =0. (19)

We divide by g,g, and use the result dUy = —dU, 1o obtain the thermal
equilibrium condition;
! 591) 1 ("01)
—{h) L ey (20a)
9 <5Ux N G2\EUy )y,
which we may write as
clogg, dlogg, o
L = . 20b
( Uy Jy, Uy Ju, (200)

We define the quantity o, called the entropy, by

a(NU) = logg(N,Uy , @n

where a is the Greek letter sigma. We now write {20) in the final form

o] e
AUy Ju, eU; Jy,

* The notation

@\

means that ¥, is held constant in the differentiation of ,(N,,U,) with respect to U,. That is, the
partial derivative with respect to U, is defined as

(fg.) o tim QWU+ BV - g, Uy

EIT i AU, :

For example, if glx,5) = 3x*y, then (2g/dx), = 12x'y and (89/3y), = 3%
)y

Tempecuture

This is the condition for thermal equilibrium for two systems in thermal
contact. Here Ny and N, may symbolize not only the numbers of particles, but
all constraints on the systems.

.
TEMPERATURE

The last cquality (22) leads us immediately to the concept of temperature. We
know the everyday rule: in thermal cquilibrivm the temperatures of the two
systems are equal:

Ty =T, (23)

This rule must be equivalent to (22), so that 7" must be a function of (Ca/fU).
I T denotes the absolute temperature ‘in kelvin, this function is simply the

inverse relationship
50 24)
A"(zu),{ ey

The proportionality constant k, is & universal constant called the Boltzwana
constant. As determined experimentally,

ky = L381 % 1072 joules/kelvin

= 1381 x 107" ergs/kelvin. {23)

We defer the discussion to Appendix B because we prefer 1o use a more natusal
temperature scale: we define the fundamental temperature t by

(26)

This temperature differs from the Kelvin temperature by the scale factor, kg:

@7

Because o is a pure numbser, the fundamental temperature v has the dimensions
of cnergy. We can use as a temperature scale the energy scale, in whatever unit

B4
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may be employed for the latter—jout
than the introduction of the Kelvin
arbitearily selected so that the triple
point of wx
cocexist.
Historically, the conventional scale d
to build accurate thermometers ev

e or erg. This procedure is much simpler
scale in which the unit of temperature is
point of water is exactly 273.16 K. The triple
ater is the unique temperature at which water, ice, and water vapor
ates from an age in which it was possible
en though the relation of temperature to
quantum states was as yet not understood. Even at present, it is still possible to
measure temperatures with thermometers calibrated in kelvin 10 a higher
precision than the accuracy with which the conversion factorky itself is known—

about 32 parts per million. Questions of practicai thermometry are discussed in
Appendix B.

—

Conment. _ In 126) we defined the reciprocal of  as the partial derivative (¢a ¢ Uyy. 1t is

permissible 1o take the reciprocal of both sides to write

T = (¢U/2o)y. (28)

The two expressions (26 and (28} have a slightly different meaning. In (26), the entropy ¢
was given as a function of the independent variables U and N as ¢ = o{U,N). Hence ©
determined from (26) has the same independent variables, t = t(U,N). In (26), however,
differentiation of U with fespect 10 @ with N constant implies U = Ulo,N), so that t =
t(0,). The definition of temperature is the same in both cases, but it is expressed as a
function of different independent variables, The question “What are the independent
variables?” arises frequeatly in thermal physics because in some experiments we control
sote variables, and in other experiments we control other variables.

1

ENTROPY

The quantity 6 = logg was introduced in {21) as the entropy of the system: the
entropy is defined as the logarithm of the number of states accessible to the
system. As defined. the entropy is a pure number. In classical thermodynamics
the entropy S'is defined by

29

Entropy S 43
Uz
7, cold
a.(initial) Figure 2.7 1f the temperature 1y is higher
thun t,, the transfer of a positive amount of
encrgy $U from system 1 to system 2 will
increase the total entropy o, + o, of the
combined systems over the initial value
@ (initial) + o,(initial). In other words, the
final system will be in a more probable
condition if energy flows from the warmer body
3 to the cooler body when thermal contact is
{’ w=8U U, + 8U established. This is an cxample of the faw of
L olfinal) - oyttinal) increasing entrapy.
Nt

Energy transfer
o,(final) + o,(final) > o (initial) + oyinitial)

As a consequence of (24), we see that § and o are connected by a scale factor:

S = kyo | (30)

We will call § the conventional entropy.

The more states that are accessible, the greater the entropy. In the definition
of o(N,U) we have indicated a functional dependence of the entropy on the
number of particles in the system and on the energy of the system. The entropy
may depend on additional independent variables: the entropy of a gas (Chapter
3} depends on the volume.

Tn the carly history of thermal physics the physical significance of the entropy
was not known. Thus the author of the article on thermodynamics in the
Encyclopaedia Britannica, Hth ed. (1905), wrote: “The utility of the coneeption
of cntropy ... is limited by the fact that it does not correspond directly to any
directly measurable physical property, but is merely a mathematical function
of the definition ofabsolute temperature.” We now know what absolute physical
property the entropy measures, An example of the comparison of the experi-
mental determination and theoretical caleulution of the entropy is discussed in
Chapter 6.

Consider the total entropy change Ag when we remove a positive amount of
encrgy AU from 1 and add the same amount of energy to 2, s in Figure 2.7
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The total entropy change is

o, 20, 11
Ao = [0 Loy ===+ —=Jau. @31
i <("U,>,\.f au) + (GU)\»,(AU) ( ot n) ey

When 1, > 1, the quantity in parentheses on ﬂ{righbhand side is positive,
so that the total change of entropy is positive when the direction of energy flow
is from the system with the higher temperature to the system with the lower
temperature.

ot

Exumple: Entropy increuse on heat flow.  This example mukes use of the reader’s previous
famitiarity with heat and specific heat.

{a} Leta 10-g specimen of copper at a temperature of 350K be placed in thermat contact
with an identical specimen at 2 temperatuee of 290 K. Let us find the quantity of cnergy
transfecred when the two specimens are placed in contact and come to equilibrium at the
final temperature T ;. The specific heat of metallic copper over the temperature range 15°C
to 100°C is approximately 0.389) g~ K™*, according to a standard handbook.

The energy increasc of the second specimen is equal 1o the caergy Yoss of the first; thus
the energy increase of the second specimen is, in joules,

AU = (383J K™ '|T,; — 290K) = (389K M)350K — Ty},
where the temperatures are in kelvin. The final temperature after contact is
T, = $(350 + 290)K = 320K.
Thus

AU, = (3893 K!)(—30K) = —1L7J,

AU = AU, = 11.71.

{b) What is the change of entropy of the two specimens when a transfer of 0.1J has
taken place, almost immediately after initial contact? Notice that this transfer is a small
fraction of the final energy transfer as calculuted above. Because the energy transfer con-
sidered is small, we may supposc the specimens are approximately at their initial tempera-
tures of 350 and 290 K. The entropy of the first body is decreased by

0.1 -
== 2 167*3K™1,
AS, T0K 286 x

Law of Increase of Entrapy
The entropy of the second body is increased by
AS; = J%EUK =345 x 1074 JK "L,
The total entropy increases by
AS, + AS; = (286 + 345) x 1074 JK ™! = 059 x 1074 3K -1,
in fundamental units the increase of entropy is

fo = 359 X107 059 x j0ms gk
ky 138 x (0B JRT

=043 % 10", @y

where k; is the Boltzmana constant. This result mcans that the number ol accessible states
of the two systems increases by the factor explAo) = expl043 x 10

Law of Increase of Entropy

We can show that the total entropy always increases whe
brought into thermal contact. We have just demonstrated this in a special case.

If the total energy U = U, + U, is constant, the total multiplicity after the
systems are in thermal contact is

n 1wo systems arc

glu) = b);gl(U.)gz(U - Uy, (33)

by (18). This expression contains the term g,(U,o)g(U — U
multiplicity before contact and many other terms besides.
initial energy of system 1 and U — U
all terms in (33) are positive numbe:
establishment of thermal contact be
law of increase of entropy for a w

10) for the initial
Here Uy, is the
10 is the initial energy of system 2. Because
75, the multiplicity is always increased by
tween two systems. This is a proof of the
ell-defined operation.

The significant effect of contact, the effect that stands out even after taking the
lf)gmrilhm of the multiplicity, is not just that the number of terms in the summa-
tion is large, but that the largest single term in the summation may be very, very
much larger than the initial multiplicity. That is,

6192 = 0,0 )g(U — 0,) D)
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U

__________ o)

Energy
Entropy

Time Time
Figure 28 A system with two purts, Tand 2, is prepared wt 7ero time
with Uy = Oand U, = U. Exchange of encrgy takes place between two
parts and preszntly the system will be found in or close to the most
probable configuration. The entropy increases us the system attains
configurations of increasing multiplicity or probability. The entropy
cventually reaches the entropy a{U) of the most probable configuration.

may be very, very rauch larger than the injtial term
9iU1a)gaU = Ul 63}

Here 0, denotes the value of U, for which the product g1, 1S a maximum,
The essential effect is that the systems after contact evolve from their initial
configurations to their final configurations. The fundamental assumption
implics that evolution in this operation will always take place, with all accessible
final states equally probable.

The statement

Crinat = 108(g192Imsx 2 Fiaiit = 102(0:19:2)0 (36)

is a statement of the taw of increase of eatropy : the entropy of a closed system
tends 1o remain constant or (o fncrease when a constraint internal to the system
is removed. The operation of establishing thermal contact is cquivalent to the
removal of the constraint that Uy, U, each be constant; after contact oaly
U, + U, need be constant.

The evolution of the combined system towards the final thermal equilibrium
contiguration takes a certain time. If we separate the two systems before they

Las of Increase of Entrapy

Ways 1o increase the entropy

—— Add particles
i >
— — / Add energy
e e \
(Vetocity vectany
‘Lt S — ncecase the volome
b ° '. °
o — P Decompose molecules
a °e.°
Raaan B 2 Let a linear polymer curl up

Figure 2.9 Operations that tend (o increase the entropy of a system.

reach this configuration, we will obtain an intermediate configuration with
intermediate energies and an intermediate entropy. It is thercfore meaningful to
view the entropy as a function of the time that has elapsed since removal of the
constraint, called the time of evolution in Figure 2.8,

Processes that tend to increase the entropy of a system are shown in Figure

29; the arguments in support of each process will be developed in the chapters
lha{ fotlow.
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For a large system* (in thermal contact with another large system) there will
never oceur spontaneousty significant differences between the actual value of the
entropy and the value of the entropy of the most probable configuration of the
system. We showed this for the mode] spin system in the argumient following (17);
we used “never” in the sense of not once in the entire age of the universe, 10°Ss.
We can only find a significant difference between the actual cntropy and the
entropy of the most probable configuration of the MACrOSCopic system very
shortly after we have changed the nature of the contact between Wo systems,
which implies that we had prepared the system initially in some special way.
Special preparation could consist of tining up all the spins in one system parallct
1o one another or collecting all the molecules in the air of the room into the
system formed by a small volume in one corner of the room. Such extreme
situations never arise naturally in systems left undisturbed, but arise from
artificial operations performed on the systen.

Consider the gas in a room: the gas in once hatf of the room might be prepared
initially with a fow valuc of the average energy per molceule, while the gasin the
other half of the room might be prepared initiaity with a higher valuc of the
average energy per molecule. If the gas in the two halves is now allowed to
interact by removal of a partition, the gas molecules will come very guickly!
to a most probable configuration in which the molecules in both halves of the
room have the same average energy. Nothing else will ever be observed to
happen. We will never observe the system to leave the most probable configura-
tionand reappear later in the initial specially prepared configuration. This is true
even though the equations of motion of physics are reversible in time and do not
distinguish past and future.

LAWS OF THERMODYNAMICS

When thermodynamics is studied as a nonstatistical subject, four postulates
are introduced. These postulates are called the laws of thermodynamics. In
essence, these laws are contained within our statistical formulation of thermal
physics, but it is useful to exhibit them as separate statements.

Zeroth faw. If two systems are in thermal equilibrium with a third system,
they must be in thermal equilibrium with each other. This law is a consequence

* A large of macroscopic system may be taken to be one with morc than 101° or 10'% atoms.
! The calculation of the time requited for the process s targely a problem in hydrodynamics.

Laws of Thevmodynamics

of the condition (20b) for equilibrium in thermal contact:

(ilog&) _ (("‘IOgg,) . clogg, Zloggy
Uy Js, Uy Jy) Uy Jx, U Vs
In other words, t, = t; and 1= ryimply Ty = 1,

Heatis a form of energy. This faw is no more than a statement of

the principte of conservation ofenergy.
heat is.

First faw.
- Chapter 8 discusses what form of cnergy

Second law. There are many equivalent statements of the second law. We
shall use the statistical statement, which we have called the law of increase of
entropy, applicable when a constraint internal 1o a closed system is removed. The
commonly used statement of the law ofincrease of eatropy is: "I closed system
is in a1 configuration that is not the equilibrium configuration, the mest probubic

conscquence will be that the entropy of the systein will incresse monolonically
in su;

ssive instants of time.” This is a looser statement than the one we gave
with Eq. (36) above.

The traditional thermodynamic statement is the Kelvin-Planck formulation
of sccond law of thermodynamics: “ft is impossible for any cyclic process to
occur whose sole effect is the extraction of heat from a reservoir and the per-
formance of an equivalent amount of work.” An engine that violates the second
taw by extracting the energy of onc heat reservoir is said to be performing
perpetual motion of the second kind. We will see in Chapter 8 that the Kelvin-
Planck formulation is a consequence of the statistical statement,

Third law. The entropy of a system approaches a constant valuc as the
temperature approaches zero. The earliest statement of this law, due to Nernst, is
that at the absolute zero the entropy difference disappears between all those
configurations of a sysicm which are in internal thermal equilibrium. The third
law follows from the statistical definition of the entropy, provided that the
ground state of the system has a well-defined multiplicity. If the ground state
multiplicity is g(0), the corsresponding entropy is o(0) = logg(0) as 7 — 0.
From a quantum point of view, the law does not appear to say much that is
not implicit in the definition of entropy, provided, however, that the system is
in its lowest set of quantum states at absolute zero. Except for glasses, there
would not be any objection to affitming that g(0) is a smalt number and a{0)
is essentially zero. Glasses have a frozen-in disorder, and for them 6{0) can be
substantial, of the order of the number of atoms N. What the third law tells us
in real life is that curves of many reasonable physical quantities plotted against r
must come in flat as r approaches 0.
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Entropy as a Logarithm

Several useful properties follow from the definition of the entropy as the loga-
rithm of the number of accessible states, instead of as the number of aceessibie
states itself. First, the centropy of two independent systems is the sum of the
separate entropies.,

Sccond, the entropy is entirely insensitive—for all practical purposes—1to
the precision SU with which the encrgy of a closed system is defined. We have
never meant to imply that the System energy is known exactly, a circumstance
that for a discrete spectrum of cnergy eigenvalues would make the number of
accessible states depend erratically on the encrgy. We have simply not paid
much attention to the precision, whether it be determined by the uncertainty
principle 6U 3(timej ~ f, or determined otherwise. Define D(U) as the number
of accessible states per unit energy range; D(U) can be a suitable smoothed
average centered at U. Then g(U) = D{UYSU is the number of accessible
states in the range U at U, The entropy is

a(U) = log DILJSU = log DIU) + logsU. 37)

Typically, as for the system of N spins, the total number of states wilt be of the

order of 2%, If the total energy is of the order of N times some average onc-
particle energy A, then D(U) ~ 2Y/NA. Thus

- 6{U}) = Nlog2 -—'.Iog NA + logsU. (38)

Let N = 10%; A = [0™"* erg; and 6U = 10! erg.

a(U) = 0.69 x 10%° — 1382 — 2.3, 39)

We see from this example that the value of the entropy is dominated overwhelm-
ingly by the value of N; the precision SU is without perceptible effect on the
result. In the problem of N free particies ina box, the number of states is propor-
tional to something like U¥3U, whence o ~ NlogU + logdU. Again the

term in N is dominant, a conclusion independent of even the system of units
used for the energy.

Example: Pecpetual motion of the second kind. Early in our study of physics we came 1o
uuderstand the passibility of s perpetual motion machine, a machine that will give forth
more energy than it absorbs. .

Summary 51

Equally impossible is a Perpetual motion machine of the second kind, as it is called, in
whi_c h heat is exteacted from part of the environment and delivered to another part of the
environment, the difference in temperature thus established being used to power a heat
engine that delivers mechanical work available for any purpose at no cost to us. In brief, we

rounding ocean to extract the cnergy necessary to

SUMMARY

1. The fundamental assumption is that a closed system is equally likely to be
inany of the quantum states accessible 1o it

2. If P(s)is the probability that a system is in the state s, the average value of a
quantity X is

O = T XEP(s).

3. Anensemble of systems is composed of Vvery many systems, ali constructed

alike.
4. The number of accessible states of the combined systems  and 2 is ‘S -
SRS
98 = Yaulsanls ~ 5,) , S $
5 AN
where s + 5, = . €

5. The entropy a{N,U) = logg(N,U

). The relation § = kgo connects the
conventional entropy § with the fu

ndamental entropy .
6. The fundamental temperature t is defined by

Ijt = (80,2 U)y 0.

The relation ¢ = k5T connects the fund

amental temperature and the con-
ventional temperature.

7. The faw of increase of entro
tends 1o remain constant or
system is removed.

Py states that the entropy of a closed system
to increase when a constraint internal to the



Chapter 2: Entropy and Temperature

8. The thermal equilibrium values of the physical propertics of a system are
defined as averages over all states accessible when the system is in contact
with a large system or reservair. If the first system also is large, the thermal
cquilibrium propertics are given accurately by consideration of the states in
the most probable configuration alone. :

PROBLEMS

1. Entropy and temperature.  Suppose g{U) = CU2 where C s 4 constant
and N is the number of particles. {a) Show that U = {Nt. (b} Show that
(8a/2U2)y is negative. This form of gtU 3 actually applics o an ideal gus,

2. Paramagnetism. Find the equilibrium value al emperature 1 of the frac-
tional magnetization

M Nm o= 2(s)/N

of the system of N spins each of magnetic moment m ina magnetic field B. The
spin excess is 2s. Take the entropy as the logarthithm of the multiplicity g{N,s)
as given in (1.35):

6(s) = logg(N.0) — 253N , (40)

for [s| <« N. Hint: Show that in this approximation
o(U) = 6o — U*2m*BN , 1)

with g = log (N 0). Further, show that 1/t = — U/m*B2N, where U denotes
(U5, the thermal average energy.

3. Quantum harmonic oscillator. (a) Find the entropy of a set of N oscillators
of frequency w as a function of the total gquantum number n. Use the multiplicity
function (1.55) and make the Stirling approximation log N} ~ NlogN — N.
Replace N — 1 by N. (b) Let U denote the total energy nhw of the oscillators.
Express the entropy as o(U,N). Show that the total energy at temperature t is

. A'hg_)
explhwft) — 1’

(42)

This is the Planck result; it is derived again in Chap(‘er 4 by a powerful method

that does not require us to find the multiplicity function.

Problems

4. The meaning of “never” It has been said* that “six monkeys, sel (o strum
unintelligently on typewriters for miltions of years, would be bound in time
to write all the books in the British Museum.” This statement is nonsense, for
it gives a misteading conclusion about very, very large numbers. Could all the
monkeys in the world have typed out a single specified book in the age of the
universe?'

Suppose that 10'° monkeys have been seated at typewriters throughout the
age of the universe, 10'® 5. This number of monkeys is abaut three times greater
than the present human population® of the earth. We suppose that a monkey
can hit 10 typewriter keys per sccond. A typewriter may have 44 keys; we
aceept lowercase letters in place of capilal letters. Assuming that Shukespeare’s
Humlet has 10° characters, will the monkeys hit upon Hamlet?

(a) Show that the probability that any given scquence of 10 characters
typed at random will come owt in the correct sequence (the sequence of Hamler)
is ol the order of B

(34)100 090 o (g i6s 345

where we have used log,, 44 = 1.64345,

(b) Show that the probability that a monkey-Hamlet will be typed in the age
of the universe is approximately 10754316, The probability of Hamlet is
therefore zero in any operational sense of an event, so that the original statement
at the beginning of this problem is nonsense: one book, much less a Tibrary,
will never occur in the total literary production of the monkeys.

5. Additivity of entrapy for two spin systems. Given two systems of Ny =~
N, = 10 spins with multiplicity functions g,(N,s;) and g,(N,,s — s,), the
product g,g; as a function of s, is relatively sharply peaked at sy = §,.Fors; =
8, + 10'%, the product g,g, is reduced by 107"7* from its peak value. Use the
Gaussian approximation to the multiplicity function; the form {17} may be
useful.

(2) Compute §,9,/(g,9,)max f0r 5, = 5, + 10*! and 5 = 0.

(b} For s = 10%°, by what factor must you multiply (99 2)ma to make it

equal 10 ), g,(N1,5:)g:(N .5 — 5,); give the factor to the nearest order of
magaitude.

* 1. Jeans, Mysterious universe, Cambridge University Press, 1930, p. 4 The statcment is attributed
to Huxley.

* Fora related mathematico-literary study, sec “The Library of Babel,™ by the fascinating Argentine
writer Jorge Luis Boeges, in Ficciones, Grave Press, Evergreen paperback, 1962, pp. 79--88

¥ For every person now alive, some thirly persons have once lived. This figure is quoted by A. C.
Clarke in 2001. We are grateful 1o the Population Reference Bureau and to Dr. Roger Revelle for
cxplanations of the evidence. The cumulative numbes of man-seconds is 2 x 10%°, if we take the
average lifetime a5 2 x 10° s and the number of lives as 1 x 10'". The cumulative number of
man-scconds is much less than the nusmber of monkey-seconds (1074) taken in the problem.
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(c) How large is the fractio

nal error in the entropy when you ignore this
factor?

6. Integrated deviation, For the example that gave the result (17), calculate
approximately the probability that the fractional deviation from equilibrium
8/N is 107° or larger. Take Ny = N, = 10**, You will find it convenient to

use an asymptotic expansion for the complementary error function. When
x» 1,

2xexp(x?) mexp(~lz)111 ~ 1 4 small terms.
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