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WE describe here a network of strings and springs in which cutting 
a string that supports a weight results in a rise of the weight at 
equilibrium. In an analogous electronic circuit of passive two­
terminal devices (resistors and Zener diodes), adding a current­
carrying path Increases the voltage drop across the circuit. These 
systems are mechanical and electrical analogues of a paradox of 
congested traffic ftow1

'
2

• Along with similar hydraulic and thermal 
analogues, they show how non-intuitive equilibrium behaviour can 
arise in physical networks made up of classical components. 

In the network of strings and springs shown in Fig. la, one 
end of a spring is attached to a fixed support, and the other end 
to a string of length L = i m. One end of another identical spring 
is attached to the free end of the string, and a weight is attached 
to the free end of the second spring. A back-up string joins the 
support to the upper end of the second spring, and an identical 
back-up string joins the lower end of the first spring to the 
weight. These back-up strings are long enough to be limp when 
the linking string of length L = i m is intact. 

Assum.e the strings are massless and perfectly inelastic, and 
that the springs are massless, ideally elastic and have zero 
unstretched length. Assume each spring has a spring constant 
equal to k so that its extension x is related to the applied force 
F by F = kx. For simplicity, we will take k = 1. If the weight 
exerts a force of! N, the extension of each spring will be! m. 
Therefore the distance from the support to the lower end of the 
linking strings is ! + i = ~ m. The distance from the upper end of 
the linking string to the weight is the same. The length of the 
two safety strings is chosen as 1 m so that they hang limply. The 
distance X from the support to the weight is!+~+!= 1~ m. 

• To whom correspondence shootd be addressed. 

NATURE · VOL 352 · 22 AUGUST 1991 

LETTERS TO NATURE 

Intuition (ours and that of other people we have asked) 
suggests that if the linking string were cut, the weight would 
drop and the distance X would increase. In fact, the opposite 
is true. If the linking string is cut, the network becomes as shown 
in Fig. lb. The safety string attached to the support and the 
lower spring attached to that string now bear half the weight. 
The upper spring and the safety string attached to the weight 
bear the other half of the weight. Therefore the extension of 
each spring is ! x! = ~ m, and the distance X from the support 
to the weight is now 1 +~ = 1! m, less than before. At equilibrium, 
the weight is higher than before. Directionality is irrelevant. The 
phenomenon would be the same if the network were hung upside 
down. (When the strings and springs are massless, even the 
initial transient motion of the weight is upward just after the 
string is cut.) Of course, at equilibrium, the whole network has 
less potential energy after the string is cut than before. 

Suppose the length of the cross-linking string varies smoothly 
from 0 to 1 m, while all other elements of the network remain 
as in Fig. 1 a. Figure 2 shows the equilibrium distance from the 
support to the weight as a function of the length L of the 
cross-linking string. For any L between 0.25 m and 0.75 m, the 
weight would be higher (the distance X from the support to the 
weight would be smaller) if the cross-link were cut. 

An electrical analogue of the paradoxical mechanical network 
may be constructed by associating current (I) with force and 
voltage ( V) with displacement. A spring with zero rest length 
(which obeys F = kx) thus becomes a resistor (I = VIR), with 
resistance R analogous to the inverse of the spring constant, 
1/ k. A string (of constant length x, for any F > O) becomes a 
Zener diode ( V = Vz, for any I> 0), with its characteristic Zener 
voltage Vz analogous to the string's length. These ideal circuit 
elements can be realized fairly accurately in practice3

• 

Figure 3a shows the resulting electrical analogue of Fig. lb, 
drawn as a Wheatstone bridge. To match the elastic springs and 
inelastic strings of Fig. 1 b, we will consider 1-il resistors and 
1-V Zener diodes in the outer legs (unrealistic values in practice, 
but convenient for illustration). A current of I=! A flowing 
into the top terminal divides equally between the two paths, 
producing a voltage drop of V = !IR4 + Vz1 = !/R2 + Vzs =! + 1 = 
11 V. Providing an additional conducting path across the bridge 
in the form of a i-V Zener diode (analogous to the cross-linking 
string of length L = i m) produces the circuit of Fig. 3b, in which 
all the current flows through R2 , Z3 and ~, and the voltage 
drop has increased to V= IR2 + Vz3 + IR4 =!+~+!= li volts. 
No current flows through the 1-V Zener diodes, because the 
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FIG. 1 Mechanical network. Springs have zero unstretched length and spring 
constant k=l. Strings are inelastic. The string that links the tWo springs 
has length i m. Both safety strings have length 1 m. The weight exerts a 
force of ~ N. a. In the initial network, both safety strings are limp, and the 
distance X from support to weight is 1~ m. b, After the linking string is cut. 
the weight is higher at equilibrium; the new distance from support to weight 
is lim. 

voltage drop across each is only ~ V. Adding a new current­
carrying path, while leaving all previous paths in place, thus 
decreases the conductivity of the overall two-terminal network. 

As in the mechanical network, directionality is irrelevant. 
Although unidirectional Zener diodes were used in this example, 
they could be replaced with bidirectional Zener diodes3

• The 
current paths are set by the sign of the forcing function (the 
applied current) and the circuit topology, and would be identical 
to those of Fig. 3. In the circuit with bidirectional diodes, the 
applied current could be of either sign, with similar results 
(analogous to an interchange of weight and support in the 
mechanical model). 

For the topology of the Wheatstone bridge, it is easy to see 
under what conditions the paradox occurs. In Fig. 3b, let both 

-s:. 
Cll .. 
~ 
0 
; 1.25 

• u 
c: 
as -• i5 

0.25 0.5 0.75 
c 

Cross-link L 

FIG. 2 Distance X from the support to the weight, as a function of the 
length L of the cross-linking string. For any L between i and j m, the distance 
from the support to the weight will be smaller if the cross-link is cut. The 
dot shows the position of the network in Fig. la 

700 

the current !(A) and the voltage VZ3(V) of the bridging Zener 
Z3 be variable positive numbers. Then a paradoxical change in 
voltage drop occurs if 1-31/2< Vz3 <1-l/2. The right-hand 
inequality guarantees that current flows through z3. The left­
hand inequality guarantees that the conductivity is reduced by 
adding the additional path. As V Z3:;;.. 0, I must be less than 2 A. 
The maximum ratio of the voltage drop with the cross-bridge 
to the voltage drop without the cross-bridge (or distance X, for 
the mechanical analogue) is~. and occurs when I= 1 and VZ3 = 0 
(the voltage drop is 2 V with the bridge, 1! V without it). 

An arbitrary two-terminal electrical network with a fixed 
current source in which all branches contain only strictly linear 
resistors (those for which V = IR) cannot produce this paradoxi­
cal behaviour4-6. Consequently neither can a mechanical 
network in which all elements are massless, ideally elastic springs 
with zero unstretched length. These general results add force to 
the surprise produced by the examples in Figs 1 and 3. 

Additional paths may cause reduced flow in other electrical 
circuits in ways that are not counter-intuitive. The circuit in 
Figure 4, for example, consists of a bipolar transistor and one 
resistor. When the dashed path is open, or not connected, the 
circuit conducts heavily for any applied voltage greater than 
-1 V (or, equivalently, any applied current results in a voltage 
drop of -1 V). If the dashed path is connected (a conducting 
path is added), the transistor no longer conducts, and the circuit 
behaves like a single resistor, R; the conduction across the 
circuit is thus greatly reduced. This behaviour is hardly paradoxi­
cal, owing to the presence of an active three-terminal device 
(the transistor). By contrast, the circuits of Fig. 3 use only passive 
two-terminal devices, and there the increase in voltage drop 
with an additional current path seems genuinely counter-intui­
tive. 

The networks in Figs 1 and 3 are analogous to a hydraulic 

FIG. 3 Electrical network of ideal components. a. Initially, current flows 
symmetrically through left and right branches, and the voltage drop from 
source to ground is 11 V. b, When a ~-V Zener diode is introduced across 
the network. the current through the 1-V Zener diodes drops to zero and 
all current flows through the 1-0 resistors and the t-v Zener diode, producing 
a larger voltage drop from source to ground of li V. 
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network carrying an incompressible fluid in which the inelastic 
strings or Zener diodes are replaced by constant-pressure­
difference valves (sometimes called pressure-relief valves or 
safety valves) and the elastic springs or linear resistors are 
represented by tubing of appropriate length with incompressible 
viscous (Poiseuille) flow; fluid flow is then analogous to weight 
or electrical current, and pressure difference is analogous to 
extension or voltage drop7

• In an analogous thermal network, 
heat flow corresponds to weight or current, and temperature 
difference corresponds to extension or voltage drop8

• 

These physical paradoxes are closely connected to a paradox 
in traffic flow discovered by Braess 1• In an idealized traffic 
network, each individual seeks a minimal-cost (or shortest) path 
from a point of entry to a point of exit. In an uncongested 
network, the choices of paths through the network made by 
different individuals do not affect one another. Adding uncon­
gested routes to an uncongested network can only lower, or at 
worst not change, the time individuals require to travel through 
the network from a source to a destination. A congested network 
differs from an uncongested one in that, for at least one arc of 
a congested network, the cost (per person or vehicle) of travel 
along that arc strictly increases with increasing traffic flow. 
Braess1

•
2 discovered a congested transportation network such 

that, if a link is added and all individuals seek their best possible 
route, at the new equilibrium the cost of travel for all individuals 
is higher than before. 

Braess's paradox (additional capacity leading to more costly 
travel for all) occurs both in general transportation networks9

•
10 

and in a queuing network11
• Thus Braess's paradox is not a 

peculiarity of the mathematical formalism Braess used to 
describe a transportation network, but appears to be a more 
general property of some congested flows. Transportation and 
queuing networks are special examples of non-cooperative 
games, for which a general analogue of Braess 's paradox holds 12

: 

in the language of game theory, Nash equilibria of non-coopera­
tive games are generically Pareto-inefficient. 

Braess's original model translates to a mechanical network 
similar to Fig. 1, with each inelastic string replaced by an inelastic 
string in series with a spring; or, analogously, to an electrical 
circuit similar to Fig. 3, with each Zener diode replaced by a 
Zener diode in series with a resistor. The translations among 
transportation networks, mechanical networks, electric circuits 
and hydraulic networks are exact because there is conservation 
at every node (traffic in equals traffic out, mechanical force 
upward equals mechanical force downward at equilibrium, and 
so on) and because different paths from one node to another, 
if used, must have equal cost (travel time, stretch, voltage drop 
or pressure drop). Analogues of Braess's paradox should also 
exist in continuous representations of systems that obey 
Kirchhoff's laws. 

These mechanical and electrical analogues of Braess's para­
dox illustrate the possibility of counter-intuitive equilibrium 
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FIG. 4 A less surprising two-terminal electrical network in which an added 
current path (dotted) causes less current to flow from source to ground. 
The transistor acts as a switch. · 
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behavior in physical networks when the load imposed on an arc 
affects that arc's behaviour (stretch or voltage drop, in these 
examples). The task remains of specifying the general conditions 
under which such paradoxes c~n occur, for general network 
topologies and broad classes of components, possibly including 
nonlinear ones. The examples presented here suggest caution 
in assuming that physical networks will behave as normally 
expected when paths or components are added. 0 
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