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Figure 1: The friction force is exerted parallel to the surface and its strength depends on
the normal force.

Figure 2: The friction force is remarkably independent of the contact physics. A larger
normal force gives a larger friction force.

1 Friction and Drag

1.1 Energy loss

Newton’s first law posits that a body in motion keeps moving. From changes in momentum
we can infer the existence or nature of interaction forces. Alternatively interactions causes
changes in momentum.

However, we live in a world where masses don’t usually keep coasting. Exceptions are
pucks on an air hockey table, or on ice, or projectiles moving through vacuum.

Friction is a dissipative force between surfaces. Drag is due to hydrodynamic forces.
Both of these depend upon velocity, unlike gravity or the electric force.
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1.2 Friction

Consider a block on a horizontal surface. A force downward is exerted onto the block FN .
A horizontal force is also applied to the block FA. If the horizontal component of the force
is too low, the block will not move. If the force pushing it down is high, the block will
not move. Because the block does not move, the friction force exactly opposes the applied
horizontal force,

|Ffr| = |FA|. (1)

This is known as static friction. There is a maximum value for the static friction

Ffr ≤ µsFN (2)

defined with static friction coefficient µs. The friction force adjusts itself to match FA up
to a maximum value of µsFN so as to keep the block from moving. Once the friction force
reaches this maximum value, the block can start to slide.

We assume the block/surface contact is flat. We define a coordinate system with
directions perpendicular and parallel to the surface. We construct a unit vector n̂ that is
perpendicular to the surface and a unit vector parallel to the surface ŝ. The force exerted
by the surface on the block due is decomposed into normal and parallel components

F = FN n̂ + Ffrŝ. (3)

Kinetic friction or dynamic friction is the horizontal friction force when the block
slides. It is a constant force

Ffr = µkFN (4)

with dynamic friction coefficient µk. The force is applied in the opposite direction of the
direction of motion

Ffr = −µkFN sign(v)ŝ (5)

with velocity v. Here ŝ is in the direction of motion.
This model for friction forces is known as the Coulomb model. The details of the

surface are ignored in the Coulomb model for friction. The details of the number of
contacts, the area of contacts and forces between contacts, surface deformation and how
these depend on the normal force and speed are all ignored.

The coefficient of static friction is expected to be somewhat larger than the coefficient
of kinetic friction.

The commonly assumed Coulomb friction description is not smooth! It is non trivial
to numerically integrate a dynamical system with Coulomb friction because the transitions
are not smooth.

Friction is required for stopping a car, turning a car or motor cycle and many forms of
locomotion.
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Figure 3: The friction force Ffr as a function of applied horizontal force, FA. We show
static and kinetic friction regimes.

Figure 4: The friction force is stronger if there a force pushing the box downward (on left)
rather than pulling it upward (on right).
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1.3 Drag

Hydrodynamic or aerodynamic drag depend on the cross sectional area A, the velocity
with respect to the fluid (or air) v, and the density ρ of the fluid that is being displaced.

FD =
1

2
CDρAv

2. (6)

The rate that mass is swept up by the object is ρAv = dM/dt. However momentum per
unit volume is ρv so the rate that momentum is changed depends on ρAv2. This accounts
for the v2 dependence. The unit-less drag coefficient CD is sensitive to body shape and fluid
viscosity (or Reynolds number). Drag is applied in the direction opposite to the motion
(with respect to the fluid).

Figure 5: The rate that mass of the fluid is swept up dM
dt = ρAv where A is the cross

sectional area, ρ is the density of the fluid and v is the velocity. The rate of momentum
change is dp

dt ∼
dM
dt v = ρAv2. The drag force scales with these physical quantities.

For a falling raindrop of mass M we balance the drag force against the gravitational
force

1

2
CDρairAv

2 = Mg (7)

giving terminal velocity

vterm =

√
Mg

1
2CDρairA

. (8)

If the radius of the drop is R, then M ∝ R3 and A ∝ R2 and we expect a higher terminal
velocity for larger raindrops.

Hydrodynamic drag limits the speed of boats and fish, and sets a terminal velocity for
raindrops, where the drag force exactly balances the gravitational force.
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Figure 6: A falling raindrop reaches terminal velocity when the aerodynamic drag force
balances gravity.

1.4 Dashpots

Another common frictional type of force is with a dashpot. Here the force is proportional
to the velocity and it is applied opposite to the velocity

F = −αv. (9)

Dashpots can be hydraulic or contain a viscous fluid or an air piston.
The coefficient α has units of mass/time.
Dashpots, drag and friction are velocity dependent (not position dependent) forces.

Why does friction depend on velocity? It depends on velocity because it is always exerted
in the direction that is opposite the motion.

2 Friction and damping examples

2.1 Damped motion

Consider a point mass with mass m that is damped with a dashpot. The dashpot exerts a
force F = −αv. Newtons law give

ma = F = −αv

m
d2x

dt2
= −αdx

dt
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The acceleration a = dv
dt so we can write Newton’s equation as

dv

dt
= − α

m
v. (10)

We solve this equation by integrating it

dv

v
= − α

m
dt

ln v = − α
m

+ constant

v = e−
α
m
tC ′

where C ′ is a constant. Using t = 0 we find that C ′ = v0 the initial velocity.
The solution to the first order differential equation (equation 10) is an exponential

decay
v(t) = v0e

− α
m
t (11)

where v0 is an initial velocity. The velocity decays to zero. We can integrate a second time
to find

x(t) =
v0m

α

(
1− e−

α
m
t
)

+ x0 (12)

where x0 is the initial value of x.

Figure 7: A block on an inclined plane. The normal and tangential components of the
gravitational force are shown in red. The friction force Fµ opposes the tangential component
of the gravitational force, but its strength depends on the normal force FN .

2.2 A block on an inclined plane with friction and sandpiles

A block of mass m rests on an inclined plane (see Figure 7). The angle between the plane
and horizontal is θ. There is friction between the block base and the surface of the inclined
plane.
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The angle θ is slowly raised. When θ is high enough the block begins to slide! We
denote θ∗ as the critical angle, that is just high enough that the block starts to slide.

The component of the gravitational force that is normal to the surface is

FN = mg cos θ

The component of the gravitational force that is tangential to the surface is

FT = mg sin θ

The maximum static friction force is

Fµs = µsFN = µsmg cos θ (13)

where µs is the static coefficient of friction.
When FT > Fµ then gravity exceeds the maximum static friction force and the block

can slide. At the critical angle when the block starts to slide

FT = Fµs

mg sin θ∗ = µsmg cos θ∗

tan θ∗ = µs

θ∗ = arctanµs

We can solve for the coefficient of friction by measuring the critical angle θ∗.
A friction coefficient between particles of sand can be measured from the maximum

slope of a sand pile. Sand piles are often conical shapes (see Figure 8). If the slope exceeds
the friction coefficient, then the sand starts to flow. It flows until the critical slope is
reached. We have found that many granular materials (agricultural grains, sand, gravel,
plastic beeds) have a critical angle of about 30◦. In our lab, an exception in our lab was
polystyrene beads. They liked to slide and the angle is lower.

Figure 8: A sand pile. The slope is related to the static coefficient of friction.

2.3 Stopping depth for drag

Consider a mass that experiencing a drag force, FDrag ∝ v2. Because drag forces depend
on the square of velocity we can write the equation of motion as

dv

dt
= −αv2. (14)
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The coefficient (from equation 6)

α =
1

2m
CDρA

2. (15)

The coefficient α has units of 1/length. We solve equation 14 by integrating it

dv

v2
= −αdt

−1

v
= −αt+ constant

v(t) =
1

αt+ v−10

.

The time for the velocity to drop depends on the time 1
αv0

. Physically 1/α is a stopping
depth and is the time it takes the moving object to sweep up about its own mass in fluid.

3 Work, Energy and Power

The energy principle states that

∆Esystem = Wsurr +Q

where ∆Esystem is the energy of the system and Wsurr is the work done by the surroundings
on the system. The heat, Q is the energy flow (or heat flow) from surroundings into the
system due to a difference in temperature.

When a force F is applied to an object and it produces a displacement d the work
done by the force is

W ≡ F · d = Fd cos θ

where θ is the angle between the displacement and force vectors. Work is a scalar, is in
units of energy or Joules (J) and can be positive or negative or zero.

A Joule is N m is kg m2/s2.

3.1 The sign of work

If the force and displacement are in the same direction the work is positive. The system
gains energy.

3.2 Power

Power is the rate of work or work per unit time

P =
dW

dt
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The units of power are J/s or W (Watts) or kg m2/s3.
Consider a force F that is exerted over a small distance dx. The work done is

dW = Fdx.

If we divide both sides by dt we find

dW = Fdx

dW

dt
= F

dx

dt
P = Fv

More generally
P = F · v.

Instantaneously the power depends on force times velocity.

3.3 A circular orbit

Consider an object in a circular orbit due to a gravitational interaction. The force is radial
but the velocity is tangential. Because F · v = 0, no work is done by the radial force. This
means the total energy is conserved.

Figure 9: Integrating the work done by a varying force.

3.4 Kinetic energy

We first discuss the non-relativistic setting and then generalize to the relativistic one.
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3.4.1 Kinetic energy in the non relativistic limit

Consider a particle of mass m initially at rest at t = t0. We apply a constant force F = ma
for time ∆t = t1 − t0. During the acceleration,

v = a(t− t0).

The final velocity is
v1 = a(t1 − t0).

We take x0 and x1 to be initial and final positions. To find the total work we integrate
force times distance

W =

∫ x1

x0

F · dx

=

∫ t1

t0

F · dx
dt

dt

=

∫ t1

t0

ma · v dt

=

∫ t1

t0

ma · a(t− t0) dt

= ma2
(
t2

2
− t0t

) ∣∣∣t1
t0

= ma2
(t1 − t0)2

2

If the initial velocity v0 = 0 then

W =
mv21

2

We recognize this as the kinetic energy. When applying a constant force to an initially
stationary object, the work done is equal to the kinetic energy.

What if the initial velocity is not zero? Under constant acceleration

v1 = a(t1 − t0) + v0
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We insert this into our expression for the work and find that

W =

∫ t1

t0

ma · v dt

=

∫ t1

t0

ma · (a(t1 − t0) + v0) dt

=

∫ t1

t0

m [a · a(t− t0) + a · v0] dt

= m

[
a2
(
t2

2
− t0t

)
+ma · v0t

] ∣∣∣∣∣
t1

t0

= ma2
(t1 − t0)2

2
+ma · v0(t1 − t0).

The difference or gain in kinetic energy is

∆K =
m

2

[
v21 − v20

]
=
m

2

[
(a(t1 − t0) + v0)

2 − v20
]

=
m

2

[
a2(t1 − t0)2 + 2a · v0(t1 − t0)

]
= ma2

(t1 − t0)2

2
+ma · v0(t1 − t0).

We recognize the work done on the mass by the force as equivalent to the gain in kinetic
energy, W = ∆K.

In summary, if a constant force is applied to a particle, the work done is equal to the
change in kinetic energy.

With a changing force, we integrate force times displacement to find the total work.
The total work done is also equal to the change in kinetic energy. This follows because we
can sum the changes that take place during each time interval.

3.4.2 An example of the work done by friction on a sliding block

A block of mass m is on a horizontal surface with kinetic friction coefficient µk. It is
initially sliding with velocity v0.

It slides a distance d at which point it stops.
What is the distance d?
The initial kinetic energy is 1

2mv
2
0. The change in kinetic energy is equal to ∆K = 1

2mv
2
0

since the final kinetic energy is zero.
The friction force is Ffr = µkFN = µkmg and is applied a distance d.
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Figure 10: A block slides and comes to rest at a distance d from its initial position. The
block initially has velocity v0. The horizontal surface has a kinetic friction coefficient
µk. The friction force on the block is Ffr = µkFN = µkmg. Friction is responsible for
decellerating the block.

The work done by the friction force is

W = µkmgd

The work is equal to the change in kinetic energy

∆K = W

1

2
mv20 = µkmgd

giving distance

d =
v20

2gµk
.

3.4.3 Energy for relativistic particles

We now generalize for the relativistic setting. To make this calculation simpler we work in
1 dimension only. As before the work done across a distance dx is

W = F dx.

This means that the change in energy

dE = F dx =
dp

dt
dx.

This means that
dE

dx
=
dp

dt
(16)

Recall the relativistic relation for momentum

p = γmv
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with

γ =
1√

1− v2/c2

Let us compute the time derivative

dp

dt
=

d

dt

(
mv√

1− v2/c2

)
(17)

=
mdv

dt√
1− v2/c2

− (mv)

(1− v2/c2)
3
2

(− v
c2

dv

dt
)

=
mdv

dt

(1− v2/c2)
3
2

(
1− v2

c2
+
v2

c2

)
=

m

(1− v2/c2)
3
2

dv

dt
(18)

With
dv

dt
=
dv

dx

dx

dt
=
dv

dx
v

we can write equation 18 as

dp

dt
=

mv

(1− v2/c2)
3
2

dv

dx
(19)

We want a definition for E such that equation 16 is satisfied. It turns out that

E =
mc2√

1− v2/c2
= γmc2 (20)

satisfies this condition. Let’s compute dE/dx to check

dE

dx
=

mc2

(1− v2/c2)
3
2

(−1/2)(−2)
v

c2
dv

dx

=
mv

(1− v2/c2)
3
2

dv

dx

and this is equivalent to our expression for dp/dt above (equation 19). Because we only
considered one direction of motion (in the x direction) we have shown that

dE

dx
=
dpx
dt

(21)

is consistent with the definition for energy E = γmc2.
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It is more work to show that the same relation is true if the momentum has components
in the other directions so that

dE

dx
=
dpx
dt

dE

dy
=
dpy
dt

dE

dz
=
dpz
dt

are consistent with the definition for energy E = γmc2. Using the gradient operator

∇E =

(
∂E

∂x
,
∂E

∂y
,
∂E

∂z

)
we can write these three expressions as

∇E =
dp

dt
. (22)

3.5 Rest mass, rest energy and kinetic energy

Consider our definition for energy E = γmc2 that is consistent with

dE

dx
=
dp

dt

with momentum p = γmv. With v = 0, γ = 1 and

E0 = lim
v→0

γmc2 = mc2 (23)

This is known as the rest energy.
What is the kinetic energy, K?
We can update our definition of kinetic energy

K ≡ E −mc2 = mc2

(
1√

1− v2/c2
− 1

)
. (24)

It is useful to expand in a Taylor series about x = 0. Here is an example of a Taylor
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expansion of
√

1 + x:

f(x) =
√

1 + x

f(0) = 1

f ′(x) =
1

2
√

1 + x

f ′(0) =
1

2

f(x) ∼ f(0) + f ′(0)x+ .... = 1 +
x

2
+ ...

√
1 + x ≈ 1 +

x

2

Likewise we can do a similar expansion for

f(x) =
1√

1− x
f(0) = 1

f ′(x) =
1

2(1− x)
3
2

f ′(0) =
1

2

f(x) ∼ f(0) + f ′(0)x+ .... = 1 +
x

2
+ ...

1√
1− x

= 1 +
x

2
+ ....

We use this expansion to rewrite equation 24.
In the limit of small v

K ≡ E −mc2 = mc2

(
1√

1− v2/c2
− 1

)

≈ mc2
(

1 +
v2

2c2
− 1

)
=
mv2

2
(25)

where I took the first term in a Taylor expansion. We recover the non-relativistic form for
kinetic energy.

Notice that our definitions for energy and momentum both depend on velocity v. This
means that both energy and momentum depend on the observer reference frame. The rest
mass is a constant and is the same in any reference frame.
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We can compute

E2 − p2c2 = γ2m2c4 − γ2m2v2c2

= m2c4γ2(1− v2/c2)
= (mc2)2. (26)

Because E2 − p2c2 depends only on the rest energy, it is frame independent. Also if you
know the rest mass and momentum p you can compute energy E and vice versa.

This relation follows from the Minkowski metric and considering (E,p) as a four-vector.
The length of the four vector is a relativistic invariant.

Because rest mass or rest energy is an invariant, in high energy astrophysics or particle
physics, particle masses are often given in units of rest energy or Erest = mc2.

3.5.1 Work on relativistic particles

What happens if a force F is applied to a relativistic particle over a distance d? The work
done is equal to the change in energy ∆E.

For example, if the particle initially has energy Einit = γinitmc
2 and the final particle

energy is Efinal = γfinalmc
2 then the work

W = Fd = ∆E = Efinal − Einit = (γfinal − γinit)mc2.

4 Summary

• Work W =
∫
F · dx.

• Power P = dW
dt = F · v.

• Lorenz factor γ = 1√
1− v2

c2

.

• Rest mass energy E0 = mc2.

• Energy, momentum for relativistic particles.

E = γmc2, p = γmv.

• Relativistic invariant: E2 − p2c2 = (mc2)2.

• Kinetic energy K = E −mc2 and K = mv2/2 for v � c.

• Energy principle (valid for relativistic and non-relativistic particles).

dE

dx
=
dp

dt

This is equivalent to ∆E = W because dE = dp
dt · dx = F · dx = dW .
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