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8 Props 24

1 Matter and elementary particles

Elementary particles of the standard model are point like. They carry spin, mass, and
charge (electron and color). See for example, The standard model.

Quarks are confined in hadrons. Hadrons are comprised of 2 or three quarks and are
colorless.

Protons and neutrons are hadrons and they are the building blocks of atomic nuclei.
Nuclei and electrons are building blocks of atoms.
Atoms are building blocks of molecules, solids and liquids, plasmas, etc.
Baryons are hadrons, they contain 3 quarks and they are fermionic. That means their

spins are half integers.
Mesons contain a quark and an anti-quark and they have integer spins and so are

bosonic.
Quarks have electric charge of ±2/3 or ±1/3.
The electron and electron neutrino are leptons. Ditto for the muon and tau leptons.

Leptons have spin 1/2. The neutrinos have zero charge. The muon, electron and tau all
have charge of -1.

The quarks, electrons and neutrinos all have antiparticles with opposite charges.
The recent detected Higgs boson is also part of the standard model.

1.1 Fundamental Forces

There are four fundamental forces: gravity, the electromagnetic force, the weak force and
the strong force.

On large scales we can ignore short range forces. Charges averages to zero on large
scales. Gravity wins on large distances even though it is usually the weakest force.

Gravity is always attractive. Mass is always positive. Mass determines the strength of
the gravitational interaction. Gravity might have a force carrier called the graviton, but
these have not been detected.

Interactions involving leptons and neutrinos occur via the weak force. Often timescales
are long (e.g., neutron decay). The weak force is carried by ±W,Z bosons.

The electromagnetic force can either be attractive or repulsive depending upon the
signs of the charges. The strength of the interaction between two particles depends on
the charges. Photons are also electromagnetic waves and are the force carrier for the
electromagnetic force.

The strong force keeps atomic nuclei together. It is mediated by gluons. It is short
range and relevant for atomic fusion and processes of nuclear burning that light up stars.
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Figure 1: The particles of the standard model. The Higgs boson should also be included!

What is missing in the standard model? While the strong, weak and electromagnetic
forces can be described in a single unifying theory, gravity is not part of this theory. There
are numerous constants needed to specify the properties of the standard model. It might
be nice to have a theory that would predict them. Dark matter and dark energy are not
predicted by the standard model. So we lack a theory for most of the mass in the universe.

2 Motion

A particle without any forces acting on it has a constant velocity. The velocity is constant
in direction and in magnitude. (We are assuming flat space time!).

If a particle has a changing velocity then it is accelerating (or decelerating).
A force acting on a particle will change its velocity. We can infer that a force is acting

on a particle by the acceleration on the particle.

2.1 One dimension

In one dimension a point particle has position x(t).
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The particle velocity

v(t) =
dx

dt
.

Its acceleration

a(t) =
dv

dt
=
d2x

dt2
.

If the acceleration is constant we can integrate

a =
d2x

dt2
=

d

dt

(
dx

dt

)
at =

dx

dt
+ constant

v = at− constant

v(t) = at+ v0

where v0 is the velocity at t = 0. We can integrate again

dx

dt
= at+ v0

x =
at2

2
+ v0t+ constant

x(t) =
at2

2
+ v0t+ x0

where x0 is the position at t = 0.

2.2 Motion in 3 dimensions

The particle position is now given by 3 coordinates

x(t) = (x(t), y(t), z(t))

The position x also defines a vector from the origin to the position of the particle. The
particle velocity is also a vector

v(t) =
dx

dt

The velocity has both length and direction. The speed v = |v| is the magnitude of this
vector. Acceleration is also a vector

a =
dv

dt
=
d2x

dt2
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Figure 2: If a particle is at x1 at t = 0 and at x2 at t = ∆t then the velocity is v = ∆x/∆t.
The red arrow shows that this gives the direction of motion.

Consider a constant acceleration a = (ax, ay, az) We integrate and find velocity com-
ponents

vx(t) = axt+ vx0

vy(t) = ayt+ vy0

vz(t) = azt+ vz0

where v0 = (vx0, vy0, vz0) is the velocity at time t = 0. The position as a function of time

x(t) = ax
t2

2
+ vx0t+ x0

y(t) = ay
t2

2
+ vy0t+ y0

z(t) = az
t2

2
+ vz0t+ z0

where x0 = (x0, y0, z0) is the position at t = 0. We could also write

v(t) = at+ v0

x(t) = a
t2

2
+ v0t+ x0

2.3 Projectile motion

Gravitational acceleration is to a good approximation downward and constant on the sur-
face of the Earth; a = (0, 0,−g) or a = −gẑ where ẑ is a unit vector pointing upward. The
equation of motion for a projectile is

v(t) = −gtẑ + v0

x(t) = −g t
2

2
ẑ + v0t+ x0
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We can also write

x(t) = v0xt+ x0

y(t) = v0yt+ y0

z(t) = −g t
2

2
+ v0zt+ z0

The x, y directions coast. There is only acceleration in the z direction.
Even though it looks simple for an individual particle, collective projectile motion is

not always simple.
For example: splash craters and pulses into gravel
A movie of a splash crater
Another movie of a splash crater
A high speed video of a bucket of gravel hit from underneath with a hammer
A splash ejecta curtain is only affected by gravity, yet particles land at different times

and different places. The curtain looks V-shaped. The pulse into gravel launches particles
into the air. When they land the largest particles are left on top.

Let’s manipulate our equation of motion

v2(t) = (−gtẑ + v0)
2 = g2t2 + v20 − 2v0zgt

gz(t) = −g2 t
2

2
+ v0zgt+ gz0

v2

2
+ gz = g2

t2

2
− g2 t

2

2
+
v20
2
− v0zgt+ v0zgt+ gz0

=
v20
2

+ gz0

= constant.

We recognize a sum of kinetic and potential energy (per unit mass) that remains constant.
This is equivalent to conservation of energy.

2.4 Averaging

Consider a particle that is at x = 0 at t = 0 and is at x = L at t = T . In the time interval,
the particle’s velocity is v(t).

L =

∫ L

0
dx

=

∫ T

0

dx

dt
dt

=

∫ T

0
v(t)dt
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The average velocity in the interval

v̄ =
1

T

∫ T

0
v(t) dt

=
L

T

Consider dividing the time interval into N bins, each dt long. The number of bins is
N = T/dt so the average velocity

v̄ =
1

N

∑
vi =

1

T

∑
vidt =

1

T

∫
v dt

The average velocity v̄ = L/T = ∆x/∆t does not depend upon the particle trajectory
path or how velocity depends on time, it only depends on the path end points (their
positions and times).

Figure 3: The average velocity across an interval only depends on the positions at the
beginning and end of the path taken. On the left we show two paths that have the same
starting and end points. In the right hand plot, the integrated area or ∆x =

∫
v dt under

the two curves is the same.

A similar computation can be done for the average acceleration. Consider an interval
starting at t1 and ending at t2.

a =
dv

dt∫ t2

t1

adt =

∫ t2

t1

dv

dt
dt =

∫ v2

v1

dv = v2 − v1 = ∆v

The area under an acceleration curve is the change in velocity. If we divide both sides by
the length of the interval, the average acceleration

ā =
1

t2 − t1

∫ t2

t1

adt =
∆v

∆t

where ∆t = t2 − t1.
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3 Vectors

Vectors are used to describe displacements or directions. Vectors have both direction and
length. Things described with vectors are: velocity, displacement, position from origin,
acceleration, force, tangent vector, and momentum.

Figure 4: Vector components. The length V =
√
V 2
x + V 2

y . Also Vx = V cos θ, Vy = V sin θ,

tan θ = Vy/Vx.

Figure 5: Vector addition.
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3.1 Unit vectors

If we have a vector A = (Ax, Ay, Az), then the vector

Â =
A

|A|
=

(
Ax
A
,
Ay
A
,
Az
A

)
is a vector of length 1 that is in the same direction as A. We call this vector a unit vector

because it has length unity. We recall that |A| =
√
A2
x +A2

y +A2
z. Let’s check that the

length |Â| = 1.

|Â| =

√
A2
x

A2
+
A2
y

A2
+
A2
z

A2
=

√
A2

A2
= 1. (1)

3.2 Dot products

Dot products
a · b = axbx + ayby + azbz = ab cos θ

where θ is the angle between the vectors. It is useful to know that

(a + b)2 = a2 + b2 + 2a · b.

Figure 6: Dot product and components of one vector that are parallel and perpendicular
to another vector. This picture will become useful when we consider force components.
The green vector has length a cos θ and is in the direction of b. The red vector has length
a sin θ and is in a direction perpendicular to b. The vector a is decomposed into components
perpendicular to and parallel to b.
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4 Circular motion and polar coordinates

For problems involving rotation (like Keplerian motion) the solutions are sometimes much
neater in polar coordinates. In 2d

r = (x, y) = (r cos θ, r sin θ).

The inverse transformation

R =
√
x2 + y2

θ = atan2 (y, x) .

Here atan2 is a function that depends on atan. It returns an angle in [0, 2π] or [−π, π]
and in the correct quadrant. Specifically atan2(y, x) returns atan(y/x) plus a multiple of
π depending upon the signs of x and y.

Polar coordinates can be extended to 3D with r, θ, z and this system known as cylin-
drical coordinates.

4.1 Unit vectors in polar coordinates

With a particle at x, y or R, θ, it is often useful to define two unit vectors, r̂ and θ̂.

Figure 7: Illustrating polar coordinates for a point mass undergoing uniform circular mo-
tion.

r̂ =
r

r
=

(x, y)√
x2 + y2

= (cos θ, sin θ)

θ̂ =
(−y, x)√
x2 + y2

= (− sin θ, cos θ)
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These two vectors are perpendicular as r̂ · θ̂ = 0. The sign for θ̂ is chosen so that it is
pointing in the direction of rotation if the angle θ is increasing.

The position
r = rr̂

The velocity

v = ṙr̂ + r
d

dt
r̂ (2)

where ṙ = dr
dt and

dr̂

dt
=

d

dt
(cos θ, sin θ)

= (− sin θ, cos θ)θ̇

= θ̇θ̂

It will also be useful to compute

dθ̂

dt
=

d

dt
(− sin θ, cos θ)

= (− cos θ,− sin θ)θ̇

= −r̂θ̇.

We update equation 2

v = ṙr̂ + rθ̇θ̂

= vrr̂ + vθθ̂.

With components in polar coordinates vr = ṙ and vθ = rθ̇. Here vr is the radial velocity
component and vθ is the tangential velocity component. An object undergoing uniform
circular motion has vr = 0. Because r̂ and θ̂ are perpendicular and unit vectors we can
use them as a basis to give components of vectors, including velocity. However, r̂ and θ̂
are not fixed as they move with the particle and we need to remember that when taking
derivatives w.r.t. time.

Inspecting Figure 7, if θ is increasing the instantaneous tangential velocity is rθ̇.
The angular rotation rate

Ω = θ̇ =
dθ

dt

Equations such as l = rθ or vθ = Rθ̇ are incorrect unless θ is in radians. The units of
angular rotation or angular velocity are rad/s.
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4.2 Uniform rotation and acceleration in polar coordinates

We take the time derivative of our equation for velocity

v = ṙr̂ + rθ̇θ̂

a =
dv

dt

= r̈r̂ + ṙ
dr̂

dt
+ ṙθ̇θ̂ + rθ̈θ̂ + rθ̇

dθ̂

dt

= r̈r̂ + ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂
= (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂

The acceleration vector in terms of radial and tangential components

a = arr̂ + aθθ̂

ar = r̈ − rθ̇2 (3)

aθ = 2ṙθ̇ + rθ̈. (4)

The polar coordinate frame is rotating so in equation 4 there is a Coriolis term.
The angular acceleration

θ̈ =
d2θ

dt2
=
dΩ

dt

The angular acceleration is the rate of change of the angular rotation rate.
In uniform circular motion ṙ = 0, θ̈ = 0 and

a = −rθ̇2r̂. (5)

The acceleration is radially inward and this is sometimes called centripetal acceleration.
As the tangential velocity component vθ = rθ̇ we can also write the acceleration as

a = −v
2

r
r̂.

Let’s check our relation for acceleration using Cartesian coordinates. Uniform circular
motion with constant radius r and angular rotation rate Ω

(x, y) = (R cos(Ωt), R sin(Ωt))

where initial conditions are (x0, y0) = (R, 0) at t = 0. The velocity

(vx, vy) = (−RΩ sin(Ωt), RΩ cos(Ωt))
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Figure 8: For an object undergoing uniform circular motion around the origin, the accel-
eration vector points toward the origin.

The acceleration
(ax, ay) = (−RΩ2 cos(Ωt),−RΩ2 sin(Ωt))

The magnitude of the acceleration is

a =
√
a2x + a2y = RΩ2(cos2(Ωt) + sin2(Ωt)) = RΩ2

To find the radial component of acceleration

ar = a · r̂
= (−RΩ2 cos(Ωt),−RΩ2 sin(Ωt)) · (cos(Ωt), sin(Ωt))

= −RΩ2(cos2(Ωt) + sin2(Ωt))

= −RΩ2

As the absolute value of this is equivalent to the magnitude of the acceleration (or the length
of the acceleration vector), we know that the tangential component of the acceleration is
zero. This is equivalent to the expression we derived in polar coordinates (equation 5).

4.3 Rotation period, angular frequency and frequency

Consider
x(t) = R cos(Ωt) y(t) = R sin(Ωt)
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Figure 9: For uniform circular motion, we plot θ(t), x(t), y(t) vs t and θ̇ vs θ. In the middle
plot x is a blue line and y is a cyan line.

with Ω = θ̇ is the angular rotation rate or the angular frequency.
What is the rotation period P?
The angle Ωt must advance from 0 to 2π during a full rotation period. We set ΩP = 2π.

We solve for rotation period

P =
2π

Ω
.

Angular frequency is not the same as frequency. Often people write x = R cos(2πft)
where f is a frequency that is cycles per second. With frequency f equal to cycles per
second P = 1/f . It may be useful to remember that

Ω = 2πf.

5 Momentum changes and force

A force can be applied for a small time interval. In this case it is an impulse and it causes
a change in the particle’s momentum and velocity. Alternatively, a change in momentum
∆p over a small duration of time ∆t can be used to estimate the force F on the particle.

∆p = F∆t

or equivalently

F =
∆p

∆t

This is sometimes called the momentum principle. In other words

F =
dp

dt
(6)

Force is a rate of change of momentum.
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The non-relativistic limit is
v � c

or the speed v is much lower than the speed of light c. In the non-relativistic limit,
momentum is proportional to velocity

p = mv

dp

dt
= m

d2x

dt2
= ma.

Equation 6 reduces to the well known

F = ma.

Force is mass times acceleration is one of Newton’s laws.
Force is given in N or Newtons. In the MKS system, N = kg m/s2.
At high speeds p 6= mv. Nothing can go faster than the speed of light, c. However

the closer the speed gets to the speed of light, the more momentum it has. A relativistic
generalization of momentum is

p ≡ γmv (7)

with

γ ≡ 1√
1− β2

β ≡ v

c

As v → c or β → 1, and we find γ →∞.
As v → 0, β → 0 and γ → 1.
The factor γ is known as the Lorenz factor. The momentum can get infinitely large as

speed gets closer to the speed of light. Equation 7 has a factor of mass in it, which is now
called the rest mass. By modifying our definition for momentum, the relation between
force and momentum change F = dp

dt is valid even at relativistic velocities.

5.1 Principles of relativity and momentum

• In flat space time and in the absence of external forces, and as viewed from a non-
accelerating reference frame, particles move at constant velocity and in a straight
line. This is Newton’s first law.

• The laws of physics should be independent of the observer velocity. Physical laws
work in the same way for an observer in uniform motion as for an observer at rest.
This is the principle of relativity.

• Forces or interactions cause changes in momentum. (The momentum principle). The
momentum principal is consistent with Newton’s law F = ma in the non-relativistic
limit.
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5.2 Predicting positions and velocities

We have a point particle of rest mass m, initial velocity v0 and initial position x0. An
external force is applied on the particle, F. The force could be time, position and possibly
even velocity dependent.

What is the initial momentum? If the velocity is small compared to the speed of light
then the initial momentum is p0 = mv0.

If the velocity is large then equation 7 gives the initial momentum

p0 = γ0mv0.

After a time ∆t what are the particle position, velocity and momentum?

∆p = F∆t

pnew − p0 = F∆t

pnew = p0 + F∆t

This gives us a formula for the new momentum in terms of the old one (or initial one), the
force and the time step ∆t.

What is the new velocity?
We want to find the new velocity vnew from its momentum. Using equation 7 (p =

γmv), we solve for v in terms of p.

p2 = γ2m2v2 =
m2v2

1− v2/c2

p2(1− v2/c2) = m2v2

p2 = (p2/c2 +m2)v2

v2 =
p2

p2/c2 +m2

Restoring the direction

v =
p/m√

1 + p2

m2c2

.

We plug in the new momentum to find the new velocity

vnew =
pnew/m√
1 + p2new

m2c2
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What is the new position?

dx

dt
= v

xnew − x0

∆t
= vnew

xnew = x0 + vnew∆t.

We can repeat these steps, starting with a new initial condition (using the new momen-
tum and position instead of the initial momentum and position). This is a first order or
Eulerian numerical integration technique. It’s not all that accurate. However, if you use a
small time step and don’t integrate for very long, it can give decent numerical results.

Figure 10: An integration of position and momentum for a particle that is affected by an
external force.

6 The gravitational force

We have two point masses, m1 at position x1 and m2 at position x2. The vector between
the two is

r21 = x2 − x1.

This vector goes from x1 to x2. The length of this vector is r21 = |r21|. We can again
define a unit vector

r̂21 =
x2 − x1

r21
.

The gravitational force from m2 onto m1 is

F21 =
Gm1m2

r221
r̂21 =

Gm1m2

r321
r21.
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This points in the direction of m2 and so the force is an attractive force.
The gravitational force from m1 onto m2

F12 =
Gm1m2

r221
r̂12 = −F21

This is equal and opposite to the force from m2 onto m1.
This is Newton’s third law and the rule is sometimes called reciprocity.
Both forces are along the direction connecting the two point masses.
The gravitational constant

G = 6.7× 10−11 N m2

kg2
or

kg−1 m3

s2

where N is a Newton.

Figure 11: The force exerted by m1 onto m2 is equal and opposite to that exerted by m2

onto m1.

If there are more than one mass near m1 then the forces from each one just add on to
the force exerted on to m1.

In an N-body system the force on M with position X due to a bunch of masses mi,
each at position xi is

FM =
∑
i

GMmi

|xi −X|3
(xi −X)

When computing this sum, you need to keep track of the vector directions of each particle.

6.1 The shell theorem

Consider a uniform density spherical shell with total mass Mshell, radius R shell thickness
h (see Figures 13 and 14). The position of its center is x. We now consider another point
mass M at position y. If y is outside the shell, the gravitational force from the massive

18



Figure 12: In an N-body simulation, a particle with mass M feels the gravitational attrac-
tive forces from all other massive particles.

shell on the point mass m is the same as that from a point mass of mass Mshell at position
x. If y is inside the shell the gravitational force from the shell on m is zero.

We consider a uniform density sphere with total mass Msphere and central position x.
A uniform density sphere is a sum of shells. Outside the sphere, the gravitational force it
is equal to that of that of a point mass with mass Msphere and position x.

How is the shell theorem proved? It takes a only few lines to show that it is true using
Gaus’ law which is taught as part of multivariable calculus.

Suppose we have a uniform density circular ring of mass. Sometimes the force from a
planet is estimated by assuming its mass is spread evenly about its orbit into a ring (this
is known as a secular approximation). Consider another particle in the same plane as the
massive ring and inside the ring.

Is the gravitational force from the ring equal to zero at points within the ring? Recall
that the gravitational force from a uniform density shell is zero for points inside the shell.

The answer is no. The shell would pull the particle radially outward. There is no handy
theorem that gives a simple formula for the force. The force can be written in terms of a
special function known as a Laplace integral.

19



Figure 13: A uniform density shell. On the left the force from the mass on the shell on a
smaller mass outside the shell is the integral of the forces from each parcel of mass in the
shell. This integral is equal to the force exerted by a point mass of the same mass as the
shell that is located in the center of the shell. On the right the forces from each mass parcel
cancel out. The shell does not exert any gravitational force on points inside the shell.

Figure 14: Outside a uniform density spherical shell and outside a uniform density sphere,
both objects exert the same gravitational force as a point mass with the same mass centered
at their centers. At points inside the shell, the gravitational force from the shell is zero.

6.2 Relating the gravitational constants: G and g

We consider a mass m on the surface of the Earth and take M and R to be the mass and
radius of the Earth. The gravitational force on m is

F = −GMm

R2
r̂

where r̂ is the vector pointing away from the center of the Earth. Over small distances
we ignore the curvature of the surface and associate r̂ = ẑ. Here we have oriented our
Cartesian coordinate system so that +z is upward. Force per unit mass is an acceleration

F

m
= −GM

R2
ẑ

20



Figure 15: On large scales the gravitational force from the Earth points radially towards
the center of the Earth. To a pretty good approximation and on small scales we can
work in a Cartesian coordinate system with a constant gravitational acceleration pointing
downward.

Locally the distance to the center of the Earth does not significant change giving an accel-
eration

g =
GM

R2

Using the radius and mass of the Earth, and the gravitational constant G we can compute
g. On Earth the gravitational acceleration g = 9.8 m/s2 or N/kg. Alternatively, if we know
the gravitational constant G, and radius of the Earth and have measured g we would then
know the mass of the Earth.

The downward force on m can also be written

F = −mgẑ.

6.3 Newton’s Third law

The force from mass m1 exerted on m2 is equal and opposite to that from m2 exerted on
m1. That forces are equal and oppositely applied is known as Newton’s third law.

Let’s look at the momenta of the two particles p1 and p2. Because forces are equal and
opposite

F12 = −F21.

Recall that dp/dt = F.

dp1

dt
= −dp2

dt
d

dt
(p1 + p2) = 0

p1 + p2 = constant.

This means that the sum of momenta is conserved.
We have been talking about gravitational forces, but Newton’s third law and conserva-

tion of momenta applies for all types of pair-wise forces on point masses.
What happens for relativistic particles. Our gravitational force is instantaneously ap-

plied. So how does this information travel across space instantaneously from one particle
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to the other one? This would be faster than the speed of light! A better theory of gravity
would propagate the force with gravitons. A relativistic and quantum mechanical theory
for the electromagnetic force exists (and it is known as Quantum electrodynamics). How-
ever, we lack a tested theory for gravity that is both consistent with General Relativity
and Quantum mechanics.

6.4 Circular orbits

We consider an object of mass m in orbit about a mass M with distance between them R.
With m�M we can take M fixed at the origin and m in a circular orbit about M . The
gravitational attractive force balances mass times centripetal acceleration

−GmM
R2

r̂ = −mv2

R
r̂.

We solve for the tangential velocity

v =

√
GM

R

Using v = RΩ we find the angular rotation

Ω =

√
GM

R3
.

From the angular rotation rate we find the rotation period

P =
2π

Ω
= 2π

√
R3

GM
.

If we square this and rearrange it

P 2 =
R34π2

GM
.

This is essentially Kepler’s third law but with radius instead of the more general semi-
major axis a. If the orbit is not a perfect circle but an ellipse the relation is also true but
with R replaced by a.

6.5 Kepler’s laws

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of
the semi-major axis of its orbit.
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Kepler’s second law follows from conservation of angular momentum.

The Earth goes around the Sun in 1 year. The distance between Earth and Sun is 1
AU (astronomical unit).

It is convenient to write (
P

1 yr

)
=
( a

1 AU

) 3
2

(
1 M�
M∗

) 1
2

(8)

with M� the mass of the Sun and a the orbit semi-major axis.
What is the orbital period for a planet at 1 AU that is orbiting a star that is 1/2 M�?
Equation 8 lets us swiftly answer this question: the answer is

√
2 ≈ 1.4 years.

What is the orbital period for a planet at 100 AU that is orbiting a solar mass star?
100

3
2 = 103 = 1000. The answer is 1000 years.

7 Summary

• Motion in 3 dimensions under constant acceleration.

v(t) = at+ v0

x(t) = a
t2

2
+ v0t+ x0

• Principles of relativity and momentum.

1) The natural force free state, is to keep moving at a constant velocity.

2) Physics laws should be independent of the velocity of an observer.

3) The momentum principle.

• How momentum depends on rest mass and velocity even at relativistic velocities.

p = γmv with γ = (1− v2/c2)−
1
2 .

• How applied forces are related to changes in momentum, velocity and position.

F = dp
dt .

• Velocity and acceleration in polar coordinates.

• Uniform circular motion. The angular rotation rate, θ̇ and rotation period. Tangen-

tial velocity vθ = rθ̇. Acceleration a = −v2θ
r r̂. Rotation period P = 2π

θ̇
.

• The gravitational force law.

F =
Gm1m2

r2
r̂
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• Reciprocity. Forces are applied equally and oppositely. This implies momentum
conservation.

• The shell theorem: The gravitational force from a uniform density sphere at positions
outside it is the same as that from a point mass of the same total mass.

8 Props

Doppler ball.
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