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1 A system in contact with a thermal reservoir and the
Boltzmann factor

Figure 1: A thermal reservoir is much larger than a small subsystem that is in thermal
contact with it. The total energy is conserved. The subsystem is in a particular state with
energy ε. The total energy in the reservoir UR = U0 − ε. We assume the reservoir is large
so U0 � ε. The reservoir is in equilibrium and has temperature T .

Suppose we have a small system S and it is contact with a big system which we call a
thermal reservoir R. What is the probability that the small system S is in a particular
state with energy εs? The number of states accessible to R+ S is

gR × 1 = gR

because we specify a specific state for S. If the total energy is U0 then the energy of the
reservoir must be UR = U0 − εs.
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The ratio of the probability for the system S to be in state with energy ε1 compared
to one with energy ε2 depends on the ratio of the multiplicities of the reservoir

P (ε1)

P (ε2)
=
gR(U0 − ε1)

gR(U0 − ε2)
. (1)

If the reservoir is large then these multiplicities are large. Recall that entropy σ = ln g or
g = eσ. We write the probability ratio in terms of the entropies

P (ε1)

P (ε2)
=

expσR(U0 − ε1)

expσR(U0 − ε2)
= exp [σR(U0 − ε1)− σR(U0 − ε2)] (2)

This depends on the change in reservoir entropy

P (ε1)

P (ε2)
= exp ∆σR (3)

with
∆σR = σR(U0 − ε1)− σR(U0 − ε2). (4)

If the reservoir is very large then the change in entropy of the reservoir is small. Fur-
thermore U0 � ε1, ε2. Recall a Taylor series

f(x0 + δ) = f(x0) + f ′(x0)δ + ...

Let’s expand the entropy function

σ(U0 − ε) ≈ σ(U0)− dσ

dU
ε+ ...

We recognize
dσ

dU
=

1

kBT

Using this,

σR(U0 − ε1) ≈ σR(U0)− ε1
kBT

σR(U0 − ε2) ≈ σR(U0)− ε2
kBT

∆σR = σR(U0 − ε1)− σR(U0 − ε2)

= − ε1
kBT

+
ε2
kBT

(5)
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Figure 2: The probability that the subsystem S is in a particular state with energy ε1 is
compared to the probability that the subsystem S is in a particular state with energy ε2.
The total energy U0 of thermal reservoir plus subsystem is constant.

We put this back into our equation for the probability ratio (equation 2)

P (ε1)

P (ε2)
=

exp(− ε1
kBT

)

exp(− ε2
kBT

)
. (6)

The factor
e
− ε
kBT

is known as the Boltzmann factor and it is proportional to the probability that a system
at temperature T is in a state with energy ε. This is true for any energy state.

When discussing a small system in contact with a thermal reservoir, the setting is
sometimes called the canonical ensemble.

Let’s look again at the form of the Boltzmann factor

e
− ε
kBT

If ε� kBT then the Boltzmann factor is very small. That means that states with energies
greater than kBT are unlikely. If ε ≤ kBT then the exponential factor is of order 1 and the
energy state is likely to occur or be occupied.

Alternatively one can estimate what temperature is needed for a particular energy state
to become probable.

Note that we have not been looking at the multiplicity of states in the small system S,
but rather have used the multiplicity of states for the reservoir R. We could still calculate
the entropy of our system S, but not the way we did previously because its energy is not
fixed. Its energy can vary because it is contact with the reservoir.
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Figure 3: The probability that a system in contact with a thermal reservoir is found in a
particular energy state depends on the Boltzmann factor.

1.1 The partition function

We consider a system S in contact with a thermal reservoir at temperature T . The prob-
ability that S is in state with energy εi depends on the Boltzmann factor

P (εi) ∝ e
− εi
kBT

We would like to find the constant of proportionality for the probability function.
The sum of the Boltzmann factors over all states of the system is known as the partition

function
Z ≡

∑
i

e
− εi
kBT (7)

Consider a function

P (εi) =
e
− εi
kBT

Z
(8)

This is proportional to the probability that the system is in state εi. If we sum over all
possible states ∑

i

P (εi) =

∑
i e
− εi
kBT

Z
=
Z

Z
= 1

This means that P is normalized so the sum is 1. This means that equation 8 with Z
defined as in equation 7 is in fact the probability function.

Many thermodynamic quantities are calculated using the probabilities given by equation
8.

What is the average energy of the system S?

Ū =

∑
i εiP (εi)∑
i P (εi)

=
∑
i

εiP (εi) =
1

Z

∑
i

εie
− εi
kBT
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What are the sizes of energy fluctuations? The variance

σ2(U) =
∑
i

(εi − Ū)2P (εi) =
1

Z

∑
i

(εi − Ū)2e
− εi
kBT

1.2 Using the Boltzmann factor

Suppose we have a population of particles. Each particle can be in one of four energy
levels ε0, ε1, ε2, ε3. The particle population is in thermal equilibrium with a reservoir at
temperature T .

Suppose an experimental measurements gives us the ratio of numbers of particles in
the third and first energy states. The ratio of numbers of particles is the same as the ratio
of Boltzmann factors. We have a measurement of

p(3)

p(1)
= e

−(ε3−ε1)
kBT

If we know ε3 − ε1 then we can solve for the temperature T .

T =
1

kB

ε1 − ε3
ln(p(3)/p(1))

Suppose the 4 energy levels are in the form εn =
(

1
2 + n

)
ε0. The partition function is

Z = e
− ε0

2kBT + e
− 3ε0

2kBT + e
− 5ε0

2kBT + e
− 7ε0

2kBT

= e
− ε0

2kBT

(
1 + e

− ε0
kBT + e

− 2ε0
kBT + e

− 3ε0
kBT

)
With

x = e
− ε0
kBT ,

the partition function is

Z =
√
x
(
1 + x+ x2 + x3

)
.

If we also know the energy ε0, then we can compute x and Z. Notice the geometric form for
Z that sometimes makes it possible to more easily calculate and manipulate the partition
function. From the ratio of numbers of particles in any two states it is possible to find T
and x (assuming that we know the energy levels). Once you know x you know the partition
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function Z and this lets you calculate the fraction of particles in any of the 4 states.

P (1) =
1

Z
e
− ε0

2kBT =

√
x

Z

P (2) =
x

3
2

Z

P (3) =
x

5
2

Z

P (4) =
x

7
2

Z
.

2 The Maxwell-Boltzmann velocity distribution

Using the Boltzmann factor, we find the distribution of particle velocities in a gas of non-
interacting monoatomic particles. The gas is at temperature T .

For a non-relativistic particle the kinetic energy of the particle is

εvx,vy ,vz =
1

2
m(v2

x + v2
y + v2

z)

Using the Boltzmann factor, the probability that a particle has velocity vx, vy, vz is

P (v) ∝ exp

(
−
εvx,vy ,vz
kBT

)
∝ exp

(
− m

2kBT
(v2
x + v2

y + v2
z)

)
(9)

The normalization can be found using the partition function or by direct integration over
volume in velocity space. We notice that this looks like a Gaussian or normal probability
distribution p(x) = 1√

2πσ2
e−x

2/(2σ2) for each velocity component but with dispersion or

variance σ2 = kBT/m in each velocity component.
Including normalization, the Gaussian with a single direction velocity component gives

probability distribution

P (vx)dvx =

√
m

2πkBT
e
− mv2x

2kBT dvx. (10)

Taking into account all three directions the probably distribution

P (v)dvxdvydvz =

(
m

2πkBT

) 3
2

exp

(
−
m(v2

x + v2
y + v2

z)

2kBT

)
dvxdvydvz. (11)
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Figure 4: The shape of the Maxwell-Boltzmann velocity distribution as a function of speed

v =
√
v2
x + v2

y + v2
z . The probability P (v) =

(
m

2πkBT

) 3
2

4πv2 exp
(
− mv2

2kBT

)
. The velocity

dispersion gives
√
〈v2〉 = vrms =

√
3kBT/m.

The volume element in velocity space can be written in terms of the speed v =
√
v2
x + v2

y + v2
z

dvxdvydvz = 4πv2dv

giving a probability distribution for the speed

P (v)dv =

(
m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
dv. (12)

When we refer to the rms (root mean squared) velocity we mean the square root of
the average value of v2 which is the average value of v2

x + v2
y + v2

z . The average value of v2

(which we can write v̄2 or 〈v2〉 is also called the velocity dispersion,

〈v2〉 =

∫
dv v2P (v) =

∫
dvxdvydvz (v2

x + v2
y + v2

z)P (v). (13)

Each component can be integrated separately and each one should give the same number
which is the variance of the Gaussian distribution.

〈v2
x〉 = 〈v2

x〉 = 〈v2
x〉 =

kBT

m

The rms velocity

vrms =
√
〈v2
x〉+ 〈v2

y〉+ 〈v2
z〉 =

√
3kBT

m
. (14)

Integrating over the Maxwell-Boltzmann velocity distribution gives average kinetic energy

Ē =
1

2
m〈v2〉 =

1

2
mv2

rms =
3

2
kBT. (15)
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Notice that the rms velocity vrms depends on temperature T .
The heat capacity per molecule is still

dE

dT
=

3

2
kB (16)

reflecting the three degrees of freedom for motion in three directions.
Note that

√
〈v2〉 is not necessarily the same thing as the mean speed 〈v〉 and this is not

necessarily the same thing as the velocity of the peak of the Maxwell-Boltzmann velocity
distribution. The peak velocity would be where dP (v)

dv = 0.

2.1 Consequences of the Maxwell-Boltzmann distribution

2.1.1 Equipartition

High mass molecules and low mass molecules both obey the Maxwell-Boltzmann distribu-
tion.

1

2
miv

2
rms,i =

3

2
kBT

where each type of molecule labelled with index i. The rms velocity of the molecule

vrms,i ∝ m
− 1

2
i .

This is known as equipartition of energy as each type of molecule has a similar average
kinetic energy.

Low mass particles like Helium (4 amu) move faster than higher mass molecules like
oxygen (O2; 32 amu).

2.1.2 Jeans escape

The Maxwell-Boltzmann distribution has a high velocity tail. Particles above the Earth’s
escape velocity can leave the Earth’s atmosphere. Low mass molecules like hydrogen and
helium are more likely to escape. The escape rate depends on the ratio of the rms velocity
and the escape velocity. The process is known as Jeans escape and is important over long
periods of time for early atmospheric evolution. If some molecules are ionized, the mass of
their constituents is lower and more likely to escape. So chemical processes in the upper
atmosphere can also cause atmospheric escape.

2.1.3 Brownian motion and diffusion

Larger molecules move more slowly than smaller ones. The diffusion or mixing rate of
small molecules is faster than the diffusion or mixing rate of larger molecules.
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2.1.4 The sound speed

Information travels through a gas approximately at the rms velocity set by the mean
molecular weight of the molecules in the gas. The sound speed is similar to the rms

velocity, vs ∼
√

kBT
m̄ where m̄ is the average mass of a particle. The sound speed depends

on temperature and mean molecular mass. The sound speed is lower at lower temperature.
The sound speed is higher in air mixed with Helium than in regular air which is mostly
nitrogen.

2.1.5 Evaporation and sublimation

Some atoms can have energies high enough to overcome bonds of their neighbors and escape
the solid or liquid phase. This is called sublimation (if escaping the solid) or evaporation
(if escaping the liquid).

3 A particle in a box and the ideal gas

An ideal gas is comprised of N non-interacting monotonic particles (not molecules) in a
box.

To quantize energy we use the particle’s deBroglie wavelength and assume that an
integer number of deBroglie wavelengths fit in the box. We count the number of energy
states for a single particle in the box. We assume that the box is thermal contact with a
reservoir. We use the Boltzmann factor to compute the partition function at temperature T
for a single particle in a box. The mean energy of this particle as a function of temperature
is computed from the partition function. We compute the heat capacity from the mean
energy of a single particle by taking the derivative w.r.t to temperature.

The entropy of a particle in a box is computed using the multiplicity of states at a
particular energy. We use a similar calculation to compute the entropy of N particles in a
box. These two expressions will be used to derive the ideal gas law.

3.1 A particle in a box

We consider a mass m in a cubic box of length L. The volume is V = L3. The particle’s
deBroglie wavelength must fit nicely within the box. The deBroglie wavelength

λdeBroglie =
h

p

where p is its momentum. Because integer numbers of wavelengths must fit within the box,
the particle’s momentum and energy are quantized.
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Figure 5: A particle in a cubic box. The particle’s kinetic energy and momentum are
quantized.

The momentum and energy are quantized with three positive integer quantum
numbers nx, ny, nz which tell us how many deBroglie wavelengths fit in each side of the
box,

L ≈nxλx
L ≈nyλy
L ≈nzλz.

This gives

px ≈
h

λx
≈ hnx

L

The kinetic energy for motions in x alone is

1

2
mv2

x ≈
p2
x

2m
≈ 1

2m

h2n2
x

L2

The kinetic energy of the particle is K = p2/(2m) which takes values

εnx,ny ,nz =
~2

2m

(π
L

)2 (
n2
x + n2

y + n2
z

)
(17)

Here I have restored factors of π for the quantum problem of a particle in a cubic potential
well.

3.2 The partition function for a particle in a box

We assume that our particle in the box is in thermal equilibrium with a reservoir at
temperature T .
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Figure 6: A particle in a cubic box. We assume the box is in thermal equilibrium with a
thermal reservoir at temperature T .

We use the energy in equation 17 and the Boltzmann factor to find the partition function
for a single particle in a box,

Z =
∑

nx,ny ,nz

e−βεnx,ny,nz

=
∑

nx,ny ,nz

e−α
2(n2

x+n2
y+n2

z)

where nx, ny, nz are integer quantum numbers. Here the inverse temperature

β ≡ 1

kBT

and the constant

α2 = β
~2

2m

π2

L2

We can approximate the sum in the partition function with integrals

Z ≈
∫ ∞

0
e−α

2n2
xdnx

∫ ∞
0

e−α
2n2
ydny

∫ ∞
0

e−α
2n2
zdnz

≈
(∫ ∞

nx=0
e−α

2n2
xdnx

)3
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The definite integral ∫ ∞
0

e−α
2x2dx =

1

α

∫ ∞
0

e−y
2
dy

=
1

α

√
π

2
.

Using this handy integral, our partition function is

Z ≈

(
π

1
2

2α

)3

=
π3/2

8

(
β
~2

2m

π2

L2

)− 3
2

=
(
kBT

m

2π~2

) 3
2
L3 (18)

We have succeeded in computing the partition function for a single particle in a box!
Notice that the 3/2 power came from having three degrees of freedom. Notice that Z

depends on volume.

3.3 The mean energy of the particle in the box

We now compute the mean energy of this one particle in a box that is in contact with a
thermal reservoir at temperature T .

The mean energy of a system in contact with a thermal reservoir is

Ē =
∑
i

εiP (εi)

where the probabilities are given by the Boltzmann factor. This can be written in terms
of a derivative of the partition function.

With inverse temperature β = 1/(kBT )

Z =
∑
i

e−βεi

dZ

dβ
=
∑
i

−εie−βεi

− 1

Z

dZ

dβ
= −d lnZ

dβ
=

1

Z

∑
i

εie
−βεi

= Ē

It is useful to remember that the average energy can be computed from the partition
function

Ē = − 1

Z

dZ

dβ
. (19)
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The partition function for the particle in the box, equation 18, we rewrite in the form

Z = aβ−
3
2 with a =

( m

2π~2

) 3
2
L3.

We use this and equation 19 to compute the average energy

dZ

dβ
= −3

2
aβ−

5
2

Ē = − 1

Z

dZ

dβ
=

3

2
β−1

=
3

2
kBT. (20)

The important thing in this calculation is the exponent! The factor a drops out.
The quantity Ē is the mean energy for a single particle in a box with 3 degrees of

freedom in its kinetic energy. For N non-interacting particles in the same 3D box we can
multiply by N giving total mean energy

U =
3

2
NkBT. (21)

3.4 Heat capacity

The heat capacity can be defined as

CV ≡
(
∂U

∂T

)
V

. (22)

The heat capacity of the single particle in the box (that is in contact with a thermal
reservoir) can be computed from the mean energy with

U =
3

2
kBT

giving

CV =

(
∂U

∂T

)
V

=
3

2
kB.

This is the specific heat capacity per particle in an ideal gas.

3.5 Entropy of a particle in a box

We start with a particle in a box that has a constant energy ε. What is the multiplicity of
states that have this energy?
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Figure 7: Counting states. Here we count the number of states in an annulus of thickness
1. The area of the annulus is A = 2πR dR where R is the radius of the annulus and dR is
the thickness of the annulus. The number of states within the annulus is proportional to
2πR.

The energy as a function of three integer quantum numbers is (Equation 17)

εnx,ny ,nz =
~2

2m

(π
L

)2 (
n2
x + n2

y + n2
z

)
The energy depends on R =

√
n2
x + n2

y + n2
z which is the radius of a shell in three di-

mensional space spanned by integers nx, ny, nz. The number of states can be approximated
as the volume of a shell with thickness 1 or

4πR2dR = 4π(n2
x + n2

y + n2
z) = g(εnx,ny ,nz) (23)

with dR = 1. Why are we using dR = 1? Up to a constant of proportionality, the
multiplicity of states is independent of the width of the the shell.

We can rewrite the quadratic sum of quantum numbers in terms of the energy(
n2
x + n2

y + n2
z

)
=

2m

~2

(
L

π

)2

εnx,ny ,nz

This and equation 23 gives multiplicity of states

g(ε, L) ≈ 4π
2m

~2

(
L

π

)2

ε (24)

and entropy (from the natural logarithm of the multiplicity)

σ(ε, L) = constant + 2 lnL+ ln ε (25)
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It will be useful to rewrite the length in terms of the volume, L = V
1
3 , and energy U = ε

giving

σ(U, V ) = constant +
2

3
lnV + lnU. (26)

Notice that the entropy depends on volume!

3.6 Entropy of N particles in a box

The previous calculation makes it easier to compute the entropy of N particles in a box.
We consider a box with a constant volume but now we put N non-interacting particles

in it. The total kinetic energy is fixed.
For each particle we have three quantum numbers. The total energy as a function of

3N integer quantum numbers is (extending Equation 17)

ε3N =
~2

2m

(π
L

)2
N∑
i=1

(n2
xi + n2

yi + n2
zi)

=
~2

2m

(π
L

)2

 3N∑
j=1

n2
j

 . (27)

To estimate the multiplicity of states at a single energy we need to find the surface area
of a sphere in 3N dimensions with radius

R =

√√√√ 3N∑
j=1

n2
j

=

(
ε3N

2m

~2

(
L

π

)2
) 1

2

=

(
ε3N

2m

~2π2

) 1
2

V
1
3 (28)

On the second line I use equation 27. On the last line I related volume to the length of the
box with V = L3.

The area of the sphere in 3N dimensions gives us the volume in a shell of thickness 1
in 3N dimensions and this gives us the number of states at a fixed energy.

The volume of a sphere in N dimensions is V ∼ RN . The area of the shell with radius
R in N dimensions is dV/dR = NRN−1.

Here we have a sphere in 3N dimensions and the area of the shell with radius R in 3N
dimensions is ∝ R3N−1.
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Using a width for the shell of 1, the multiplicity of states depends on the volume in the
shell of width 1

g(ε) ∼ R3N−1

with energy ε a function of R. Subbing in for the radius R with equation 28, the multiplicity
of states

g(ε, V,N) ∝ V
3N−1

3 ε
3N−1

2 . (29)

With N = 1 this is consistent with what we found in the previous section. We compute
the entropy from the multiplicity

σ(ε, V,N) = ln g(ε,N, V )

σ(ε, V,N) ∼ N lnV +
3

2
N ln ε+ constant

where for large N we approximate 3N−1 as 3N and we have ignored constants that might
be irrelevant at large N . As we computed the entropy for a box with constant volume and
energy

σ(U, V,N) ≈ N lnV +
3

2
N lnU + constant (30)

with total energy U = ε.
This implies that entropy is larger for a larger volume box at larger energy and with

more particles, as we might expect.

4 Pressure and the ideal gas law

Using the Maxwell Boltzmann distribution we associated 3
2kBT with the kinetic energy of

a particle or particles in a box that is in contact with a thermal reservoir at temperature
T . This also gives the mean velocity v of particles in the box. The pressure is the rate
that momentum from collisions is transferred to a wall of the box. This depends on the
number of particles in the box. Each collision gives mv momentum to a wall but the rate
of collisions per unit area is set by nv where n is the number density n = N/V or the
number of atoms per unit volume. The number of collisions per unit time on a wall of area
A is

collisions

time
= nvA

The momentum change in each collision ∆p ∼ mv. The rate momentum is imparted to
the wall of area A

dp

dt
=

collisions

time
×mv ∼ nvA×mv = nmv2A

17



Figure 8: A box containing N particles.

The rate of change of momentum is the force, F = dp
dt . The force per unit area

F

A
=

1

A

dp

dt
∼ nmv2.

Using the relation between kinetic energy and temperature, the rate of change of momen-
tum per unit area transferred to the wall is

nmv2 ∼ nkBT.

The rate of change of momentum per unit area is the same as force per unit area or pressure.
We expect pressure

p ∼ nkBT. (31)

4.1 Pressure and PdV work

We consider a small system S, that is contact with a thermal reservoir but now S can vary
in volume. We decrease the volume slowly with an external force from V to V −∆V . If
we do this slowly enough the system can stay in the same quantum states, but because the
volume varies, the energy of these states can slowly vary.

U(V −∆V ) = U(V )− ∂U

∂V
∆V....

∆U = −∂U
∂V

∆V
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Figure 9: Two systems that are separated by a barrier. Previously we discussed two
systems, each with constant volume and numbers of particles but allowed the two systems
to exchange heat. We could allow the two systems to exchange particles and we could
allow the barrier to move so that the volumes vary.

The work done to change the energy is ∂U
∂V ∆V .

Why does slowly changing the volume of a gas container change the energy?
Consider a gas container (a piston) that has cross sectional area A and length h giving

volume Ah. We make the system smaller by pushing on it to reduce h while maintaining
area A. We push the piston in. The change in volume dV = Adh. The pressure is a force
per unit area so we are pushing with a force F = pA. The work is force times distance or

W = pAdh = pdV

giving a change in energy dU = −pdV . This implies that pressure

p = −dU
dV

.

It is natural to associate pressure with

p = −
(
∂U

∂V

)
σ

(32)

We have added a subscript σ to signify that we did not change the entropy while varying
the volume.

4.2 Another way to describe pressure

Above, we have kept the entropy fixed because we needed to change the pressure slowly to
maintain the same quantum states.

19



Figure 10: PdV work done on a piston by a gas. The gas is heated, and the piston moves
upward by a distance d. The difference in volume is ∆V Ad where A is the cross sectional
area. The work done by the gas is W = Fd = P∆V . Here P is the pressure.
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It is often useful to have additional ways to find key variables. For two systems in both
thermal contact and that can exchange volume (there is a moveable partition between
them) the entropy is a function of volume and energy

σ(U, V )

Small changes

dσ(U, V ) =

(
∂σ

∂U

)
V

dU +

(
∂σ

∂V

)
U

dV

Assume that we select changes that keep the total entropy (or temperature) unchanged.
We denote these changes as

dUσ and dVσ.

Then

0 =

(
∂σ

∂U

)
V

dUσ +

(
∂σ

∂V

)
U

dVσ

0 =

(
∂σ

∂U

)
V

dUσ
dVσ

+

(
∂σ

∂V

)
U

0 =

(
∂σ

∂U

)
V

(
∂U

∂V

)
σ

+

(
∂σ

∂V

)
U

Our definition of temperature
1

kBT
=

(
∂σ

∂U

)
V

We insert this into our previous relation

0 =
1

kBT

(
∂U

∂V

)
σ

+

(
∂σ

∂V

)
U

We rewrite this as (
∂U

∂V

)
σ

= −kBT
(
∂σ

∂V

)
U

Previously we found pressure

p = −
(
∂U

∂V

)
σ

This gives us a new relation for pressure

p = kBT

(
∂σ

∂V

)
U

(33)

Why does this make sense? Keeping energy fixed but reducing the volume is like squeez-
ing a bunch of fast moving particles into a smaller space. They bounce more frequently
against the container walls giving a higher pressure.
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4.3 The ideal gas law

The ideal gas law is a relation between the number of molecules N , pressure p, volume V
and temperature T . Energy is missing.

Using equation 33 for pressure

p = kBT

(
∂σ

∂V

)
U

(34)

and equation 30 for the entropy of N particles in a box

σ(U, V ) ≈ N lnV +
3

2
N lnU + constant (35)(

∂σ

∂V

)
U

=
N

V

and giving

p = kBT
N

V
(36)

which we recognize as the ideal gas law

PV = NkBT. (37)

Using number of particles per unit volume n = N/V equation 36 is equivalent to equation
31 which we rewrite here

p = nkBT. (38)

Figure 11: A system S can exchange volume and energy with reservoir that has temperature
T . The system change in energy is the sum of heat and work dU = TdS − pdV .
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4.4 Thermodynamic identity. PdV and TdS. Work and Heat.

We allow a system S to exchange both volume and energy with a reservoir, as shown in
Figure 11. This gives σ(U, V ).

dσ(U, V ) =

(
∂σ

∂U

)
V

dU +

(
∂σ

∂V

)
U

dV

Using our definition for temperature and our new expression for pressure (Equation 33
which is p = kBT

∂σ
∂V )

dσ(U, V ) =
1

kBT
dU +

p

kBT
dV

We can write this as

dU = kBTdσ(U, V )− pdV
= TdS − pdV

using conventional entropy S = kBσ.
For a system that is in contact with a thermal reservoir but is allowed to vary in volume,

the change in its energy
dU = TdS − pdV (39)

where the TdS term can be called heat and the pdV term can be called work. This is the
work done on the system.

4.5 Beyond ideal: Specific heat of a diatonic molecular gas

In previous sections we have discussed an ideal gas where the particles do not interact.
Each particle has only kinetic energy. In this section we again require that particles do not
interact, but we relax the requirement that energy is only in the form of kinetic energy.
We consider a gas comprised of diatonic molecules. Diatonic molecules have vibration and
rotational energy states as well as different possible kinetic energy states.

For a diatonic molecule there are only two rotational degrees of freedom. This is because
only two axes of rotation are perpendicular to the line connecting the two atoms. Rotation
around the axis connecting the two atoms does not give any energy. Relevant is the moment
of inertia of the molecule as the rotational energy levels depend on it. Rotational spectra
are often described in terms of a rotational constant that is in units of inverse length. The
rotation constant for a diatonic molecule is

B =
h

8π2cI
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Figure 12: As the temperature increases, energy quanta can be put in degrees of freedom
that require more energy for excitation. The heat capacity depends on the number of
degrees of freedom. A monotonic ideal gas has 3 translational degrees of freedom and the
heat capacity per molecule CV = 3

2kBT . A diatonic molecular gas would also have two
rotational degrees of freedom. When the temperature is high enough to excite rotational
degrees of freedom, the heat capacity per molecule CV = 5

2kBT . Even though there is a
single degree of freedom in vibrational motion for a diatonic molecule, equipartition between
kinetic and potential energy gives kBT for vibrations instead of half of this. When the
temperature is high enough to populate vibrational modes the heat capacity per molecule
CV = 7

2kBT .

with c the speed of light, h is Planck’s constant and I is the moment of inertia. The energy
of transitions are related to the rotational constant

EJ = hcBJ(J + 1)

where J is an integer quantum number. The moment of inertia for a diatonic molecule is

I = µd2

where reduced mass µ = m1m2
m1+m2

and m1,m2 are the atom masses and d is a mean distance
between the two atoms. We compare kBT to EJ . With

kBT & hcB (40)

rotational states should be excited.
For a diatonic molecule there is only one degree of freedom for vibrations as there is

only one way to stretch the molecule. However the total energy is a sum of potential energy
and kinetic energy terms. Equipartition is similar to the virial theorem and both terms
have about the same mean energy. The relevant energy is ~ω where ω =

√
k/µ, with µ

the reduced mass and k the spring constant representing the inter-atomic force. With

kBT & ~ω, (41)

vibrational states should be excited.
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4.6 Beyond ideal: The mean free path

Figure 13: A particle moving in the x direction passes through the box. The probability
that the particle collides with a particle in the box depends on the fraction of area filled
by the particles in the box.

Interactions such as collisions between particles are ignored when approximating a gas
as an ideal gas. To estimate the role of pairwise interactions, we estimate the rate that
a particle collides with another particle. The mean free path is the typical distance
travelled by a particle between collisions.

Consider a distribution of particles with number density n (number per unit volume).
We consider an area A and a volume

V = A dx

where dx is a small distance. The number of particles in that volume is

N = nA dx.

Suppose the particles are molecules with size d. The cross sectional area of a molecule
σA ∼ d2. Looking at our volume face on, the area filled by molecules in our volume is

Afilled = σAN = σAnA dx.

The fraction of area filled is

fA =
Afilled
A

=
σAN

A
= nσA dx.

The probability that a single molecule moving in the dx direction and passing through this
volume depends on the fraction of area filled by molecules. P = fA. The probability per
unit time that a molecule moving at velocity v = dx/dt hits another molecule is

fA/dt = nσA dx/dt = nvσA.
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This is the same thing as the collision rate.
In other words, for a single molecule, the rate of collisions (the number of collisions per

unit time)
dc

dt
∼ nvrmsσA (42)

where σA is a cross sectional area and is similar to d2 where d is a size scale of the molecule,
and we have used the typical velocity of a molecule vrms.

The average time between collisions is

τ =
1

dc/dt
=

1

nvrmsσA
. (43)

The distance travelled between collisions or mean free path is

lmfp ∼ vrmsτ ∼
1

nσA
. (44)

The ideal gas law is p = nkBT so n = p/(kBT ) giving

lmfp ∼
kBT

pσA

5 Some Thermodynamics

Heat and work are two different forms of energy transfer. Heat is the transfer of energy
into a system by thermal contact with a reservoir. Work is the transfer of energy into a
system by a change in external parameters. These parameters can include volume, electric
field or gravitational potential.

A mechanism for converting heat into work is a heat engine. A combustion engine is
such an engine. Electrical energy can be generated from heat with a generator.

A fundamental difference between heat and work is in the entropy. The energy transfer
dU from a reservoir to a system via thermal contact at temperature T involves dS = dU/T .
We refer to this energy transfer as heat.

Work is energy transferred via changing external parameters such as volume. For
example the position of a piston. No entropy is transferred.

The total energy of system plus reservoir remains fixed. However the total entropy
may not be fixed. If we restrict ourselves to reversible changes, then the total entropy of
interacting systems remains constant.

For a reversible process, the heat received by the system

dQ = TdS = kBTdσ

If dU is its energy change then
dU = dW + dQ

where dW is the work done on the system. For dU = TdS we have pure heat. For dU = dW
we have pure work.
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5.1 Heat Engines, Refrigerators and Heat pumps – Converting Heat into
Work or Work into Heat Flow

Heat engines convert heat into work. There is a limit to their efficiency because entropy
overall must remain constant or increase. Work can be completely converted to heat but
heat cannot be completely converted into work.

Refrigerators are heat engines in reverse. They use work to move heat from low tem-
perature (inside) to a higher temperature (outside).

Air conditioners are refrigerators that cool the inside of a room.
A heat pump is similar to a refrigerator. Work is used to move heat from low temper-

ature (outside) to a higher temperature (inside).

Figure 14: A heat engine. There are two thermal reservoirs, a hotter one and a colder one.
The engine uses the heat to do work.

5.2 Efficiency of a Heat Engine

Figure 14 shows an energy flow diagram. The engine absorbs heat QH at a higher or hotter
temperature TH . The engine emits heat QL at a lower temperature TL. Both TL and TH
are thermal reservoirs. The work done by the engine is W (or M in Figure 14.

The efficiency of the engine

ε ≡ benefit

cost
=

W

QH
(45)

The heat absorbed from the hot reservoir is how much energy is being used, so it is like a
cost in the efficiency ratio.

What is the maximum efficiency of a heat engine?
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The engine periodically returns to its initial state, with the same energy. This means
the total energy absorbed is equal to the sum of that emitted into the cold reservoir and
that done as work,

QH = QL +W

Inserting this into our equation for efficiency (equation 45)

ε =
W

QH
=
QH −QL
QH

= 1− QL
QH

(46)

The efficiency cannot be greater than 1 and it is only equal to 1 if there is no heat emitted
into the cold reservoir (ε = 1 if QL = 0).

To find the maximum efficiency, we need to consider the second law of thermodynamics.
The total entropy of engine plus reservoirs must not decrease. The entropy absorbed by
the engine is ∆Sabs = QH

TH
. The entropy emitted by the engine is ∆Semit = QL

TL
. Entropy

could increase in the reservoir but it cannot keep decreasing. This means that

QL
TL
≥ QH
TH

. (47)

More (or equal) entropy must be emitted by the engine than is absorbed by the engine in
each cycle. We can write this as

QL
QH
≥ TL
TH

. (48)

Subtracting we find

1− QL
QH
≤ 1− TL

TH
.

We insert this into equation 46 for the efficiency of the engine

ε ≤ 1− TL
TH

(49)

The temperature ratio of the reservoirs places a limit on the efficiency of the engine. The
maximum efficiency

εmax ≡ 1− TL
TH

(50)

A larger temperature ratio increases the maximum possible efficiency.
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Figure 15: Operations on an enclosed gas that is contact with a thermal reservoir. Because
the temperature is fixed, the total energy is fixed, however work is done on the gas and
heat is transferred to the reservoir.

Figure 16: PdV work done on an enclosed gas with a piston. Sand is slowly added on top
of the piston and the gas is compressed. If the piston is not in thermal contact with a
reservoir and the sand is added slowly, the compression is adiabatic. When adiabatic there
is no heat transferred from the system and the change in energy is equal to the work done
on the system; dU = −PdV .
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5.3 Trajectories on PV plots

Below I introduce some terms commonly used when discussing operations on an ideal gas
that has a fixed number of atoms or molecules. Relevant is energy change dU = TdS−PdV
with −PdV corresponding to work W and TdS corresponding to heat Q.

Work done on the system is W = −PdV .
Work done by the system is W = PdV .
Heat transferred to the system is Q = TdS.

• Reversible: Slowly enough to stay nearly in equilibrium. An operation that is not
reversible is free expansion into a vacuum. Often paths on a PV plot are assumed to
be slow enough to be reversible. For reversible changes, the total entropy of system
plus external systems is constant.

• Isothermal: At constant temperature. For an ideal gas, this implies no energy
change as U ∝ kBT .

• Isochoric: At constant volume. No PdV work is done, but heat can be transferred.

• Isobaric: At constant pressure. Changes in volume involve PdV work.

• Isentropic: At constant entropy.

• Adiabatic: Without exchanging heat. The energy is not fixed as work can be done
on the gas. Reversible and adiabatic is equivalent to isentropic. When a transition
is described as adiabatic, it is often assumed that it is isentropic.

For slow changes, the work done by the ideal gas is
∫
PdV and this corresponds to

area integrated under a curve on a plot where P is the y axis and V is the x axis.
The work done by the system on a horizontal or isobaric path on Figure 17 isW = P∆V .
Vertical or isochoric paths on Figure 17 keep V constant so no work is done. However

heat is transferred to the gas. Because dU = TdS − PdV , the heat Q =
∫
TdS is equal to

the energy change ∆U .
For isothermal variations on an ideal gas dU = Q −W = 0, and heat equals work;

Q = W .

5.4 Adiabatic variation of an ideal gas and the adiabatic index

We consider a parcel of gas that is not allowed to exchange heat with its surroundings.
This can happen if the gas parcel cannot radiate efficiently and heat conduction to its
surroundings is slow compared to variations in pressure and density. It can do work on its
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Figure 17: The state of an ideal gas is given by a point on a pressure vs volume or PV
diagram. We assume that the number of gas particles is fixed. Because of the ideal gas law,
the temperature and energy are uniquely determined by P and V . Because PV = NkBT ,
temperature and energy is lowest on the lower left and highest on the upper right. We take
V1, P1 to be the lower left point and V2, P2 to be the upper right point. The work done
by the system going from V1, P1 to V1, P2 (lower left to upper left point, following the blue
line) is zero. The work done by the system (W =

∫
P dV ) going from V1, P2 to V2, P2 (from

lower left point to upper left on the blue line and then to upper right point on the green
line) is P2(V2 − V1). The work done by the system going around a loop counter-clockwise
is the same as the area within the loop, W = (V2 − V1)(P2 − P1). After going around the
look the energy U is the same as it was originally. In other words ∆U = 0 around the loop.
This means that the total heat transferred to the system Q = W is the same as that done
by the system.

surroundings and its surrounding can do work on it. So its energy is not fixed. The change
in energy is equal to the work done on the system.

dU = −PdV

If we have an ideal monotonic gas we use

U =
3

2
NkBT

where N is the number of molecules in the parcel.

dU = −PdV
3

2
NkBdT = −PdV
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We divide both sides of the equation by NkBT = PV .

3

2
NkBdT = −PdV

3

2

dT

T
= −dV

V
3

2
d lnT = −d lnV

We integrate

3

2
lnT = − lnV + constant

lnT = −2

3
lnV + constant

T ∝ V −
2
3

PV ∝ V −
2
3

PV
5
3 = constant

This is often written
PV γ = constant (51)

with γ = 5/3 called the adiabatic index. The value γ = 5/3 is for a monotonic ideal
gas.

For a diatonic gas the index would be 7/5 or 9/7 instead of 5/3 because of extra
degrees of freedom that increase the energy. We can redo the above calculation with
energy U = n

2NkBT for n degrees of freedom to find the adiabatic index

γ =
2

n
+ 1 =

2 + n

n
. (52)

Sound waves are nearly adiabatic so the adiabatic index γ appears in the speed of
sound,

cs =

√
γ
P

ρ
.

5.5 Isothermal compression

We consider isothermal compression from P1, V1 to P2, V2 at constant temperature T and
with a volume decrease so V2 < V1. The idea gas law PV = NkBT . The work done on the
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Figure 18: Isothermal variation has P ∝ 1/V whereas adiabatic variation (the steeper
curve) has P ∝ V −γ . Because the total energy depends depends on kBT ∝ PV , the
isothermal curves are also constant energy curves. Adiabatic curves are curves where no
heat is transferred but energy is not constant. In both cases work done on the system
W = −

∫
P (V )dV and is minus the area integrated under the curve.

system during compression

Wisothermal = −
∫ V2

V1

P (V )dV = −
∫ V2

V1

NkBT

V
dV

= −NkBT lnV
∣∣∣V2
V1

= −NkBT ln
V2

V1
(53)

Because PV = NkBT , and temperature T is constant, we can write NkBT in terms of
P1V1 or P2V2,

Wisothermal = −V1P1 ln
V2

V1
= −V2P2 ln

V2

V1
. (54)

5.6 Adiabatic compression and work

We consider adiabatic compression from P1, V1 to P2, V2 and with a volume decrease so
V2 < V1. We assume PV γ = K with K a constant. The work done on the system during
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compression

Wadiabatic = −
∫ V2

V1

P (V )dV = −
∫ V2

V1

KV −γdV

=
K

γ − 1
V −γ+1

∣∣∣∣V2
V1

=
K

γ − 1

[
V 1−γ

2 − V 1−γ
1

]
=

1

γ − 1
(P2V2 − P1V1) (55)

Adiabatic means no heat exchange, Q = 0, so dU = −PdV along the path. That means
we can compute the work done on the system from the change in energy. Energy

U =
n

2
NkBT

depends on the degrees of freedom, n, Equation 52 relates adiabatic index γ to n/2 with

n

2
=

1

γ − 1
.

This gives U = 1
γ−1NkBT and

∆U =
1

γ − 1
NkB∆T. (56)

Using the ideal gas law NkB∆T = ∆(PV ) we find

∆U =
1

γ − 1
∆(PV ) (57)

which is equivalent to what we found by integrating PdV work (equation 55)! We have
shown that integrating PdV work for an adiabatic path is equivalent to computing the
energy change from the endpoints. This is because adiabatic means that no heat is trans-
ferred along the path, and because dU = Q + W , that means the total energy change is
equal to the total work done on the system.
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Figure 19: On a curved path (the green one), the work done on the system can be computed
from W = −

∫
PdV along the path. If you know the energy change from the points at

the ends of the path, you can determine the heat transferred along the same path using
dU = Q+W .

5.7 The Carnot Cycle

The Carnot cycle is an idealized description of a heat engine. It achieves theoretically the
maximum efficiency possible.

In the Carnot cycle a gas is expanded and compressed in four stages. The stages
alternate in whether they are isothermal or isentropic.

During the isentropic stages, work is done but there is no heat transferred.
During the isothermal stages, the energy is fixed, so heat transferred is equal to the

work done.
After going around a loop (a single 4 stage cycle) the total energy change is zero. This

is equal to the total heat transferred in a cycle plus the total work done by the gas in a
cycle.

The total work done by the gas is the area enclosed by the loop in a PV diagram.
The ratio of heat transferred on one stage to total work done in the cycle is called the

Carnot efficiency.
The Carnot cycle and efficiency give a limit on what could in principle be achieved

rather than what is in fact achieved by real systems. Real systems are less efficient because
they do not have well defined constant temperature reservoirs and heating and cooling
processes are not perfectly reversible.

35



Figure 20: Steps of a Carnot cycle. Step 1 and Step 3 are isothermal, whereas Step 2 and
Step 4 are adiabatic.
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Figure 21: Steps of a Carnot cycle in an ideal gas on a PV diagram. The total work done
by the system is the integral of the area enclosed by the loop.

The steps of a Carnot cycle.

1. Isothermal expansion. The engine stays at a constant temperature TH . Heat is
transferred reversibly from the hot reservoir. The heat transferred to the engine is
QH . (An increase in volume at constant temperature increases entropy). The entropy
increase of the engine is ∆S1 = QH/TH . The energy change of the engine is 0, the
work done by the engine is equal to the heat.

2. Adiabatic expansion. (Isentropic reversible expansion). There is no heat transfer.
Entropy remains the same. However the change in energy is equal to the work done
on the engine dU = −

∫
PdV . The gas cools to TL.

3. Isothermal compression. The engine stays at a constant temperature TL. Heat is
transferred from the engine to the thermal reservoir. The entropy change of the
engine is ∆S2 = QL/TL. There is no energy change but the work is again equal to
the heat.

4. Adiabatic compression. The gas increases in temperature back to TH . There is no
heat transfer. Entropy remains the same. The change in energy is equal to the work
done on the engine.

The work done by the gas is the integral of PdV around the loop in P, V space.

W =

∮
PdV =

∮
(TdS − dU) =

∮
TdS (58)

The last step follows because after going about a loop in PV space, there is no energy
change. To find the work done by the engine we need only compute the area of a loop in
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Figure 22: Another view of a Carnot cycle but in entropy vs temperature space. Tem-
perature is proportional to energy. Vertical paths are isothermal. Horizontal paths are
adiabatic (isentropic). Because dS = 0 on the horizontal paths, the heat transfer is equal
to the work along them. The area in S, T space is equivalent to the area enclosed in P, V
space. The work done by the system is equal to the area in either space.

S, T space
W = (TH − TL)(S1 − S2) (59)

where S1 is the entropy on the top of the loop in S, T space.
Because variations are done adiabatically the entropy changes during the isothermal

stages are equal.

|∆S1| =
QH
TH

= |∆S2| =
QL
TL

. (60)

Using equation 59 and the definition for the efficiency of a heat engine (equation 45)

ε =
W

QH

=
(TH − TL)(S1 − S2)

QH
(61)

We now use equation 60 for S1 − S2

ε =
(TH − TL)

QH

QH
TH

= 1− TL
TH

. (62)

This is equal to the maximum efficiency possible (equation 50). The Carnot cycle is an
example of an ideal heat engine that achieves the maximum efficiency.
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6 Summary

For a small system in contact with a thermal reservoir at temperature T , the probability
that the system is in a particular state with energy εi is given by

P (εi) =
1

Z
e
− εi
kBT

where Z is the partition function,

Z =
∑
i

e
− εi
kBT

The factor e
− εi
kBT is called the Boltzmann factor.

The average energy can be computed from the partition function

Ē = − 1

Z

dZ

dβ

where β = 1/(kBT ).
For a Maxwell-Boltzmann velocity distribution (and good for a particle in a box or an

ideal gas)

Ē =
1

2
mv̄2 =

1

2
mv2

rms =
3

2
kBT

Equipartition: the mean kinetic energy of each type molecule in a gas is about the
same.

For a closed system that can vary in volume and is in contact with a thermal reservoir,
a reversible change in energy in the system

dU = TdS − pdV

where the Q = TdS term can be called heat and the W = −pdV term can be called
work. The number of particles in our closed system remains fixed. Here the heat is that
transferred into the system and the work is that done on the system.

The specific heat capacity

CV =

(
∂U

∂T

)
V

The specific heat capacity per particle is 3
2kBT for a monotonic gas.

The ideal gas law
PV = NkBT

It may be useful to write N in terms of moles times Avogadro’s number. We can keep the
variables in MKS units if pressure P is in Pa (Pascal), volume V is in m−3, kB is in J/K,
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N is the number of particles and temperature T is in Kelvin. If you are doing chemistry
you are probably not going to be using these units!

Adiabatic variations (isentropic + reversible) in an ideal gas obey PV γ = constant
where γ is the adiabatic index. Here the number of particles we are considering remains
fixed.

For a monotonic ideal gas the adiabatic index γ = 5/3. For a monotonic ideal gas the
specific heat capacity CV = 3

2NkB and the total internal energy U = 3
2NkBT . Here we

have N particles in our system.
The relation between the adiabatic index and degrees of freedom n is 1

γ−1 = n
2 .

Efficiency ε of a heat engine depends on the ratio of work W done by the engine divided
by heat QH transferred from the hotter reservoir during a complete cycle

ε =
W

QH
≤ 1− TL

TH

The maximum efficiency depends on the temperatures of cold and hot reservoirs TL, TH .
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