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1 Collisions of two objects

We send two particles toward each other. When they are in contact, we say a collision is
taking place. The force between them is strong during their contact phase. The change in
momentum is ∆p =

∫
Fdt. Sometimes J =

∫
Fdt is called the collision impulse and it is

in units of momentum.
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The result of the collision is a large change in the momentum of the colliding particles.
The change in momentum takes place during a short time. Before and after the strong
interaction phase we assume the particles are ballistic. That means their energy is kinetic
only (if non-relativistic) and γmc2 only if relativistic.

Figure 1: Collisions and impulse during contact.

Consider how long it takes a projectile to stop. The total momentum must go to zero
during this time. If the stopping time is short then the force is high. If you increase the
stopping time, then you would decrease the force. Air bags, crushable foam and metal,
and padding are designed to increase the time of momentum changes during impacts.

Collisions involve interactions between two systems of particles. The forces can be
considered internal so the total momentum must be conserved.

Energy need not be conserved. If energy is lost then the collision is called inelastic. If
energy is conserved then the collision is elastic. For inelastic collisions energy is lost into
heat, deformation, vibrations, particle ejection or radiation.

Figure 2: Strobe light illumination of a ball bouncing on a flat surface. This image is by
Michael Maggs with Edits by Richard Bartz and from Bouncing ball strobe edit.jpg under
the license Creative Commons Attribution-Share Alike 3.0 Unported license.
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An example is a ball bouncing on a flat surface. The ball is pushing on something
much more massive than it. Momentum is conserved, but the Earth barely moves. At
impact the vertical component of velocity is reversed and multiplied by the coefficient of
restitution COR vz → −COR× vz. If the coefficient of restitution is 1 then kinetic energy
is conserved. Otherwise kinetic energy is reduced by COR2 during each impact.

2 Non-relativistic elastic collisions in 1 dimension

Figure 3: A collision in 1 dimension. In the lab frame.

Consider two point masses m1,m2 undergoing a collision in one dimension. The initial
and final velocities of m1 are v1i, v1f . The initial and final velocities of m2 are v2i, v2f . We
assume that the particle masses are not changed during the collisionl The total momentum
is conserved.

m1v1i +m2v2i = m1v1f +m2v2f

The center of mass velocity is

Vcm =
1

m1 +m2
(m1v1i +m2v2i) =

1

m1 +m2
(m1v1f +m2v2f )

Conservation of momentum and that the center of mass velocity remained unchanged are
equivalent.

If the collision is elastic then the total kinetic energy remains unchanged.

K =
1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f
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It can be helpful to write the kinetic energy as

K =
1

2
MV 2

cm +
1

2
µ(v1 − v2)2

where the reduced mass is µ = m1m2/M and total mass M = m1 +m2.
If we know the masses and initial velocities, conservation of momentum and conserva-

tion of kinetic energy give two equations in two unknowns (v1f , v2f ). To solve for the final
velocities in terms of the initial ones, is usually a tedious calculation. However there are
two frames in which this calculation is faster.

2.1 In a lab-frame with one of the masses initially not moving

We set the initial velocity of the second mass to be zero; v2i = 0. Conservation of momen-
tum and kinetic energy become

m1v1i = m1v1f +m2v2f
1

2
m1v

2
1i =

1

2
m1v

2
1f +

1

2
m2v

2
2f .

We solve for the final velocities in terms of the initial velocity of the first mass v1i. We
write the two equations as

m1(v1i − v1f ) = m2v2f

m1(v
2
1i − v21f ) = m2v

2
2f

m1(v1i − v1f )(v1i + v1f ) = m2v
2
2f

(v1i + v1f ) = v2f

Insert this back into the first equation

m1v1i = m1v1f +m2(v1i + v1f )

v1f (m1 +m2) = (m1 −m2)v1i

Finally

v1f =
m1 −m2

m1 +m2
v1i

v2f =
m1

m2
(v1i − v1f ) =

2m1

m1 +m2
v1i (1)

Do these formulas make sense? Let’s check by consider a limit, m2 � m1:

lim
m2
m1
→∞

v1f = −v1i

lim
m2
m1
→∞

v2f = 0
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This limit makes sense as m2 does not move if it is massive.
Let’s check when m1 = m2

lim
m2
m1
→1

v1f = 0

lim
m2
m1
→1

v2f = v1i

This limit also makes sense as it is similar to the setting with Newton’s cradle.

2.2 Newton’s cradle

Figure 4: An illustration of Newton’s cradle. Note that there is a small space between each
ball.

Consider Newton’s cradle, shown in Figure 4. All the balls have the same mass. The
ball on the right strikes the one second from right. If this ball is not touching any other
balls and the collision is elastic, then the second ball recoils with the same velocity and the
first one is left at rest. This reaction propagates through the system, eventually ejecting
the leftmost ball on the left at the same speed as the rightmost one had initially.

However if the left 4 balls are touching, then the collision is different. We can model
the system as two masses m1 = m and m2 = 4m. We use equations 1 to compute the final
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velocities

v1f =
m1 −m2

m1 +m2
v1i =

1− 4

1 + 4
v1i = −3

5
v1i

v2f =
2m1

m1 +m2
v1i =

2

1 + 4
v1i =

2

5
v1i

The result is different than you expect with Newton’s cradle. Newton’s cradle is designed
with small gaps between balls so that the collisions between each pair of balls are separated
in time.

2.3 In the center of mass frame

We go back to the problem of an elastic collision between two masses m1,m2 with initial
and final velocities v1i, v2i, v1f , v2f in the lab frame. In the center of mass frame we write
the velocities as u1i, u2i, u1f , u2f .

In the center of mass frame

m1u1i +m2u2i = m1u1f +m2u2f = 0

and kinetic energy

K =
1

2
µ(u1i − u2i)2) =

1

2
µ(u1f − u2f )2

where the reduced mass µ = m1m2
m1+m2

.

Figure 5: A collision in 1 dimension in the center of mass frame.
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Since the total momentum is zero

u2i = −m1

m2
u1i

u2f = −m1

m2
u1f

Inserting these into our expression for kinetic energy(
u1i +

m1

m2
u1i

)2

=

(
u1f +

m1

m2
u1f

)2

(
1 +

m1

m2

)2

u21i =

(
1 +

m1

m2

)2

u21f

|u1i| = |u1f |

Likewise by inserting expressions for u2i, u2f instead of u1i, u1f into the kinetic energy
expression we can show that

|u2i| = |u2f |

The solution is

u1i = −u1f
u2i = −u2f . (2)

The velocities rebound perfectly in the center of mass frame.
We can show that the results of our calculation in lab frame and center of mass frame

are equivalent. In the previous example the velocity of the center of mass

Vcm =
1

m1 +m2
(m1v1i +m2v2i) =

m1v1i
m1 +m2

because the second mass is initially at rest. Lets go into the center of mass frame

u1i = v1i − Vcm

= v1i
m1 +m2

m1 +m2
− v1i

m1

m1 +m2

=
m2v1i

m1 +m2

After the collision (using equation 2)

u1f = −u1i = − m2v1i
m1 +m2
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Now we go back into the lab frame

v1f = u1f + Vcm

= − m2v1i
m1 +m2

+
m1v1i

m1 +m2

=
m1 −m2

m1 +m2
v1i

and this is identical to the expression we found in a previous section (equation 1) where
we worked in the lab frame rather than center of mass frame.

2.4 Qualitatively what do we mean by the center of mass frame?

Think about sitting in a train at night. You look out your window and see an experiment
taking place inside another train. The lights are on in the other train and you can see
inside it. Because it is dark outside you can’t tell how fast you are moving with respect to
the underlying scenery.

Suppose the train carrying the experiment has a collision as we described in the ”lab
frame”. If your train is moving at the same speed as the other train then you would
see the same pre- and post-collision velocities as measured inside the train carrying the
experiment.

However, if your train is moving with the center of mass of the two colliding objects,
then then you would see the collision as viewed in the “center of mass frame”.
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Figure 6: A collision in 1 dimension takes place in a train at night. A viewer is in a different
train and looks at the collision through the windows of both trains. The velocities of the
objects seen by the viewer depends on the object velocities with respect to the experiment’s
train and the relative velocity of the two trains. On the top, both trains are moving at the
same speed and the viewed velocities are v1i, v2i, the same as viewed in the experiment’s
train. On the bottom the experiment’s train appears to be moving to the left and the
velocities seen by the viewer are u1i, u2i. The viewer’s train is moving with the collision’s
center of mass.
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3 Non-relativistic anelastic collisions in 1 dimension where
the particles stick together

Figure 7: An anelastic collision in 1 dimension. The particles stick together during the
collision.

An extremely inelastic collision is one where the two particles stick together. We
consider two masses m1,m2. The first mass has initial velocity v1i. The second has v2i = 0.
Afterwards they have the same velocity. This gives us an additional constraint that lets us
solve for the final velocity.

Conservation of linear momentum implies that the velocity after the collision is equal
to the center of mass velocity.

vf = Vcm =
m1v1i

m1 +m2

The kinetic energy prior to the collision is

Ki =
1

2
m1v

2
1i

The kinetic energy after the collision is

Kf =
1

2
(m1 +m2)V

2
cm

=
1

2
(m1 +m2)

(
m1v1i

m1 +m2

)2

=
1

2

m2
1

m1 +m2
v21i

The kinetic energy afterwards is less than that initially.
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Let’s compute the change in kinetic energy

∆K = Ki −Kf =
1

2
m1v

2
1i

(
1− m1

m1 +m2

)
=

1

2
m1v

2
1i

(
m2 +m1 −m1

m1 +m2

)
=

1

2
v21i

m1m2

m1 +m2

We recognize the reduced mass. The velocity v1i is also the relative velocity. The kinetic
energy lost is equal to the relative kinetic energy of the two body system. Prior to the
collision we can describe the total kinetic energy as a sum of translational and relative
kinetic energies. When the two particles stick, the relative kinetic energy is lost, leaving
only the translational kinetic energy.

Figure 8: The same anelastic collision in 1 dimension but in the center of mass frame. The
particles stick together during the collision.

4 Non-relativistic collisions in three dimensions

Collisions in three-dimensions are similar to those in 1-dimension. Each component (x,y,z)
of the total linear momentum is conserved. If the collision is elastic, then the kinetic energy
is also conserved.

4.1 Disintegration in 2D

Instead of two particles sticking we consider the opposite processes, a single particle that
disintegrates or explodes.

We consider the disintegration shown in Figure 9. M splits into three piecesM1,M2,M3.
The trajectories lie in the xy plane. The initial velocity of M is V and is along the x axis.
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Figure 9: A mass M with velocity V disintegrates into three pieces M1,M2,M3.

M2 rebounds directly along M ’s inward trajectory on the x axis. M1’s velocity is perpen-
dicular to M2’s and along the y-axis. The angle between M3’s velocity and the x-axis is
θ.

Suppose we measure M , V , M1, v1, M2, v2. We assume that M3 = M −M1 −M2

so no mass is lost. We don’t know the magnitude or direction of the velocity of the third
mass, v3.

What is the magnitude of the velocity v3 of M3?
The component of momentum in the x direction is conserved

MV = M3v3 cos θ −M2v2

The component of momentum in the y direction is conserved

0 = M1v1 −M3v3 sin θ

We rewrite these as

M3v3 cos θ = M2v2 +MV

M3v3 sin θ = M1v1 (3)

Summing the square of these two equations

(M3v3)
2 = (M2v2 +MV )2 + (M1v1)

2

v3 =
1

M3

√
(M2v2 +MV )2 + (M1v1)2 (4)

We have found the velocity v3!
Using equations 3 again we can also solve for the angle θ

θ = atan2(M1v1,M2v2 +MV ). (5)
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We have found the velocity of a particle that might not have been easy to observe using
the velocities and masses of the other particles involved in a decay.

5 Relativistic collisions or reactions

The sum of four-vectors of all particles going into and out of a collision or reaction is
conserved. The total four vector

(E,p)total =
∑
i

(Ei,pi)

The energy of each particle is the relativistic version

Ei = γimic
2

and the momentum is also the relativistic version

pi = γimivi

If a particle is massless, like a photon then pi = Ei/c.
In other words before and after sums are the same.∑

i

Ei,initial =
∑
j

Ej,final (6)

∑
i

pi,initial =
∑
j

pj,final (7)

The total number of particles or rest masses of the particles need not be the same before
and after the collision or reaction.

Lorenz transformations are used to transfer between reference frames.

5.1 Absorption of a photon

A massive particle of rest mass m and initially at rest, absorbs a photon of energy Eγ .
Afterwards, the particle has increased in mass and it gains a velocity.

What is the particle’s momentum, pf and energy Ef afterwards?
The initial total energy is the sum of the particle and photon’s energy

E = Eγ +mc2 = Ef . (8)

This is equal to the particle’s energy afterwards because energy is conserved.
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Figure 10: A particle of rest mass m absorbs a photon of energy Eγ . The particle is initially
at rest. Afterwards the particle has rest mass mf and is moving at velocity vf .

The total momentum is that of the photon alone because initially the particle is at rest
and has zero momentum.

P =
Eγ
c

= pf . (9)

This is equal to the particle’s momentum afterwards because momentum is conserved.
What are the particle’s final rest mass mf and velocity, vf?
The energy and momentum of the particle afterwards

Ef = γfmfc
2

pf = γfmfvf

where γf is the Lorenz factor of the particle. Taking the ratio of these and using equations
8 and 9 we find

vf =
pfc

2

Ef
= c

Eγ
Eγ +mc2

.

We can use this to compute γf and then from this compute mf .
Another way to do the computation is use the fact that E2−P 2c2 = (mfc

2)2. Equations

14



8 and 9 give

(mfc
2)2 = E2 − P 2c2

= (Eγ +mc2)2 −
(
Eγ
c

)2

c2

= E2
γ + 2Eγmc

2 +m2c4 − E2
γ

= mc2(2Eγ +mc2)

= m2c4
(

2Eγ
mc2

+ 1

)
mf = m

√
2Eγ
mc2

+ 1.

This example was taken from one contributed by Timon Idema to LibreTexts.

5.2 Electron positron annihilation

Electron positron annihilation is when an electron and positron combine to produce two
photons. When they combine, they annihilate (that means they both disappear).

e− + e+ → γ + γ

The energy of the photons is at minimum equal to the rest mass energy (mec
2) of an

electron and is 511 keV (and a gamma ray).
Why can’t an electron and positron annihilate to produce a single photon?
Momentum must be conserved. We can always transfer to the center of mass frame for

the electron and positron and in that frame the total momentum must be zero. However a
photon always has momentum equal to its energy divided by the speed of light pλ = Eλ/c.
The momentum of a single photon cannot be zero, but that of two photons can be zero as
they can propagate in opposite directions.

5.3 The Geiger-Marsdon experiments, also known as the Rutherford
gold foil experiment

Much of nuclear and particle physics consists of the study of collisions.
α particles (essentially Helium nuclei) that hit a gold foil can scatter backwards elasti-

cally. Most pass through the foil without momentum change. The gold foil was interpreted
to be comprised of a few small dense and heavy atomic nuclei. See Figure 11. The set
of experiments that showed this are known as the Geiger-Marsdon experiments or the
Rutherford gold foil experiment.

With more energy in the collision, nuclei exhibit what is known as deep inelastic
scattering. In that setting the nucleus can deform, rotate and be put in excited states.
Eventually the extra energy in the nucleus decays via emission of radiation or/and particles.
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Figure 11: The Geiger-Marsdon experiments are also called the Rutherford gold foil
experiment. Most of the α particles pass right through the gold foil without changing
angle. A few of them are strongly scattered and are deflected to large angle θ. The gold
foil must be comprised of a large volume of empty space and a small volume of dense
atomic nuclei.

5.4 Beta decay

An example of beta decay is the following reaction

14
6C→ 14

7 N + e− + ν̄e

The half-life the carbon 14 atom is about 5,730 years. Here the electron is the emitted
(and easier to detect) beta particle.

A neutron in the nucleus of the carbon atom decays into a proton. Emitted is an electron
and an anti-neutrino. An intermediate virtual W- boson mediates the weak interaction.
Beta decay is a consequence of the weak force, which is characterized by relatively lengthy
decay times.

The study of beta decay provided the first physical evidence for the existence of the
neutrino. The kinetic energy distribution of beta particles measured by Lise Meitner and
Otto Hahn in 1911 and by Jean Danysz in 1913 showed multiple lines on a diffuse back-
ground. The distribution of beta particle energies was in apparent contradiction to the
law of conservation of energy. Wolfgang Pauli attempted to resolve the beta-particle en-
ergy conundrum by suggesting that, in addition to electrons and protons, atomic nuclei
also contained an extremely light neutral particle, which he called the neutron. A particle
called the neutron was discovered in 1932 by J. Chadwick but was too massive to account
for beta decay. Enrico Fermi renamed Pauli’s “neutron” the neutrino. The neutrino inter-
action with matter was so weak that detecting it was an experimental challenge. Further
indirect evidence of the existence of the neutrino was obtained by observing the recoil of
nuclei that emitted such a particle after absorbing an electron.
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6 Summary

• Final velocities following the non-relativistic elastic collision in 1d of two masses in
a lab frame where one mass is initially at rest.

v1f =
m1 −m2

m1 +m2
v1i

v2f =
m1

m2
(v1i − v1f ) =

2m1

m1 +m2
v1i (10)

• Pre and post velocities of the elastic collision of two masses in a center of mass
frame where the center of mass is at rest. The velocities flip sign; u1i = −u1f and
u2i = −u2f .

• How to go back and forth between center of mass and lab frames.

• How to compute the velocity of an anelastic non-relativistic collision where two par-
ticles stick together. Using conservation of momentum, the final velocity is equal to
the center of mass velocity.

• For relativistic collisions the total momentum and total energy are both conserved.
The total energy is the sum of the particle energies and the total momentum is the
sum of the particle momentums.

17


	Collisions of two objects
	Non-relativistic elastic collisions in 1 dimension
	In a lab-frame with one of the masses initially not moving
	Newton's cradle
	In the center of mass frame
	Qualitatively what do we mean by the center of mass frame?

	Non-relativistic anelastic collisions in 1 dimension where the particles stick together
	Non-relativistic collisions in three dimensions
	Disintegration in 2D

	Relativistic collisions or reactions
	Absorption of a photon
	Electron positron annihilation
	The Geiger-Marsdon experiments, also known as the Rutherford gold foil experiment
	Beta decay

	Summary

