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1 The center of mass

We consider two masses, m1 at x1 and m2 at x2. The center of mass is at position

Xcm =
m1x1 +m2x2

m1 +m2
. (1)

The mass of each particle acts like a weight.
We can take the time derivative of this equation to find the center of mass’s velocity.

Vcm =
m1v1 +m2v2

m1 +m2
. (2)

What is the distance of the center of mass from x1? This distance is |Xcm − x1|.

Xcm − x1 =
m1x1 +m2x2

m1 +m2
− x1

= ((m1 −m1 −m2)x1 +m2x2) (m1 +m2)
−1

=
m2

m1 +m2
(x2 − x1)

|Xcm − x1| =
m2

m1 +m2
|x2 − x1|. (3)

The distance between the center of mass and m1 is m2
m1+m2

times the distance between m1

and m2. This formula can be useful!
We can flip the particle ids to find

|Xcm − x2| =
m1

m1 +m2
|x2 − x1|. (4)

If we have N masses, each with mass mi and position xi, the total mass is

M =

N∑
i=1

mi.

The center of mass position is

Xcm =

∑N
i=1mixi∑N
i=1mi

=

∑N
i=1mixi
M

(5)
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Figure 1: The position of the center of mass of two particles. The distance from m1 to the
center of mass is m2

m1+m2
|x2−x1| where |x2−x1| is the distance between the two particles.

If instead of a number of point masses, we have a continuum density distribution
ρ(x, y, z). The total mass

M =

∫
ρ(x, y, z) dx dy dz

where the integral is all mass within the surface. The position of the center of mass

Xcm =

∫
dx dy dz x ρ(x, y, z)∫
dx dy dz ρ(x, y, z)

=
1

M

∫
dx dy dz x ρ(x, y, z). (6)

This is equivalent to

Xcm = (xcm, ycm, zcm)

xcm =
1

M

∫
dx dy dz xρ(x, y, z)

ycm =
1

M

∫
dx dy dz yρ(x, y, z)

zcm =
1

M

∫
dx dy dz zρ(x, y, z)

1.0.1 Example

Suppose m1 and m2 are on a sliding table and their center of mass remains fixed. The
distance between them is initially d but then shrinks to d/2.

Question: How far does m1 move?
Answer: we use equation 3.
The position of m1 initially has |x1,init −Xcm| = m2

m1+m2
d.

The final position of m1 is |x1,final −Xcm| = m2
m1+m2

d/2.
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The difference between initial and final positions for m1 is

m2

m1 +m2
(d− d/2) =

m2

m1 +m2

d

2
.

1.1 A tilted cube of jello

Figure 2: A tilting jello cube.

Question: A uniform density jello rectangle, as shown in Figure 2, is deformed so that
it is tilted by angle θ. The height is h and the base has length L and both remain the same
length. If the base is held fixed, how far does the center of mass move?

If l is the length of the right side after the jello is tilted, then the height of the jello
h = l cos θ and the base of the triangle in the overhang is l sin θ = h tan θ.

The top corner moves by a distance h tan θ.
Answer: The vertical coordinate of the center of mass stays fixed. The tilted block is

symmetrical so its center of mass is half way between the two opposite corners. The center
of mass moves by half of this distance or h

2 tan θ.
Question: If the base is frictionless, how far does the lower left hand corner move as

the jello tilts over by angle θ? Assume that the jello tilts via internal forces, not by being
pushed externally.

Answer: The center of mass remains fixed. The lower left corner moves the same
distance as in the previous question (h2 tan θ) but in the opposite direction as the top right
corner.

1.2 Superposition

Suppose we have a jigsaw puzzle. We can compute the center of mass by integrating over
the entire mass distribution

Xcm =
1

M

∫
dV ρ x. (7)
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Figure 3: The center of mass of the entire puzzle can be computed using the center of mass
positions of each piece and their masses.

Or we can compute the masses and center of mass of each puzzle piece, separately.

mi =

∫
piece,i

dV ρ (8)

xi,cm =
1

mi

∫
piece,i

dV x ρ. (9)

Then from the positions and masses of each piece (and with M =
∑

imi)

Xcm =

∑
i xi,cmmi∑
jmj

=
1

M

∑
i

xi,cmmi

=
1

M

∑
i

(
1

mi

∫
piece,i

dV xρ

)
mi

=
1

M

∫
dV xρ. (10)

The two descriptions are equivalent.

1.3 Center of mass of a uniform density disk with a hole in it

Looking at the left side of Figure 4 showing a disk with a hole in it, we ask, where is the
center of mass?
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Figure 4: The center of mass of the disk with a hole in it can be computed using superpo-
sition. On the left we mark with an x the center of mass of a disk with a hole in it. On
the right we mark the center of mass of the red plug and the filled in disk.

We call Mh, xh the mass and center of mass position of a plug that would fit in the
hole.

We call Mdh, xdh the mass and center of mass position of the disk with the hole.
We call Ms, xs the mass and center of mass position of the solid disk with radius R.
With a density of 1, the mass of the solid disk is Ms = πR2.
The mass of the plug that would fit in the hole is Mh = π(R/2)2 = πR2/4 = Ms/4.
The mass of the disk with hole is Mdh = πR2(1− 1/4) = 3

4πR
2 = 3Ms/4.

We define the x coordinate so that it is positive to the right and zero at the center of
the solid disk.

The x coordinate of the center of mass of the plug for the hole (if filled in) is xh = −R/2.
The x coordinate of the center of mass of the entire solid disk is xs = 0.
We want to solve for the center of mass of the disk with hole in it or xdh.
Via superposition, the center of mass of the solid disk is

xs = 0 =
Mhxh +Mdhxdh
Mh +Mdh

.

Taking the numerator, we can solve for xdh

xdh = − Mh

Mdh
xh =

1/4

3/4

R

2
=
R

6

This (xdh) is the distance of the center of mass from the center of the large disk. The
center of mass is to the right of the center of the disk.

1.4 Coin vibrational motors
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Figure 5: Inside a 1 cm coin vibrational motor which is used for haptic feedback in cell-
phones. The lopsided flywheel causes the center of mass to rotate at a few hundred Hz.
This type of motor typically weighs less than a gram and is powered with a few volts DC.
It can jump a few cm off a table top due to recoil.

2 Conservation of linear momentum in multiple particle sys-
tems

We consider N point masses, with masses mi, that interact via forces. The forces act
equally and oppositely on pairs of particles.

Recall that the velocity of the center of mass the system

Vcm =
1

M

N∑
i=1

mivi (11)

where M =
∑N

i=1mi. This implies that∑
i

mivi = MVcm. (12)

In the non-relativistic limit the total momentum

P =
∑
i

pi =
∑
i

mivi = MVcm. (13)

For relativistic particles, with total rest mass M and the total momentum P, we can
find a velocity Vcm that gives

P =
∑
i

pi =
∑
i

γimivi = γcmMVcm (14)
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where Lorenz factor γcm = 1√
1−V 2

cm/c
2
. This center of mass velocity gives us a reference

frame in which the center of mass has zero velocity. Here mi and γi are the rest masses
and Lorenz factors of each particle.

2.1 Internal forces alone — Total momentum is conserved

What happens if there are forces between pairs of particles? The total momentum

P =
∑
i

pi.

Consider a force between mi and mj . Over a short duration in time dt, each particle has
a small change in momentum dpi.

dpi = −dpj
for equal and opposite forces during the time interval dt. The force between each pair
of particles does not change the total momentum. Hence the total momentum P is con-
served.

P = constant.

A system with internal forces alone, conserves total momentum.
If the total momentum is conserved, then the center of mass velocity, Vcm, remains

fixed. The center of mass position drifts at a constant velocity. If Vcm is constant
then so is 1

2MV 2
cm which is the kinetic energy of the center of mass. A non-relativistic

system with internal forces alone has conserves the kinetic energy of its center of mass.
In a frame initially moving with the center of mass, the center of mass velocity is fixed

at zero and remains so. This is true if particles exert forces on each other but not true in
the presence of external forces.

An example of a system with only internal forces might be an N-body system of stars
in an isolated star cluster. In this case the total momentum is conserved and the center of
mass drifts at a constant velocity.

2.2 External forces

What if there is an external force operating on all masses? We consider changes in mo-
mentum over a short time interval caused by the external force.

dP =
∑
i

dpi

In the non-relativistic limit

dVcm =
1

M

∑
i

midvi

8



dP =
∑
i

midvi = MdVcm

An external force changes the total momentum and the center of mass velocity.
The total work done on the particle system by an external force is

dW =
∑
i

Fi · dxi =
∑
i

dpi
dt
· dxi. (15)

It is possible to decompose this into work done on the center of mass and work done
internally by the external force. An example of internal work might be tidal deformation.
An external gravitational field can be decomposed into that affecting the center of mass
and that causing body deformation. Each particle may not necessarily move in the same
direction so the work on the center of mass might not be the same as the total work done
on the system. In section 4.2 we discuss this again.

2.3 Kinetic energy (non-relativistic) for multiple particle systems

The kinetic energy of all particles (in the non-relativistic limit)

K =
1

2

∑
i

miv
2
i

I am going to add and subtract some terms and then complete the square

K =
1

2

[∑
i

miv
2
i − 2

∑
i

mivi ·Vcm + 2
∑
i

mivi ·Vcm +
∑
i

miV
2
cm −

∑
i

miV
2
cm

]

=
1

2

[∑
i

mi(vi −Vcm)2 + 2
∑
i

mivi ·Vcm −
∑
i

miV
2
cm

]

It is useful to use
∑
mivi = MVcm (equation 12) and

∑
mi = M ,

K =
1

2

[∑
i

mi(vi −Vcm)2 + 2MVcm ·Vcm −
∑
i

miV
2
cm

]

=
1

2

[∑
i

mi(vi −Vcm)2 + 2MV 2
cm −MV 2

cm

]

=
1

2

∑
i

mi(vi −Vcm)2 +
1

2
MV 2

cm

The total kinetic energy can be written as the kinetic energy of the center of mass plus the
kinetic energy of all the particles with respect to the center of mass position.
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Sometimes the kinetic energy of the center of mass motion is called the translational
kinetic energy. The kinetic energy of particles with respect to the center of mass position
is sometimes called the relative kinetic energy.

K = Krelative +Ktranslational (16)

Krelative =
1

2

∑
i

mi(vi −Vcm)2 (17)

Ktranslational =
1

2
MV 2

cm. (18)

The relative kinetic energy can include vibrations and rotation.
The translational kinetic energy remains fixed if there are no external forces. This

follows because when there are no external forces the total momentum is equal to the
center of mass momentum and the velocity of the center of mass, Vcm, is constant.

2.4 The reduced mass for two masses

Consider two particles with masses m1,m2 and velocities v1,v2. Let

u1 = v1 −Vcm and u2 = v2 −Vcm.

Here u1,u2 are velocities with respect to the center of mass frame. Let’s consider the
kinetic energy of particles w.r.t. to the center of mass. This is consistent with working in
a center of mass frame. Because we are in the center of mass frame

m1u1 +m2u2 = 0

m1(u1 − u2) + (m1 +m2)u2 = 0

u2 = − m1

m1 +m2
(u1 − u2)

u1 =
m2

m1 +m2
(u1 − u2) (19)

We define a velocity difference vector

udiff ≡ u1 − u2 = v1 − v2. (20)
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The kinetic energy in the center of mass frame

K =
1

2

[
m1u

2
1 +m2u

2
2

]
=

1

2

[
m1

(
m2

m1 +m2

)2

u2diff +m2

(
m2

m1 +m2

)2

u2diff

]

=
1

2

[
m1m

2
2 +m2m

2
1

m1 +m2)2
u2diff

]
=

1

2

m1m2

m1 +m2
u2diff

=
1

2
µu2diff (21)

We have defined the reduced mass

µ ≡ m1m2

m1 +m2
. (22)

We just computed the kinetic energy w.r.t. the center of mass. We now go back into
the original frame by restoring the center of mass motion.

The total kinetic energy can be written

K =
1

2
µu2diff +

1

2
MV 2

cm. (23)

2.5 The two body problem

Consider the total energy of two point masses m1,m2 interacting via gravity. It is useful
to compute

m1m2 = µ(m1 +m2) = µM

and a position difference vector
r1 − r2 = rdiff

where r1, r2 are the positions of the two masses. Here µ is the reduced mass and M =
m1 + m2 is the total mass. As before the velocity difference udiff = ṙ1 − ṙ2. The total
energy

E = K + U

=
1

2
µu2diff +

1

2
MV 2

cm −
Gm1m2

|r1 − r2|

=
1

2
µu2diff −

GµM

rdiff
+

1

2
MV 2

cm. (24)
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The dynamics of 2 point masses of mass m1,m2 in orbit about each other is the same as
a point mass of mass equal to the reduced mass µ about a very large mass M that has a
fixed position. The center of mass motion is unaffected by the gravitational force between
the two masses. This formalism is used to study binary stars!

2.6 Relativistic generalization

To shift reference frame, a Lorenz transformation must be applied to the energy momentum
four vector of each particle (Ei,pi). When there are internal forces alone

∑
i pi is conserved

and
∑

iEi is conserved. All four components of (E,p) are conserved.

2.7 The break-up of a projectile

Figure 6: Internal forces are responsible for the breakup of a rocket into pieces. The center
of mass position and velocity are not affected by the breakup.

Internal forces are responsible for the breakup of a rocket into pieces, so the center of
mass position and velocity are not affected by the breakup.

After the breakup the gravitational acceleration on each piece is the same.

Vcm =
1

M

∑
i

mivi

dVcm

dt
=

1

M

∑
i

mi
dvi
dt

=
1

M

∑
i

mi(−gẑ) = −gẑ.

The center of mass accelerates the same as each individual piece. This means that the
center of mass of the system remains on the projectile’s initial trajectory.
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Figure 7: Two equal masses connected by a spring. The motion consists of a drifting center
of mass coupled with harmonic motion. The position of the left mass is xa and that of the
right mass is xb. The distance between them is D.

2.8 Two masses and a spring (a molecule)

We model a molecule as two equal masses m which we label with subscripts a and b, are
connected by a spring with rest length L and spring constant k, as shown in Figure 7. We
let the masses move in one dimension, along the x-axis. Their positions are xa(t), xb(t).
The two masses can oscillate back and forth while the entire molecule drifts through space.
The equations of motion

m
d2xa
dt2

= −k(xa − xb + L) (25)

m
d2xb
dt2

= k(xa − xb + L). (26)

The spring forces are equal and opposite. The sign of the first term makes sense as when
xb − xa > L, the force is positive giving an acceleration to the right. Here xa refers to the
mass on the left and xb refers to the mass on the right.

The center of mass position Xcm and distance between the two masses D depend on
the positions of each mass xa, xb

Xcm =
xa + xb

2
D = xb − xa. (27)

The inverse transformation giving xa, xb from Xcm, D is

xa = Xcm −
D

2

xb = Xcm +
D

2
(28)
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We add the equations of motion (equation 26) together, and we subtract them to find

d2

dt2
(xa + xb) = 0

d2

dt2
(xb − xa) = −2k

m
(xb − xa − L) (29)

Equations 29 can be written

d2Xcm

dt2
= 0 (30)

d2D

dt2
= −ω2(D − L) (31)

with ω =
√
k/µ and with µ the reduced mass. Each of these equations can be solved

separately. The first one can be recognized as a drifting center of mass. The second one
can be recognized as the equation for a harmonic oscillator with a constant added.

A general solution is

Xcm(t) = Xcm,0 + Vcmt (32)

D(t) = A cos(ωt) +B sin(ωt) + L (33)

with constants Xcm,0, Vcm, A,B. Initial conditions could be used to set these constants.
For example, consider the initial condition for positions

xa(t = 0) = 0 xb(t = 0) = L

and velocities
va(t = 0) = −V0 vb(t = 0) = 0

where va = dxa
dt and similarly for vb.

The center of mass position at t = 0 is

Xcm,0 =
mL

m+m
=
L

2
.

The center of mass velocity is

Vcm =
−mV0
m+m

= −V0
2
.

Using these constants (and equation 32), we find that the center of mass at later times

Xcm(t) =
L

2
− V0t

2
. (34)
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The distance between the two masses at t = 0 is

D(t = 0) = xb(t = 0)− xa(t = 0) = L.

We evaluate equation 33 at t = 0

D(t = 0) = A+ L = L

giving A = 0. The time derivative of separation D at t = 0 is

dD(t = 0)

dt
(t = 0) = vb(0)− va(0) = V0

We take the time derivative of 33 at t = 0

dD(t = 0)

dt
= Bω = V0

giving

B =
V0
ω
.

Now that we have values for A,B we can use equation 33 to find the separation between
the two masses at later times

D(t) =
V0
ω

sinωt+ L. (35)

Lastly we can use the inverse transform (equation 28), solutions for Xcm(t) and D(t)
(equations 34 and 35) to write down expressions for positions xa(t), xb(t) at later times.

xa(t) = Xcm(t)− D(t)

2
=
L

2
− V0t

2
− V0

2ω
sinωt− L

2

xb(t) = Xcm(t) +
D(t)

2
=
L

2
− V0t

2
+
V0
2ω

sinωt+
L

2
.

2.9 A mass spring jumper

We consider two blocks of masses m1,m2 that are connected by a massless spring of spring
constant k. The bottom mass m1 is resting on a table top. The top mass m2 compresses
the spring by d and is initially at rest. The rest spring length is L.

What condition allows m1 to leave the table?
What is the center of mass position and velocity at the moment when m1 leaves the

table top?
We first solve the problem for m1 fixed on the top of the table. We use this solution to

find a condition for m1 to leave the table surface. Assuming this condition is satisfied, we
find the velocity and position of m2 at the time when m1 leaves the surface. These can be
used as initial conditions for the solution for both masses after m1 leaves the surface.
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Figure 8: The top mass is pushed down, compressing the spring. When this force is
removed, the system can jump off the table top.

2.9.1 Before m1 leaves the table surface

Initially the bottom mass m1 does not move. We take the vertical coordinates of the two
masses to be z1, z2. Let z1 = 0 when m1 is at rest on the table top and let z2 be measured
with respect to that position. The equation of motion for m2 (with m1 fixed)

m2z̈2 = −k(z2 − L)−m2g

The solution with with m2 initially at rest and m1 fixed

z2 = L− m2g

k
− d cos

(√
k

m2
t

)
(36)

The sign is because we start with compression by distance d. We chose the cosine because
the spring is initially compressed and m2 initially has zero velocity.

As long as the acceleration on m1 is downward and it is resting on the table top, m1

does not move. We want to know when the force of the spring overcomes gravity on m1 so
it can lift of the table. Ignoring the force from the table top, the equation of motion for
m1 is

m1z̈1 = k(z2 − z1 − L)−m1g.

When z1 = 0 the force on m1 and using equation 36 for z2

m1z̈1 = k(z2 − L)−m1g

= k(L− m2g

k
+ d sin

(√
k

m2
t

)
− L)−m1g

= −(m1 +m2)g − kd cos

(√
k

m2
t

)
(37)
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The cosine is at most ±1. What condition allows m1 to leave the table? If

kd > (m1 +m2)g, (38)

then the acceleration on m1 can exceed that from gravity and m1 can leave the table top.

2.9.2 The system at the moment when m1 leaves the table surface

When does m1 leave the table top? The mass m1 leaves the surface of the table at t∗ when
the right side of equation 37 is zero.

(m1 +m2)g = −kd cos

(√
k

m2
t∗

)

This gives us a z2 value when m1 leaves the table top.

z2∗ = L− m2g

k
+

(m1 +m2)g

k

We can compute the center of mass position at this moment in time t∗

zcm,∗ =
1

m1 +m2
m2z2∗ =

m2

m1 +m2

(
L− m2g

k
+

(m1 +m2)g

k

)
which is measured from the rest position of m1 on the table top.

At that moment in time t∗ what is the velocity of m2? We differentiate equation 36.

v2∗ = d

√
k

m2
sin

(√
k

m2
t∗

)

m2v
2
2∗ = kd2 sin2

(√
k

m2
t∗

)

= kd2

(
1− cos2

(√
k

m2
t∗

))

= kd2

(
1−

(
(m1 +m2)g

kd

)2
)

= kd2 − (m1 +m2)
2g2

k

v2∗ =

√
kd2

m2
− (m1 +m2)2g2

km2
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From this velocity we can find a center of mass velocity

vcm,∗ =
m2

m1 +m2
v2∗.

What are the relative velocity and position at t∗?

vdiff,∗ = v2∗ − v1∗ = v2∗

zdiff,∗ = z2∗ − z1∗ = z2∗ = L− m2g

k
+

(m1 +m2)g

k

2.9.3 Solution afterward

We solve for a center of mass position and velocity as a function of time due to gravity.
On top of this we can superimpose the oscillation of the mass spring system.

When m1 is off the table, it and m2 are only affected by gravity and the spring. The
equations of motion are

m1z̈1 = −m1g − k(z1 − z2 + L) (39)

m2z̈2 = −m2g + k(z1 − z2 + L) (40)

We subtract these two equations to find

m1m2(z̈2 − z̈1) = −k(m1 +m2)(z2 − z1 − L)

µz̈diff = −k(zdiff − L). (41)

Once m1 is no longer touching the table, the oscillation frequency is
√

k
µ where µ =

m1m2/(m1 +m2) is the reduced mass.
The vibrational motion is decoupled from the motion of the center of mass. We can

also add the two equations (equations 54) to find that

m1z̈1 +m2z̈2 = −(m1 +m2)g

Mz̈cm = −Mg (42)

The center of mass motion is only affected by gravity.
After m1 leaves the table, the motion can be described as a sum of the center mass

motion, which is affected by gravity alone, and an oscillation in the spring of the reduced
mass and neglecting gravity.

The rest distance between m1,m2 is L. The relative position and velocity can be used
to find the amplitude and phase of this oscillation after t∗. For example, the amplitude of
the relative distance oscillation would be

A =

√
µ

k
v2diff,∗ + (zdiff∗ − L)2.
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Figure 9: A conveyor belt. The belt moves at velocity V . The force on the belt is F and
the mass flow rate onto the belt is dM

dt .

The initial center of mass velocity vcm,∗ can be used to find the motion of the center of
mass after t∗.

The two mass system will return to hit the table surface. We could predict the time
when this happens from the solution after t∗.

2.10 A conveyor belt

A hopper dumps sand on a conveyor belt at a rate of dM
dt kilograms per second (see Figure

9). The conveyor belt is moving to the right at (non-relativistic) speed V and the sand
is dumped off at the end. What force F is needed to keep the conveyor belt moving at a
constant speed, assuming that the conveyor belt mechanism itself is frictionless?

In this case
dMin

dt
=
dMout

dt
.

The sand on the belt and the belt holding this sand together are in a steady state. This
means that together they have a constant momentum.

The sand enters the system with zero horizontal velocity, but exits the system with the
horizontal velocity of the conveyor belt, V . What is the change in momentum for a small
mass dM? It is dM × V . This means that dp

dt = dM
dt V . The momentum balance equation

is thus

0 = F − V dM
dt
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and the force on the conveyor belt is

F = V
dM

dt
.

This force serves to accelerate the sand up to the velocity of the conveyor belt. This
example is by David J. Raymond.

3 Thrust

Consider a rocket engine (Figure 10). The nozzle sends out a small mass of gas dm at
relative velocity vrel with respect to the rocket. The momentum of this small mass of gas
is dp = dm vrel. If it takes dt time to emit this gas then the change in momentum per unit
time of the rocket is

dp

dt
=
dm

dt
vrel.

Here dm
dt is the propellant mass outflow rate from the rocket. We have balanced the

momentum changes.1 Note that vrel is the velocity of the gas in the rocket frame or
relative to the rocket. This is a force exerted on the rocket known as thrust.

Fthrust =
dm

dt
vrel.

The direction of the force is in the opposite direction of the velocity of the expelled gas in
the rocket’s frame

Fthrust = −dm
dt

vrel. (43)

The thrust is applied on the mass of the rocket which is decreasing.

−dm
dt
vrel = M(t)

dV

dt

where V is the velocity of the rocket. If the mass loss rate is constant then the mass of the
rocket M(t) = Mi − dm

dt t where Mi is the initial rocket mass. Here dm
dt is the mass outflow

rate of the expelled gas and the mass loss rate from the rocket is equal to the outflow rate
but with the opposite sign, dM

dt = −dm
dt . We find that

dV

dt
= − ṁvrel

Mi − ṁt

where ṁ = dm/dt. This can be integrated

dV = − ṁvrel
Mi − ṁt

dt

V = vrel ln(Mi − ṁt) + constant

1It is incorrect to estimate the thrust with dp
dt

= d(mv)
dt

= dm
dt

v +m dv
dt
.
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If Vf and Mf are velocity and mass of rocket at a later time and Vi and Mi are velocity and
mass at an initial time, the constant can be determined and the resulting solution written
as

Vf = Vi + vrel ln

∣∣∣∣Mi

Mf

∣∣∣∣ .
How is it that momentum is conserved? We consider a moment in time when a small

mass dm is expelled from the rocket. The mass of the rocket after it is expelled is M . The
velocity of the rocket and small mass before expulsion is V . The velocity of the rocket
after expulsion is V + dV . The total momentum prior to expelling the mass is

p0 = (M + dm)V. (44)

After expelling it the small parcel of gas has velocity V +vrel and momentum dm(V +vrel).
The total momentum after expulsion is

p1 = M(V + dV ) + dm (V + vrel). (45)

If we set p0 = p1 we find that

M(V + dV ) + dm (V + vrel) = (M + dm)V

MdV + dm vrel = 0. (46)

This gives

M
dV

dt
= −dm

dt
vrel

consistent with our previous definition of the force called thrust. Expelling the small mass
dm changes its momentum. The momentum of the rocket is changed by exactly the same
amount. The force exerted on the rocket exhaust is equal and opposite to that exerted
on the rocket by the exhaust. Conservation of momentum is consistent with an equal and
opposite force exerted by rocket and exhaust to each other.

A relativistic generalization of thrust would be

Fthrust = −dm
dt
γrelvrel (47)

where γrel = (1− v2rel/c2)
− 1

2 is the Lorenz factor associated with the relative velocity vrel.
Here dm is the rest mass in the ejecta and dm/dt is the rate that rest mass is ejected. The
momentum associated with dm is dp = dm γrelvrel.
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Figure 10: Thrust from a rocket engine. Fthrust = −dm
dt vrel where dm/dt is the mass loss

rate and vrel is the difference in velocity between the rocket and the emitted mass.
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4 Energy of multiple particle systems

4.1 Gravitational potential energy of an extended mass

We consider an extended mass near the surface of the Earth. The total mass is

M =

∫
ρdV

where dV = dx dy dz. The z component of the center of mass is

zcm =
1

M

∫
ρzdV.

The potential energy is

U(zcm) =

∫
ρgz dV = Mgzcm.

This only depends on the vertical coordinate of the center of mass zcm so we can define a
total gravitational force

FT =

∫
ρdV F (x)

= −dU(zcm)

dzcm
= −Mgẑ.

4.2 External force on a multiple particle system and work on the center
of mass

The total momentum of a multiple particle system (non-relativistic)

P =
∑
i

mivi = MVcm

We apply an external force that might depend upon position.

dP

dt
=
∑
i

dpi
dt

=
∑
i

Fi

where Fi is the force on each particle. Let

FT =
∑
i

Fi. (48)
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Instead of computing work on each individual particle, we compute the work on the
center of mass as the total force times the distance travelled by the center of mass.∫

FT · dXcm =

∫
dP

dt
· dXcm

=

∫
M
dVcm

dt
· dXcm

dt
dt

=

∫
M
dVcm

dt
·Vcmdt

= M

∫
d

dt

(
V 2
cm

2

)
dt

=
1

2
MV 2

cm

∣∣∣∣∣
Vcm,f

Vcm,i

.

The total work done on the center of mass increases the kinetic energy of the center of
mass.

Note that equation 48 is the sum of forces on each particle. This is not necessarily
the same as a position dependent force calculated at the position of the center of mass. If
the force does not depend on position, like gravitational acceleration at the surface of the
Earth, then you need not worry about this difference. For gravity, the force is proportional
to mass and can be expanded as a function of position. It is convenient to describe the
force on a rigid body in terms of the force integrated over the mass distribution. The first
term in a multipole expansion is the force evaluated at the center of mass position. The
second non-zero term in the expansion is the quadrupolar or tidal term.

4.3 Energy of multiple particle systems

Neglecting rest mass and heat, the total energy can often be decomposed into the sum of

• A center of mass kinetic term (the translational kinetic energy).

• A relative kinetic energy term (kinetic energy of the particle velocities with respect
to the center of mass). This includes vibrational and rotational energy.

• The sum of potential energies for each pair of interacting particles, assuming that
the interactions are due to conservative forces.

• The sum of potential energies for each particle from the external forces, assuming
that they are conservative.

As long as there are no non-conservative forces or transfer of heat, application of the
energy principle then implies that the total energy is conserved.

Example of particle interactions are electrostatic or gravitational forces or massless
springs.
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5 Summary

• The center of mass position

Xcm =
1

M

∑
i

mixi or
1

M

∫
ρxdV

where the total mass

M =
∑
i

mi or

∫
ρdV

• The velocity of the center of mass is

Vcm =
1

M

∑
i

mivi or
1

M

∫
ρvdV

• It is sometimes easier to calculate the position of the center of mass, using super-
position (or computing the center of mass positions of individual pieces).

• The kinetic energy of a non-relativistic multi-particle system

K = Ktranslational +Kinternal

where

Ktranslational =
1

2
MV 2

cm

Kinternal =
1

2

∑
mi(vi − Vcm)2

• For a non-relativistic two body system

Kinternal =
1

2
µu2diff

where the reduced mass
µ =

m1m2

m1 +m2

and the velocity difference udiff = u1 − u2.

• With internal forces alone, the total momentum is conserved.

• With external forces acting on a multi-particle system and total force (computed
using the external forces) F =

∑
i Fi, the work done on the center of mass is equal

to the change in translational kinetic energy

Wcm =

∫
F · dXcm = ∆Ktranslational

• Thrust due to mass loss at a rate dm/dt and with relative velocity vrel is

Fthrust = −dm
dt

vrel
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6 Extra: Conservation laws

6.1 Continuum equations in 1 dimension

We consider a quantity that we expect is conserved. The amount of this quantity depends
on a coordinate x and time t. An example would be density ρ(x, t) or number density of
cars on a road n(x, t). The mass in an element of length dx would be dm = ρ(x, t)dx. Or
similarly the number of cars on the road in a length dx would be dN = n(x, t)dx.

We can also consider a mean velocity u(x, t). This is an average velocity of particles
(or cars) in the flow.

Consider the amount of mass flowing out of a region per unit time. This would be the
mass flux ρu evaluated at the right hand side of the region. It is a rate of mass.

ρu =
dm

dx

dx

dt
=
dm

dt

The amount of mass flowing into the region is ρu but evaluated at the left hand side of
the region. If the mass flowing in is equal to the mass flowing out the region does not gain
mass and dρ

dt = 0. If the mass flowing out is greater than that flowing in, then the region
looses mass. The difference of the two mass fluxes determines how much mass is lost or
gained in the region. Dividing both sides by dx this gives

∂ρ

∂t
= − ∂

∂x
(ρu). (49)

An equation like this, with a time derivative on one side, equal to to a gradient of a flux
on the other side, is a general form for a conservation law.

In three dimensions
∂ρ

∂t
= −∇ · (ρu).

6.2 Distribution functions

We describe the density of particles in phase space with a function f(x, v, t). The number
of particles within dx/2 of position x and within velocity dv/2 of velocity v is

dN = f(x, v, t)dx dv

To find number of particles per unit volume we integrate over all velocity

n(x, t) =

∫
f(x, v, t)dv. (50)

The mean velocity is normalized

u(x, t) =

∫
f(x, v, t)v dv∫
f(x, v, t)dv

. (51)
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This is equivalent to

nu =

∫
f(x, v, t)v dv. (52)

Conservation of the number of particles gives

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂v

dv

dt
+
∂f

∂t
= 0.

We integrate each term of this over all velocity space.∫
∂f

∂x

dx

dt
dv +

∫
∂f

∂v

dv

dt
dv +

∫
∂f

∂t
dv = 0. (53)

We evaluate each term in the sum separately.∫
∂f

∂x

dx

dt
dv =

∫
∂f

∂x
v dv

=
d

dx

∫
f(x, v, t)v dv

=
d

dx
(nu)

For the second term, we assume that the acceleration dv/dt depends only on position, not
velocity ∫

∂f

∂v

dv

dt
dv =

dv

dt

∫
∂f

∂v
dv

=
dv

dt
f |v=∞v=−∞

= 0

This is zero because we don’t expect any particles to have infinite velocity. The third term∫
∂f

∂t
dv =

d

dt

∫
f(x, v, t)dv

=
dn

dt

Putting these together (back into equation 53) we get

∂n

∂t
+

∂

∂x
(nu) = 0

which is consistent with the conservation law derived in the previous section.
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6.3 Conservation of momentum in 1D

Above (equation 49) we derived an equation that is equivalent to conservation of mass.

∂ρ

∂t
= −∂(ρu)

∂x
.

Lets expand this
∂ρ

∂t
= −u∂ρ

∂x
− ρ∂u

∂x
. (54)

What does conservation of momentum look like? The total momentum in an element
of length dx would be ρu dx, so the momentum per unit length is ρu. In the conservation
law we replace ρ with ρu.

Let’s make a conservation law using ρu. The momentum flux is ρu2 (the amount of
momentum times how fast it moves). This gives

∂ρu

∂t
= −∂(ρu2)

∂x

We expand this and use equation 54

ρ
∂u

∂t
+ u

∂ρ

∂t
= −ρ2u

∂u

∂x
− u2 ∂ρ

∂x

ρ
∂u

∂t
− u2 ∂ρ

∂x
− uρ∂u

∂x
= −ρ2u

∂u

∂x
− u2 ∂ρ

∂x

ρ
∂u

∂t
= −ρu∂u

∂x
∂u

∂t
+ u

∂u

∂x
= 0

This last equation is known as the inviscid Burger’s equation. It’s non linear and shows
some interesting phenomena like propagating small smooth perturbations steepening into
discontinuities or shocks.

In 3D and adding in additional terms due to pressure p and viscosity ν

∂u

∂t
+ u · (∇u) = −∇p

ρ
+ ν∇2u (55)

Without viscosity this is known as Euler’s equation. Including viscosity this is known as
the Navier-Stokes equation. This equation is equivalent to conservation of momentum in
a fluid.
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