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1 Potential energy in 1 dimension

In the previous lecture we considered the work done by constant forces and we showed that
the work was equal to the change in kinetic energy. Now we consider the work done on a
mass by position dependent forces.

Consider a force in 1 dimension F (x). The work done along a particle trajectory that
goes from x1 to x2 is

W =

∫ x2

x1

Fdx.

Let’s define a function U(x) that satisfies

dU(x)

dx
= −F (x).

We integrate this along a path∫ x2

x1

dx
dU(x)

dx
= −

∫ x2

x1

F (x)dx = −W

U(x)
]x2
x1

= −W

U(x2)− U(x1) = −W

The function U(x) is known as the potential energy. In the last step we see that that
the work, which is the integral of the force along a path from x1 to x2, only depends on
the end points and is independent of the path taken. However this is only true if we can
write the force as a gradient or derivative of a function.

2 Conservative forces in three-dimensions

For a force F we can integrate

W =

∫ x2

x1

F(x) · dx

Consider two paths both going from x1 to x2. We can reverse the second path and make
a loop.

If

∮
loop

F(x) · dx = 0

then we say that the force is conservative.
If the force is a function of position in 1-dimension then it is a derivative of some other

function and the force is conservative.
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Figure 1: On the left we show two paths A and B going from point 1 to point 2. On the
right we reverse the direction of path B so to form a loop.

In 3-dimensions, not all functions of position are gradients of some other function. If
there is a function U(x) such that

∇U(x) =

(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
= −F(x)

then the force is conservative.

3 Conservation of energy

We consider a conservative force with potential U . The force acts on a point mass m.
With v = dx/dt (non relativistic setting), let’s take the time derivative of the sum of

kinetic and potential energy

E = K + U

E =
1

2
mv2 + U(x)

dE

dt
= mvv̇ +

dU

dx

dx

dt
=
dK

dt
− P

= vF − Fv = 0,

where I used Newton’s law F = mdv
dt . In the non-relativistic setting and with a conservative

force, energy which is a sum of kinetic plus potential energy, is conserved.
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We can prove the same thing in three dimensions as long as the force is conservative
so that we can find a potential such that −∇U(x) = F(x). We repeat the previous steps

E =
1

2
mv2 + U(x)

dE

dt
= mv · dv

dt
+ ∇U · dx

dt
= v · (ma) + ∇U · v
= v · F− F · v
= 0.

Consider a velocity dependent force, such as

F (v) = −αv.

If I integrate over a loop

W =

∮
F (v) · dx

=

∮
−αvdx

dt
dt

=

∮
−αv2dt

W < 0

This must be less than zero for any trajectory. Hence work done W < 0 for the loop and
the force is not conservative.

Velocity dependent forces, (even in 1d) are not conservative forces. Velocity dependent
forces, such as friction and drag, dissipate energy. The energy does not disappear, it goes
into heat or vibrations or fluid motions.

For non-relativistic particles and with potential energy U

E = K + U =
1

2
mv2 + U(x)

and E is conserved. In this case we have neglected the rest mass (and heat). For relativistic
particles the energy is more generally

E = γmc2 + U(x)

When integrating W =
∫
F · dx in classical systems we can arbitrary chose a constant

offset for potential energy U without affecting the force or work done on a path.
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4 Examples

In this set of examples I ignore heat flux as a source of energy.

4.1 Velocity from a potential energy difference

Consider a particle with initial position x0 and velocity v0 � c that is in a force field with
potential energy U(x). Its initial energy is the sum of potential and kinetic energy

E =
1

2
mv20 + U(x0)

Suppose the particle moves to x1. Energy is conserved so after moving to x1

E =
1

2
mv21 + U(x1)

We can solve for v1 from only the position x1.

v1 =

√
v20 +

2

m
(U(x0)− U(x1))

The resulting velocity is independent of the particle trajectory and only dependent
upon the endpoint.

Figure 2: The difference in gravitational potential energy depends on the height of the
mass.

4.2 Gravitational potential energy on the surface of the Earth

We consider a mass m initially on the surface of the Earth. The gravitational force is

F = −mgẑ.
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Here x̂, ŷ, ẑ are unit vectors pointed in the +x, +y and +z directions, respectively. The
potential energy associated with this is

U(z) = mgz

which we find by integrating a constant force. We check

∂U

∂z
= mg

F = −
(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
= −∂U

∂x
x̂− ∂U

∂y
ŷ − ∂U

∂z
ẑ = −mgẑ.

a) We move the mass from z = 0 to z = h. What is the work done by gravity?∫ h
0 dz = h and dz is positive but F is downward so

W =

∫ h

0
Fdz = −mgh.

The work done has the same size (but opposite sign) as the change in potential energy.
b) A mass initially at rest and at z = h falls to z = 0. What is its velocity at z = 0?
Because the velocity is initial zero, the kinetic energy is initially 0. The potential energy

initially is mgh. The potential energy at the end is 0 but the kinetic energy is mv2/2. Its
energy is

E = K + U = 0 +mgh = mv2/2 + 0

mgh = mv2/2

We solve for
v =

√
2gh.

c) A mass initially at rest and at z = h falls to z = 0. What is the work on the mass
done by gravity? The direction travelled is down and so is the gravitational force. This
means the work done by gravity W = mgh is positive.

4.3 Work done by friction

Friction is not a conservative force. However I want to talk about it here so as to try to
make clear what it means to have positive or negative work. A mass is on a horizontal
surface (see Figure 3). It is initially at velocity v0. It moves a distance d before coming to
rest. The surface has kinetic coefficient of friction µk. What is the work done by friction?
The friction force opposes the direction of motion so force times distance is negative. The
work done by friction onto the mass is

W = −µkMgd

.
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Figure 3: A block on a table initially with velocity v0 is brought to rest by friction. It travels
a distance d before coming to rest. The work done by friction is W = Ffrictiond = −µkMgd.
If it is initially moving, the kinetic energy of the block would decay because of friction.
The work done on the block by the friction force is negative.

Figure 4: A spring force. On the right we show the potential energy function U(x) = 1
2kx

2.

For x > 0, the slope dU
dx > 0 and F = −dU

dx < 0 so the force pushes the mass to the left.

For x < 0, the slope dU
dx < 0 and F = −dU

dx > 0 so the force pushes the mass to the right.
The bottom of the potential well is a stable fixed point or equilibrium position.

4.4 Potential energy of a spring

The force of a spring onto a block of mass m is

F (x) = −kx

we integrate this

U(x) = −
∫ x

F (x) dx =

∫ x

kx dx

=
kx2

2
+ constant.
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The block is moved from its equilibrium position to position x = A. What is the work
done?

The work

W = −∆U = −kA
2

2
.

The spring force is in the -x direction, the displacement in the +x direction. So force times
distance is negative.

4.5 Gravitational potential energy

We consider moving an object with mass m from position r1 to position r2 from the center
of a planet with mass M . We take origin at the center of the planet. What is the work
required to move the mass m from r1 to r2? Here the distance travelled ∆r is not small
compared to r1 or r2. For small distances we can use a constant gravitational acceleration
(g) but for larger distances this would be a bad approximation.

Figure 5: The gravitational potential energy function of a planet depends on radius from
the planet’s center.

The force is

F(r) = −GmM
r2

r̂.

Here the unit vector r̂ = r
r . This is a vector so we are looking for U(r) such that

∇U(r) = −F(r)

It makes sense to work in spherical coordinates. In spherical coordinates a function that
depends on radius U(r) has gradient

∇U(r) =
dU

dr
r̂
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So we need only integrate

U(r) = −
∫ r

F (r) dr

=

∫ r GMm

r2

= −GMm

r

To find the work required to move m from r1 to r2, we could integrate the force directly
with

W =

∫ r2

r1

F · dx =

∫ r2

r1

F (r) dr.

The integral does not depend on the path angle because the force is radial. Equivalently
we can take the difference in the potential energies.

W = − (U(r2)− U(r1)) = GMm

(
1

r2
− 1

r1

)
4.6 Electrostatic potential energy

The electric force from charge q2 at position r2 onto charge q1 which is at position r1 is

F(r21) =
1

4πε0

q1q2
r212

r̂12

where r12 = r1 − r2. The vector points from q2 to q1. The force is repulsive if the charges
are the same and attractive otherwise. The associated potential energy is

U(r12) =
1

4πε0

q1q2
r12

.

It is positive if the charges are the same, otherwise negative if they are opposite.
Here ε0 is the vacuum permittivity, or the permittivity of free space. The constant

k0 =
1

4πε0
= 8.897551787× 109N m2 C−2.

A single electron has charge

e = 1.602176565× 10−19C

where C is a coulomb.
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Figure 6: Electrostatic force depends on charge. The force on two charges is equal and
opposite, |F12| = |F21| = k q1q2

r2
where r is the distance between the two charges, and q1, q2

are their charges. The force is attractive if the charges are opposite and is repulsive if the
charges have the same sign. Here k is a constant.

What is the electric field E? Taking a small test charge q, the electric field at a
particular position is the force divided by q or E = F/q from all other charges. This means

E = −∇U

q

where U/q is sum of the potential energies from all other charges.

4.7 Nuclear potential energy

We consider the force between a free proton and an atomic nucleus. At large distances,
the force is dominated by the repulsive electric force as the charges are the same. At small
distances, the force is dominated by the attractive nuclear force. A free particle usually
cannot overcome the barrier. Only at high velocity can it overcome the barrier. Quantum
tunneling makes it possible for a particle that is at an energy below the barrier peak to
tunnel into the nucleus. This picture is relevant to estimating nuclear burning rates in the
Sun.
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Figure 7: Top: Electric potential for two repulsing and same sign charges. U(r) > 0 and
limr→∞ U(r) = 0. Bottom: Electric potential for two attracting and opposite sign charges.
U(r) < 0 and limr→∞ U(r) = 0.

4.8 The Brachistochrone curve

We have two points at different horizontal positions and different heights. A mass starts at
rest at x = x1 and z = h. The mass slides down a curved frictionless surface, and reaches
x = x2 and z = 0. While sliding the mass is accelerated downward by the gravitational
acceleration g.

Does the shape of the surface affect the final velocity?
Answer: No. The final velocity only depends on h because it only depends on the

difference in potential energy at start and end points.
What shaped curve minimizes the travel time?
The answer is here: The brachistochrone curve.

Figure 8: Consider a mass sliding down a curve starting at the red point on the left and
ending at the right point on the right. Gravitational acceleration is in the vertical direction.
The curve of fastest descent is the red curve.
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5 Energy diagrams

Figure 9: The maxima and minima of U(x) are locations where the force is zero. This
means they are equilibrium positions. Where the slope is negative the force is to the right.
Where the slope is positive the force is to the left. The bottom of the valley (a green point
on the right) is a stable equilibrium point whereas the top of the mountain (the green
point on the left) is an unstable equilibrium point. The gray dotted parabola shows the
second derivative at the equilibrium point and this sets the frequency of oscillations near
equilibrium.

We consider the maxima and minima of a potential U(x). At an extremum

dU(x)

dx
= 0.

Because

F = ma = m
dv

dt
= −dU(x)

dx
= 0

at an extremum, dv/dt = 0 at the extremum. A particle with v = 0 and dv/dt = 0 will
stay a the same position and will not move.

Let x∗ be an extremum and consider a particle with energy E = U(x∗) . Because
E = U +K, the kinetic energy K must be zero at x∗ for this particle when it has x = x∗.
The velocity is zero and the velocity stays at zero. This point is a fixed or an equilibrium
point.

It is either a stable or unstable equilibrium point dependent upon whether U ′′(x) is
positive or negative or zero. If U ′′(x∗) > 0, the equilibrium point is stable. Consider a
point x∗+ y with small y. The force on the particle pushes it back toward the equilibrium
point. If U ′′(x∗) < 0 the equilibrium point is unstable. The force on a particle that is near
x∗ would move it away from the equilibrium point.

We show some pictures with E = K+U as horizontal lines on a plot showing U(x). On
these plots K = E −U(x) is the distance between horizontal E lines and the U(x) curves.
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Kinetic energy K > 0, so if the horizontal line for E is always above U(x) the particle is
free and can reach large or small values of x. Otherwise the particle cannot cross the U(x)
curve. If the horizontal line intersects U on left and right sides, the particle cannot cross
the x values of these intersections and it would be bound.

Figure 10: There are two regions (potential wells) where particles can be bound. There is a
larger region where particles might not be bound (energies E ≥ E3). There are two stable
equilibrium points (x0, x1) and two unstable equilibrium points( x2, x3). A particle with
energy E2 ≤ E < E3 could be found in either potential well. A particle with E1 ≤ E < E2

is trapped either in the left well or the right one. If E0 ≥ E < E1 then it can only be in
the right potential well.
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Figure 11: We show potential energy for a planet with radius shown by the dotted vertical
line. The top horizontal line shows and energy that allows a particle to escape the gravi-
tational field. The bottom horizontal line shows a particle that is bound. The difference
between total energy and potential energy is the kinetic energy. Here the force is attractive
and U < 0. The potential energy approaches zero as r →∞.

Figure 12: Two free protons approach each other. The sum of kinetic and potential energy
remains fixed. They cannot get closer than where the kinetic energy reaches zero. Here
the force is repulsive and U > 0. The potential energy approaches zero as r →∞.
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5.1 Attracting particles at small radius

Consider an atomic nucleus, which is positively charged, and an electron which is negatively
charged. They attract because they have opposite charges. What prevents them from
getting very close together? If the problem was purely classical, angular momentum would
prevent the two from getting close together and the electron would orbit the nucleus. But
then the electron would emit radiation causing it to spiral in. Quantum mechanics gives a
theory in which this does not happen.

Consider two black holes approaching each other. The gravitational force is attractive.
Due to angular momentum they wind up orbiting each other. In this case gravitational
wave emission can lead to loss of angular momentum and they can merge.

Figure 13: Left: Level curves and phase flow of the Harmonic oscillator. Right: Level
curves and phase flow of the pendulum. The orbits are level curves. It can be easier to
find the orbits by plotting energy contours than solving the equations of motion.

6 Level curves in phase space

The harmonic oscillator has potential energy U(x) = 1
2kx

2. The total energy per unit mass

E(v, x)

m
=

1

2
v2 +

1

2

k

m
x2

where v = dx
dt = ẋ. On a plot of ẋ versus x (or equivalently v versus x) and known as

phase space, the curves of constant energy are ellipses (see Figure 13a). These are also
the orbits.
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6.1 Potential energy and energy level curves of a pendulum

Figure 14: Potential energy of a pendulum. Oscillating orbits are those where the pendulum
swings until it is inverted and then falls down to swing back up again. Librating orbits go
back and forth about the hanging vertical position with θ = 0.

For the pendulum the force is

F (θ) = −mgL sin θ.

The potential energy is
U(θ) = −mgL cos θ.

The kinetic energy is K = m
2 (Lθ̇)2 where θ̇ = dθ

dt . The total energy satisfies

E(θ̇, θ)

mL2
=

1

2

(
dθ

dt

)2

− g

L
cos θ

The curves of constant energy are also orbits and they are plotted in Figure 13b.
It is easy to plot contours of E(θ, θ̇) and these show you the orbits in phase space.

This can be easier than solving the equations of motion. For a pendulum, the equations
of motion depend on elliptic functions unless θ is small. Even though we may not have
a simple analytic form for the equations of motion, we do know how the orbits move in
phase space.
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Figure 15: The difference between librating and oscillating orbits for the pendulum. Here
the vertical axis is θ̇ and the position azimuthally on each cylinder is determined by θ.

7 Summary

• The relationship between potential energy and force.

U = −
∫
F · dx and ∇U = dU

dx = −F(x).

Work W = −∆U .

• How to use potential energy differences to compute kinetic energy or velocity.

• How to find stable and unstable fixed points from a potential energy function (in 1d).

• How to identify regions where there are bound states from a potential energy function
(in 1d).

• The meaning of conservative and dissipative forces.
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