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1 Physics is an experimental science

Physics is an experimental science. No matter how beautiful the theory, if it is not relevant
for experiments, then it should not become an important part of physics. That is not to say
that a beautiful but irrelevant theory has no value necessarily. It may become important
someday in a new physical setting or it may become important in another field, such as
math.

Experiments are part of physics. This class traditionally has labs and in these labs you
will take quantitative measurements and understand how well you can measure physical
quantities. Experiments confirm and challenge theories but also can be sources for discovery
and innovation. Because of this, we are starting the lectures with an introduction to units
and error estimates.

2 Units

Physics research is primarily done in SI units. SI = International System of Units or
Système Internationale d’Unités. Note that these units are international. Groups of physi-
cists from all over the world have organized and collaborated (and are continuing to do this)
to carefully define our system of units so that we have a common language for numerical
quantities.

See: NIST on Units or SI units
In the beginning of this class we will primarily be concerned with lengths in meters, time

in seconds, and mass in kg. This is known as MKS. Note: astronomers and cosmologists
sometimes work in cgs or cm/g/s. Either one is easier than working in units such as inches,
feet, pounds or cubits.

From the MKS system of units we will construct units of force (Newtons N), energy
(Joules J), momentum (kg m/s), pressure (Pascals Pa), acceleration (m/s2), velocity (m/s),
or power (Watts W = J/s).

Then we will add in units of temperature K (Kelvin).
Physical constants like the Boltzmann constant, the gravitational constant, and the

speed of light will be given in these units.
An example of converting from one set of units to another. We convert a velocity that

is 50 miles/hour into m/s.

50
miles

hour
× 5280 feet

mile
× 12 inches

foot
× 2.54 cm

inch
× hour

60 minutes
× minute

60 second
× m

102 cm
= 22.2

m

s

Notice that the same unit on the top cancels one on the bottom, just like it would if it
were natural numbers in a fraction.

I redo estimate quickly to make sure we got it roughly correct

102 × 104 × 10× 1× 10−2 × 10−2 × 10−2 = 102+4+1+0−2−2−2 = 101 = 10
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It is a good idea to check units and order of magnitude with every calculation. Some-
times arithmetic errors can be caught with a unit check.

2.1 Scientific Notation

5.322275345345345 ×108 yr = 530 Myr = 5.3E8 yr.
Try not to use more decimal places than you need or are accurate.

2.2 SI unit definitions

The seven defining constants of the SI (système internationale) are:

• the Cesium hyperfine frequency ∆νCs;

• the speed of light in vacuum c;

• the Planck constant h;

• the elementary charge e;

• the Boltzmann constant kB;

• the Avogadro constant NA; and

• the luminous efficacy of a defined visible radiation Kcd.

The units themselves

• Unit of length: meter. The meter, symbol m, is the SI unit of length. It is defined
by taking the fixed numerical value of the speed of light in vacuum c to be 299,792,458
when expressed in the unit m s−1, where the second is defined in terms of the cesium
frequency ∆νCs, the unperturbed ground-state hyperfine transition frequency of the
cesium 133 atom.

• Unit of time: second. The second, symbol s, is the SI unit of time. It is defined by
taking the fixed numerical value of the cesium frequency ∆νCs, to be 9,192,631,770
when expressed in the unit Hz, which is equal to s−1. One oscillation period is the
inverse of the frequency in Hz.

• Unit of mass: kilogram. The kilogram, symbol kg, is the SI unit of mass.
It is defined by taking the fixed numerical value of the Planck constant h to be
6.62607015 × 10−34 when expressed in the unit J s, which is equal to kg m2 s−1,
where the meter and the second are defined in terms of the speed of light c and
cesium frequency ∆νCs.
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• Unit of electric current: ampere. The ampere, symbol A, is the SI unit of electric
current. It is defined by taking the fixed numerical value of the elementary charge e
to be 1.602176634× 10−19 when expressed in the unit C (coulombs), which is equal
to A s, where the second is defined in terms of the cesium frequency ∆νCs.

• Unit of thermodynamic temperature: kelvin. The kelvin, symbol K, is the SI
unit of thermodynamic temperature. It is defined by taking the fixed numerical value
of the Boltzmann constant kB to be 1.380649 × 10−23 when expressed in the unit J
K−1, which is equal to kg m2 s−2 K−1, where the kilogram, meter and second are
defined in terms of Planck constant h, speed of light c and cesium frequency ∆νCs.
Here J is Joules.

• Unit of amount of substance: mole. The mole, symbol mol, is the SI unit
of amount of substance. One mole contains exactly 6.02214076 × 1023 elementary
entities. This number is the fixed numerical value of the Avogadro constant, NA,
when expressed in the unit mol−1 and is called the Avogadro number. The amount
of substance, symbol n or N , of a system is a measure of the number of specified
elementary entities. An elementary entity may be an atom, a molecule, an ion, an
electron, any other particle or specified group of particles.

• Unit of luminous intensity: candela. The candela, symbol cd, is the SI unit of
luminous intensity in a given direction. It is defined by taking the fixed numerical
value of the luminous efficacy of monochromatic radiation of frequency 540×1012 Hz,
to be Kcd = 683 when expressed in the unit lm W−1, which is equal to cd sr W−1,
or cd sr kg−1 m−2 s3, where the kilogram, meter and second are defined in terms of
Planck constant h, speed of light c and cesium frequency ∆νCs. Here sr is steradian,
lm is lumen and W (watts) is J/s.

2.3 Angles

The small angle approximation sin θ ∼ θ is only correct if θ is in radians.

1◦ × π radians

180◦
= 0.01745 radians.

It is often better to do calculations in radians rather than degrees.
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In astronomy we often work in units of arcseconds or ” and arcminutes or ’. There are
60’ per degree and 60” per arcminute.

1′′ × 1′

60′′
× 1◦

60′
× πradians

180◦
= 4.8× 10−6radians

3 Errors and why might we care about them?

How accurate are your measurements? Are you sure you are measuring anything sensible?
Do you need better measurements to measure something interesting? Should you spend
time by improving your experimental setup? Do your experiments merit spending your
time on complicated error analysis? Similar questions are relevant when you make your
own decisions about the reliability or quality of other people’s work or when you are trying
to convince other people that you have measured something significant.

3.1 AGN variability story

In the late 90’s images taken from the Hubble Space Telescope revealed structure in galaxies
at higher angular resolution than possible at that time from the ground. See Figure 1 for
a Hubble Space Telescope image of a nearby diffuse galaxy. Using images from the Hubble
Space Telescope, around 1998, we measured brightness variations in the centers of some
galaxies. Are these evidence of variability and so from accretion onto a massive black hole?
Or are the brightness variations due to photometric errors from read out noise, point spread
function variations, cosmic rays and other instrument related issues? How do we tell the
difference?

To answer this question we found (using images in the archive) a set of similarly ob-
served galaxies that we were sure did not contain active black holes. We repeated the
same types of measurements on this sample. The differences in brightness of the active set
of galaxies were larger than the differences in brightness of the non-active set of galaxies.
We argued that the brightness variations in the active set were due to variability in the
luminous sources associated with accretion onto massive black holes (aka Active Galactic
Nuclei or AGN). What do we mean by ‘larger’? We estimated a standard deviation, σ,
from the non-active galaxy measurements. The differences from the active set were many
times this standard deviation σ. We are going to discuss why this is important below.

The point of this story is that sometimes one can be inspired to devise an experiment
solely for the purpose of measuring an error or uncertainty. We took the time to measure
the uncertainty in this case because its size affected our interpretation.

Interestingly, this study relied upon galaxies that were observed twice by the Hubble
Space Telescope, during a time when the Space Telescope had a draconian and unscien-
tific policy of removing all possible duplicate observations (even if they were not actually
duplicates in position or wavelength) from the observation schedule.
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Figure 1: A J-band image (from the Hubble space telescope and using the NICMOS
camera) of dwarf irregular galaxy NGC 1569. The galaxy is quite diffuse. Star clusters
and stars show diffraction rings. This image illustrates that determining whether a source
in a galaxy varies is complicated by the crowded field. This image is a piece of an image
from StarFinder PSF modeling examples

3.2 Mean and standard deviation

Most measurements if taken over and over again would scatter about a mean value (see
Figure 2). We implicitly assume that errors associated with measurements are taken from
a random process that is described via a probability distribution.

The simplest way to describe a probability distribution is with a mean and a stan-
dard deviation or variance. By simplest way I mean with the least amount of required
information. The standard deviation is often written as σ and the dispersion or variance
is σ2.
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Figure 2: We show a series of measurements. The measurements all are different numbers.
The average value is shown with the dotted line. The standard deviation describes the
size of the scatter about the mean value. An estimate for the measurement is shown with
the green data point and an errorbar. The error bar gives the width of the scatter or
uncertainty in the measurement.

3.3 The Gaussian probability distribution

The Gaussian probability distribution is specified by 2 parameters, the mean and the
standard deviation. Lacking any other information, we usually adopt or assume Gaussian
errors. The other reason the Gaussian is popular is the central limit theorem.

This is what the Gaussian looks like, see Figure 3.

f(x) =
1√

2πσ2
exp−

(x−µ)2

2σ2 (1)

This is probability distribution so it is normalized to sum (or integrate) to 1;∫ ∞
−∞

f(x) dx = 1

Here f(x) dx gives the probability that you get x but within a width dx of possible
values. As shown in Figure 3, you can think of the integral as a sum of individual regions
of width dx.

A problem with the Gaussian is that x ∈ {−∞,∞} but in reality we don’t have infinite
ranges for our variables. The Gaussian function slightly underestimates the probability of
a variable that has a truncated range for the possible values.

The mean µ is at the peak of the distribution. The standard deviation σ describes the
width of the distribution.
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Figure 3: A Gaussian probability distribution of position with mean in distance x of µ = 10
m and a standard deviation σ = 1 m, and following equation 1. We also show a histogram
that approximates the distribution. The each orange bar represents the probability of x
being within a specific range of values. The sum of these probabilities is 1.

The peak value is also the mean value, µ. (This is not true for all probability distribu-
tions). The mean value is the most likely value

µ ≡
∫ ∞
−∞

xf(x) dx.

Here the thing we are interested in is x and we weight by f(x) which is the probability
distribution. Then we integrate (sum) over all possible x values to give the average value
µ. The variance

σ2 ≡
∫ ∞
−∞

(x− µ)2f(x) dx.

Here we are interested in the distance of x from the mean, and again we weight by the
probability distribution to give a mean value for (x− µ)2.

Consider an experiment where the expected value of a measurement is 3 and the error
(standard deviation) is 1 and you measure 4, which is 1σ away from the mean. Does your
measurement agree with expected value or not?

One way to answer this is by giving a probability. What is the probability that a single
measurement, taken from a Gaussian distribution is more than 1 σ away from the mean?

The following table shows the probability of a single measurement lying within ±1, 2,
or 3σ of the mean. These are computed using equation 2.
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A single measurement

probability

within ±1σ 0.6827
within ±2σ 0.9545
within ±3σ 0.9973
within ±4σ 0.99993666
within ±5σ 0.999999426697

The function that gives these numbers is known as the error function (erf) and it
depends on the integral of the Gaussian probability distribution.

The error function is defined as

erf(x) ≡ 2√
π

∫ x

0
e−t

2
dt.

The probability that a measurement is within ±nσ of the mean is

Pnσ =

∫ µ+nσ

µ−nσ
dx

1√
2πσ2

e−
(x−µ)2

2σ2

by symmetry

= 2

∫ µ+σ

0
dx

1√
2πσ2

e−
(x−µ)2

2σ2

let y = (x− µ)/σ

= 2

∫ n

0
dy

σ√
2πσ2

e−
y2

2 =

∫ n

0
dy

2√
2π
e−

y2

2

let t = y/
√

2

=

∫ n/
√

2

0
dt

2
√

2√
2π
e−t

2
=

2

π

∫ n/
√

2

0
dt e−t

2
= erf(n/

√
2)

The probability that a measurement is within ±nσ of the mean is

Pnσ = erf(n/
√

2). (2)

When the results of a series of measurements are described by a normal distribution with
standard deviation σ and mean µ = 0, then erf(a/(σ

√
2)) is the probability that the error

of a single measurement lies between −a and +a, for positive a.
The above probabilities (in the Table) for measurements ±1,±2,±3,±4,±5σ are cal-

culated using the error function. The error function is a special function that can be
computed numerically or with a series expansion.

It is not unlikely (i.e. it is common) to have a measurement outside ±1σ from the mean
but it is unlikely to have a measurement outside ±3σ. If you take enough measurements
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Figure 4: The regions of a Gaussian probability distribution that are with ±1, 2 and 3 σ.

then it is likely to have one outside ±3σ. For example with a million pixels in an image
and if the noise in the pixels is Gaussian, a bunch of them might be above 3σ from the
mean. See figure 5 for an image showing 104 pixels each with value taken from a normal
probability distribution.

Figure 5: A camera has 100 × 100 = 10,000 pixels. A picture of a blank field is taken.
Each pixel has value given with a normal distribution. With 10,000 pixels there are a few
that are 4 sigma from the mean.
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3.4 Errors add in quadrature

Consider two measurements, x1, and x2 each taken with a measurement error of σ (standard
deviation). Add the two measurements to obtain

z = x1 + x2.

What is the error of z?

σz =
√
σ2 + σ2 =

√
2σ.

By quadrature we mean quadratically as in a quadratic equation.
We could prove this by starting with a particular z. The probability of x1 is given by

f(x1) with the Gaussian function from equation 1. Given z we know that x2 = z− x1 and
x2 has probability f(x2). The probability of z is then f(x1)f(z−x1) for all possible values
of x1. If we integrate this we can find the probability function for z. The integral is a
convolution function and happily the convolution of a Gaussian with another Gaussian is
also a Gaussian function. The new Gaussian will have the standard deviation given above.

3.5 Standard deviation of a sum

We now compute the standard deviation of a sum of N measurements, of x. We take N
measurements, xi with i ∈ 1 to N and a quantity z that is the sum

z =
N∑
i=1

xi.

Generalizing from the sum of two measurements we find that the standard deviation

σz =

√√√√ N∑
i=1

σ2 =
√
Nσ.

This can be made more general with N variables xi each with their own standard
deviation σi giving

σz =

√√√√ N∑
i=1

σ2
i .

3.6 Measuring the mean value from measurements

We consider estimating a quantity from multiple measurements of the quantity x.
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We estimate the mean of x with a sum of N measurements

z =
1

N

N∑
i=1

xi.

The sum is an average of the N measurements. This sum is an estimate for the mean of
the distribution of the quantities xi.

If the standard deviation of each individual measurement is σ what is the error in your
computed estimate of the mean value?

Each measurement xi has standard deviation σ but the quantity xi/N has standard
deviation σ/N . The variance is the sum of N things. Each of them has variance σ2/N2.
Your computed mean has standard deviation

σz =
√
N × σ

N
=

σ√
N
. (3)

Happily we see that the more measurements we have the smaller the error in the
measurement of the mean value.

The error computed in equation 3 is sometimes called standard error.
If you combine individual measurements you can improve the quality of your mea-

surement. What is meant by quality? A measurement with a small error is better than
one with a big error. We can reduce the size of the uncertainty (or error) by combining
measurements.

Example: Suppose you make ten measurements of a length and the mean of these 10
measurements is µ = 1.528 m. The uncertainty of a single measurement is σ = 0.510 m.
The standard error is 0.510/

√
10 = 0.161 m. Your measurement, along with its uncertainty

would be
1.528± 0.161 m.

3.7 Measuring mean and standard deviation from a series of measure-
ments

Consider 5 individual measurements of the gravitational acceleration g.

9.0 m/s2

8.8 m/s2

9.1 m/s2

8.9 m/s2

9.1 m/s2

The mean is estimated with the average

µm = x̄ = 〈x〉 =
1

N

N∑
i=1

xi
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where xi are the individual measurements.
For our 5 measurements we estimate a mean value of

µm =
1

5
(9.0 + 8.8 + 9.1 + 8.9 + 9.1) m/s2 = 8.98 m/s2

What is the size of the uncertainty in a single measurement?
We can measure the size of the uncertainty using the data measurements themselves.

Using our mean value we can estimate the standard deviation of our measurements (aka
our measurement error) with

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2,

Usually we replace N with N − 1 so that the estimate for σ is not ‘biased’.
We use this to estimate the standard deviation of a single measurement

σm =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2, (4)

For our 5 measurements

σm =

√
1

5− 1
[(9.0− 9.0)2 + (8.8− 9.0)2 + (9.1− 9.0)2 + (8.9− 9.0)2 + (9.1− 9.0)2]

= 0.12 m/s2. (5)

Here I am using 9.0 for the mean as it is very close to 8.98. This gives us an estimate for
the standard deviation of each individual measurement in m/s2.

Our measurement is then
8.98± 0.12 m/s2?

No. This is not correct. The error is smaller because we have added 5 measurements
together. Each of the individual measurements has an error of 0.12 m/s2, and by combining
the measurements we should get a smaller error.

Our measurement is

8.89± 0.12√
5

m/s2 = 8.98± 0.05 m/s2

because we have taken the average of 5 measurements each with standard deviation 0.12
m/s2.

Does our measurement value agree with the expected value of 9.80 m/s2?
The measurement is many σ away from the expected value. We would say that our

measurement is not consistent with the known value of g.
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Figure 6: Recent measurements of the Hubble constant along with their 1σ uncertainties.
Measurements made from the cosmic microwave background are significantly lower than
those made from the nearby universe. This discrepancy is called the Hubble tension. This
Figure is from Hubbleconstants color.png and with license Creative Commons Attribution-
Share Alike 4.0 International and Constant Values.png by Alexander Stohr with license
Creative Commons Attribution-Share Alike 3.0 Unported.

3.8 Tension in the Hubble constant

What do we mean when we say our measurement is consistent with or discrepant with
somebody else’s measurement?

A nice example might be the Hubble constant. Some recent measurements of the
Hubble constant along with their 1σ uncertainties are shown in Figure 6. Measurements
made from the cosmic microwave background (in red on the left and the WMAP and Planck
measurements on the right) are lower than those made from tracers in the nearby universe,
such as Cepheids variable stars. The error-bars are 1 σ uncertainties. Some measurements
have small errorbars that do not overlap those of other measurements.

Consider two measurements, one for x with standard deviation σx and one for y with
standard deviation σy. We take the difference z = x−y which has standard deviation σz =√
σ2
x + σ2

y . The triangle inequality σz < σx + σy. Errorbars show σx, σy. If the difference

between measurements is larger than the sum of the errorbars then the measurements are
discrepant. The probability that such a large difference is seen would be low. With a
Gaussian model, the likelihood can be estimated using the error function.

The Hubble constant measurements are many sigma apart which is unlikely if they
were all measuring the same thing. The discrepancies between the measurements of the
Hubble constant imply that we might be missing some physics in the interpretation or in
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making the measurements. The Hubble Tension is currently unresolved. Astronomers
are motivated to resolve this tension, by exploring new scenarios or theories and improving
the observational measurements.

3.9 Bias

A bias is when you tend to overestimate or underestimate a quantity. Bias is a quantitative
term describing the difference between the average of measurements made for an object
and its true value.

An example of bias might be an astronomical survey where it might be easier to measure
brighter or nearer objects. If the bright or near objects are not typical of the population
then your measurements can be biased.

3.10 Error as a percentage

It is sometimes useful to describe errors as a percentage. Suppose you measure a quantity
Y = 2.0 m± 0.1 m. You can also write this as

Y = 2.0 m± 0.1 m

= 2.0 m× (1± 0.05)

= 2.0 m± 5%.

The fractional error (or fractional standard deviation) is 5%.
The fractional error can also be computed as σY /Y .

3.11 Frequency Measurement story

You are working on an experiment and you detect an unknown signal. You want to find
out what is causing it. Maybe its frequency would give you a clue to where it is coming
from. Unfortunately you are working in a lab that is full of clunky pieces of junk, including
some ancient counters from the 1950s. You are lucky to have a functional oscilloscope.

Which is more accurate? Measuring a frequency with an oscilloscope (by eye) or mea-
suring the frequency with one of those archaic counters?

Suppose you use the counter to count the number of cycles per second. If the signal
is not horribly swamped by noise and the trigger levels are set appropriately, this gives an
error of about ∆f = ±1 Hz. Hz (Hertz) is the same as cycles per second. If the frequency
is high then this gives a fractional error ∆f

f that is small. However if the frequency is low
then ±1 Hz gives a large fractional error.

Suppose we estimate the measurement uncertainty from using the oscilloscope display
at about 1/4 box on the screen and that is about 1/4 period if you set the horizontal

15



Figure 7: To measure frequency from an oscilloscope, you count the number of boxes in
a single period. The horizontal axis is in units of time. The number of boxes gives you
the period. The inverse of the period gives you cycles per second or the frequency of the
signal.

time axis so that a full period is displayed. This is an uncertainty of about 25 % in a
measurement of the frequency. This is not very accurate.

A frequencies larger than a few Hz and in terms of the fractional error, the counter would
be more accurate. Even though the counter appears low tech compared the to oscilloscope,
it can give quite accurate frequency measurements compared to the oscilloscope screen.

What would you do? You measure the frequency with more than one counter and with
the oscilloscope. You check that the measurements are consistent. If the measurements
are consistent, the counters (despite their appearance) are probably working. The counter
measurement is then likely the most accurate, unless f is very low.

Question You measure the frequency and find that it is about 60 Hz. What is probably

Figure 8: The errors in y depends on the error in x and on the slope.
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causing this signal?

4 Propagation of Errors

4.1 An error in one quantity affects the error in another that depends
on it

Consider a situation where you measure x but you actually want to measure a different
quantity y = F (x). You have a standard deviation σx and you need a standard deviation
for your measurement of y or σy.

The degree to which an error in one measurable quantity affects the error in the another
is driven by the functional dependence of the variables or the slope (see Figure 8).

How do you estimate the error for y with y = F (x) from the error in x or σx? Following
Figure 8 we use the slope

σy =

∣∣∣∣dF (x)

dx

∣∣∣∣σx. (6)

As the derivative dF (x)
dx depends on x, your estimate for σy is a function of the x value of

the measurement. Figure 8 could have a curvy line for F (x) instead of a straight one.
For example suppose you want to measure the gravitational acceleration g from mea-

surements of the period of small oscillations of a pendulum. The period of small amplitude
oscillations is

P = 2π

√
L

g
.

We solve for g

g = L

(
2π

P

)2

. (7)

We check units and find that the equation is good! Our function is g(P ) as we measure P
and we want an estimate for the gravitational acceleration g.

We use equation 7 to compute the derivative

dg(P )

dP
= −2L

(2π)2

P 3

We plug this into equation 6 to compute the error

σg = 2L
(2π)2

P 3
σP . (8)

Suppose we measure a period of 6.3 ± 0.1 s on a pendulum of length 10.0 m. Using
equation 7 we estimate that

g = L

(
2π

P

)2

= 10 m×
(

2π

6.3 s

)2

= 9.95 m/s2.
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We compute the error using equation 8

σg = 2L
(2π)2

P 3
σP = 2× 10 m

(2π)2

(6.3 s)3
0.1 s = 0.32 m/s2

Our measurement is then
g = 9.95± 0.32 m/s2.

4.2 Propagation of Errors with partial derivatives

We look again at the formula for g

g(L,P ) = L

(
2π

P

)2

. (9)

This depends on P but also depends on L and we may also have measurement errors in L.
We consider a more general setting z = F (x, y, ....). The partial derivative of a function

F (x, y, ...) with respect to x is the derivative of the function w.r.t. x while keeping other
variables fixed.

∂F (x, y, ...)

∂x
=
dF (x, y, ...)

dx

∣∣∣∣
y,... fixed

With errors in both x, y and z = F (x, y)

σz =

√(
∂F

∂x

)2

σ2
x +

(
∂F

∂y

)2

σ2
y .

This can be extended to more variables!
Going back to our equation for g (equation 9) we compute partial derivatives

g(L,P ) = L

(
2π

P

)2

∂g(L,P )

∂L
=

(
2π

P

)2

∂g(L,P )

∂P
= −2L

(2π)2

P 3

σg =

√(
2π

P

)4

σ2
L +

(
2L

P

(2π)2

P 2

)2

σ2
P

Check units!
Applying this to our example of the period of a pendulum where we measured a period

of 6.3± 0.1 s on a pendulum of length 10.0 m. Let’s assume we have a measurement error
on the length of the pendulum of a cm or ±0.01 m.
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Figure 9: This shows velocity measurements as a function of time for a decelerating
object. We assume a linear relation between velocity and time v = at and want to estimate
acceleration a. The slope is more sensitive to points with large velocities and times.

We compute

∂g(L,P )

∂L
σL =

(
2π

P

)2

σL =

(
2π

6.3 s

)2

× 0.01 m = 0.01 m/s2

We should add this in quadrature to our previous error. However our previous error was
0.32 m/s2 and is so much larger than 0.01 m/s2. We can justifiably ignore the contribu-
tion to the error due to the uncertainty in length. You can justify ignoring some error
contributions if you can show they do not ‘significantly’ affect your measurements. The
word significantly is quantitatively related to the affect on the standard deviation of your
measurement.

Taking into account errors in measurement of length our measurement remains

g = 9.95± 0.32 m/s2.

4.3 The weighted mean and its error

In Figure 9 we show times and velocities measured for a decelerating object. Our goal is
to estimate the acceleration a using a linear model with v = at or

a =
v

t
.

Using error propagation we find that the standard deviation in acceleration for a single
data point is

σa =

√(σv
t

)2
+
(σtv
t2

)2
=
v

t

√
σ2
v

v2
+
σ2
t

t2
. (10)
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With standard deviation in σv independent of v and σt independent of t we see that σa is
smallest for large t. Each point has a different error for its value of σa.

To compute the acceleration using all the data points we weight the individual mea-
surements. Points with small errors should contribute more to the calculated value for the
acceleration than points with large errors.

Our points are vi, ti. Each point is used to compute ai = vi/ti. We use equation 10 to
estimate σi for each acceleration value ai.

The weights are the inverse of the square of the standard deviation.
With a series of measurements xi and errors σi, the weights wi are

wi =
1

σ2
i

, (11)

and the mean value is estimated as

µm =

∑N
i=1wixi∑N
j=1wj

(12)

Why chose this type of weight? This weight is derived from what is called a maximum
likelihood estimator. The method of maximum likelihood is only applicable if the form of
the theoretical distribution from which the sample is taken is known and here it is assumed
to be Gaussian. In the absence of knowledge about the distribution, this weighting choice
is a reasonable one, and it is ‘most likely’ to give you a computed value that is close to the
actual one.

To compute the error in the measurement µm we need to again use error propagation.
Consider a single term (the ith term) in the sum

wixi∑N
j=1wj

=
xi

σ2
i (
∑N

j=1wj)

This single term has error

σi

σ2
i (
∑N

j=1wj)
=

1

σi(
∑N

j=1wj)

because xi has standard deviation σi. The error in µm is then the sum of these in quadrature
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or

σ2
m =

N∑
i=1

1

σ2
i

(
1∑N

j=1wj

)2

=

(
N∑
i=1

wi

)
1(∑N

j=1wj

)2 =
1∑N

j=1wj

σm =

√
1∑N

j=1wj
=

√
1∑N

j=1 σ
−2
j

. (13)

Here we have assumed that we should weight each data point xi with weight wi = 1/σ2
i .

In this example we are estimating a slope from a few data points. By considering a least
squares minimizer, our weighting system is a desirable or possibly an optimal way to weight
data points. In statistics, a linear approach to modeling the relationship between a scalar
response (or dependent variable) and one or more explanatory or model variables is referred
to as a linear regression.

Let’s go back to original problem. Using points in Figure 9 we made a list of acceleration
measurements and each measurement has its own error. We use equation 12 to compute
a combined measurement for the acceleration and equation 13 to compute the uncertainty
in this measurement.

5 Summary

What do you need to remember:

• Work in MKS (SI) units.

• Express numerical results at a relevant precision level and with units.

• Check units in every equation you write down.

• What is meant by ±1σ, ±2σ etc. What is the probability that a single measure-
ment has a particular distance from the mean value using a Gaussian probability
distribution.

• How to estimate the mean and standard deviation of a single measurement from a
series of measurements.

• How to compute the error of an average of N measurements.

• Error propagation: Estimating the error in a variable from how it depends on another
variable.
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• Error propagation using partial derivatives and summing standard deviations in
quadrature.

• What is meant by fractional error.

• Estimating a mean with weighted errors and knowing how to compute the uncertainty
of this mean.

5.1 Handy formulas:

The mean of a series of measurements each with the same standard deviation:

µ =
1

N

N∑
i=1

xi

The standard deviation computed from a series of measurements (this is the standard
deviation of a single measurement).

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2

The standard deviation of an average that is computed from N measurements with
standard deviation σ (also known as the standard error)

σµ =
σ√
N

Computing an average of measurements, where each measurement has a different stan-
dard deviation (and we weight the measurements)

µ =

∑N
i=1wixi∑N
j=1wj

wi = σ−2
i

The standard deviation of this average

σm =

√
1∑N

j=1wj
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Figure 10: A line fit to data.

5.2 Least squares fit to a line

We consider a set of N measured points xi, yi with i going from 1 to N (see Figure 10). We
assume xi are given (no errorbars). We have standard deviations for the yi measurements
which are σi. We fit a line

y = mx+ b

to these data. Here the slope is m and the intercept is b. We want a measurement for m, b
and the standard deviations for these measurements.

The coefficients and their standard deviations can be computed with

∆ =
∑
j

[
1

σ2
j

[∑
i

x2
i

σ2
i

]]
−

[∑
i

xi
σ2
i

]2

m =
1

∆

[∑
i

1

σ2
i

]∑
j

xjyj
σ2
j

− [∑
i

xi
σ2
i

]∑
j

yj
σ2
j


b =

1

∆

[∑
i

x2
i

σ2
i

]∑
j

yi
σ2
j

− [∑
i

xi
σ2
i

]∑
j

xjyj
σ2
j


σm =

√
1

∆

∑
i

1

σ2
i

σb =

√
1

∆

∑
i

x2
i

σ2
i

where all sums go from 1 to N .
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These formulae are from a linear regression model that minimizes the sum of the square
of the weighted distances in y from the line y = mx + b. These formula can be derived
using a ‘least squares’ maximum likelihood model.

You can use these formula to compute coefficients if you would like to fit a line to data
and each data point has its own vertical error bar (in y).

If all the vertical error bars (in y) are the same size, these formula simplify to give slope
and intercept

m =
N
∑

i xiyi −
∑

i xi
∑

j yj

N
∑

i x
2
i − (

∑
i xi)

2

=

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
(14)

b =

∑
i x

2
i

∑
j yj −

∑
i xi
∑

j xjyj

N
∑

i x
2
i − (

∑
i xi)

2

= ȳ −mx̄ (15)

with m from computed as in the first equation. Here the averages

x̄ =
1

N

∑
i

xi

ȳ =
1

N

∑
i

yi.

These expressions are called estimators. These estimators can be derived by minimizing
the function

Q(m, b) =
∑
i

(yi − b−mx2
i ).

Here Q(m, b) is a sum of squares of distances in y of the data from the line y = mx+b (this
sum is also called χ2). Standard deviations in the slope and intercept can be estimated

σm =

√
Nσ2

N
∑

i x
2
i − (

∑
i xi)

2
=

σ√∑
i(xi − x̄)2

(16)

σb =

√
σ2
∑

i x
2
i

N
∑

i x
2
i − (

∑
i xi)

2
=

√
σ2
∑

i x
2
i

N
∑

(xi − x̄)2
(17)
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