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1 The coefficient of restitution of a bouncing sphere

1.1 The times and velocities of a series of bounces

Consider a ball moving vertically under downward gravitational acceleration, g. The ver-
tical coordinate is z and z = 0 when the ball touches the floor. At t = 0 the ball touches
the floor and its upward velocity is v0. The trajectory

z(t) = −gt
2

2
+ v0t.

The ball returns to impact the ground at time

tg =
2v0
g
. (1)
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Figure 1: An elastic ball bounces off the floor. The ratio of velocity after and before each
bounce is the coefficient of restitution. This figure shows some horizontal motion, but we
will only consider a ball that bounces up and down vertically.

We neglect air resistance. The upward velocity at t = 0 is the same as the downward
velocity at time t = tg. We invert equation 1 to find the upward velocity at t = 0

v0 =
gtg
2
. (2)

The elastic ball undergoes a series of bounces, as shown in Figure 1. We call ti the time
of the i-th bounce and vi the upward velocity after the bounce at time ti. Using equation
2 we can find vi from the time between two bounces

vi =
g(ti+1 − ti)

2
. (3)

We can use this equation to propagate errors. Suppose the error to measure the time is
the same for all bounces and has a standard deviation σt. The standard deviation in each
measurement of vi is

σv =
√

2
gσt
2
. (4)

Using our audio recording of a ball bouncing, we will measure the times of a series of
bounces. We will use equation 3 to find the velocity of the ball just after each bounce, and
equation 4 will be used to estimate the standard deviation of these velocities.
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1.2 The coefficient of restitution

The coefficient of restitution, COR, is defined as the ratio of velocity after and before a
collision or bounce,

COR ≡ vafter
vbefore

. (5)

If COR = 1 the bounce is perfectly elastic and no energy is lost during the collision.
The definition of the coefficient of restitution implies that

vi+1 = (COR) vi (6)

where vi is the velocity just after the i-th bounce.
With three bounces, we can compute two time intervals and this would give us two

impact velocities. That’s enough information to compute an estimate for the coefficient of
restitution.

Inverting equation 6

COR =
vi+1

vi
. (7)

We can propagate errors to estimate the standard deviation of COR from the standard
deviations in the velocity measurements, σv,

σCOR
COR

=

√
σ2v
v2i+1

+
σ2v
v2i
.

If the coefficient of restitution COR is independent of velocity then

vi = (COR)iv0. (8)

If we take the natural log of this equation

ln

(
vi
v0

)
= i ln(COR). (9)

On a plot of ln
(
vi
v0

)
vs index i, we expect all the points to lie on a line and the slope of

the line would be the log of the coefficient of restitution. If the points don’t lie on a line
then the coefficient of restitution probably depends on velocity.

Models for the coefficient of restitution can take into account the spherical shape of the
ball, the contact area, the extent of deformation in elastic and plastic regimes for both ball
and surface that the ball bounces on. Many models predict a weak dependence on velocity.
If you are curious about physical models of the coefficient of restitution for a bouncing
elastic sphere, see On predicting the coefficient of restitution .
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1.3 Order of magnitude approaches

What physics is likely to be important and how do we decide?
We can make a list of parameters that are important or might be important in the

problem.

• Radius of sphere R

• Mass of sphere M

• Initial height of sphere when you drop it h.

• Gravitational acceleration g = 9.8m/s2.

• Density of air ρair ∼ 1.2 kg/m3

• Elastic modulus of sphere material E

• Yield strength of sphere material Y

• Viscoelastic time-scale for sphere material τvisco (τvisco = E/µ) where µ is a viscosity.

• Elastic modulus of table top or ground Etable

• Speed of sound in air cs,air

• Angle of impact

• Moment of inertia of sphere

• Friction coefficients

Material Young’s modulus Yield strength
Units (GPa) (MPa)

Glass 50 50
Rubber 0.01
Wood 10 40

Hard plastic 2 50
From Young’s modulus and tensile and compressive yield strengths of some common ma-
terials

Some computed quantities

• Velocity of first impact

v0 =
√

2hg = 4.5 m/s

(
h

1 m

) 1
2

(10)
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• Free fall time

tfreefall =
√

2h/g = 0.44s

(
h

1 m

) 1
2

(11)

• Time between bounces

tbounce ∼ 2tfreefall = 2
√

2h/g ∼ 1s

(
h

1 m

) 1
2

(12)

• Radius crossing time

tcross =
R

v0
= 2 ms

(
R

1 cm

)(
v0

5 m/s

)−1

(13)

• For many solids, the density of sphere ρ ∼ M/R3 ∼ 2g/cc. If the sphere is hollow
then its mean density could be much lower!

• The speed of elastic waves in the sphere

vp,sphere ∼

√
E

ρ
∼ 2000 m/s

(
E

10GPa

) 1
2
(

ρ

2000 kg m−3

)− 1
2

(14)

• The time it takes sound waves to cross the sphere

ts =
R

vp,sphere
= 5µs

(
R

1 cm

)(
vp,sphere

2000 m/s

)−1

(15)

1.4 The Buckingham Pi theorem

Suppose you have N physical quantities qi where i ∈ 1 → N and they depend on k
independent physical units. Then the number of independent dimensionless quantities
that can be formed is p = N − k. The dimensionless numbers can be constructed as
products

πj = q
a1j
1 q

a2j
2 ....q

anj

N

where the exponents are rational numbers.
Why are dimensionless numbers important?
Dimensionless numbers help you classify the physical regime.
Dimensionless numbers let you carry out experiments in the lab that are relevant and

predictive for another setting where you cannot do experiments.
For example, wind tunnels are used to understand aerodynamics of airplanes. The

hydrodynamics of a boat can studied with a small model in a tank, prior to building an
expensive full sized one. The Reynolds number of the real object is matched by the model.
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Let’s show this with the Navier-Stokes equation in 1 dimensino which is derived using
momentum conservation.

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2
(16)

where u is velocity, p is pressure and ν is viscosity. We divide all terms by velocity V
distance L.

∂u/V

∂t/(L/V )

V 2

L
+
u

V

∂u/V

∂x/L

V 2

L
= −1

ρ

∂p

∂x/L

1

L
+ ν

∂2u/V

∂(x/L)2
V

L2
(17)

We put distance in units of L with X = x/L and us a dimensionless time T = V t/L and
put velocity in units of V , with ũ = u/V . We use the sound speed cs

dP

dx
=
dP

dρ

dρ

dx
=
dρ

dx
c2s

V 2

L

(
∂ũ

∂T
+ ũ

∂ũ

∂X

)
= −∂ ln ρ

∂X

c2s
L

+
νV

L2

∂2ũ

∂X2
(18)

We divide both sizes by V 2/L

∂ũ

∂T
+ ũ

∂ũ

∂X
= −∂ ln ρ

∂X

c2s
V 2

+
ν

V L

∂2ũ

∂X2
(19)

We define the Mach number as

M ≡ V

cs
. (20)

We define the Reynolds number as

Re ≡ V L

ν
. (21)

Equation 19 becomes

∂ũ

∂T
+ ũ

∂ũ

∂X
= −M−2∂ ln ρ

∂X
+Re−1 ∂

2ũ

∂X2
(22)

The first two terms are of order unity if we have chosen V,L appropriately. Only when
the Reynold’s number is small does the last term become important. Only when the Mach
number is large can there be density variations (as the first term on right must be of order
1!)

The point here is that we can rescale the equations describing our real system in terms
of dimensionless numbers, in this case the Reynolds number. The physical equations would
be the same in systems that are vastly different in size, as long as we match dimensionless
numbers describing the regime.

6



1.5 Dimensionless numbers

Let’s make some dimensionless parameters for the problem of the bouncing sphere.
Density ratio

πρ ≡
ρ

ρair
∼ 2000

(
ρ

2g/cc

)
(23)

Acceleration parameter or Froude number

πFr ≡

√
v20
Rg
∼ 16

(
v0

5m/s

)(
R

1 cm

)− 1
2

(24)

We have a ratio of distances (radius to drop height)

πR ≡
R

h
∼ 10−2

(
R

1 cm

)(
h

1 m

)−1

(25)

We have a ratio of velocities (impact velocity to elastic wave speed in the sphere)

πv ≡
v0
vp
∼ 2× 10−3

(
v0

5m/s

)(
vp

2000m/s

)−1

(26)

We have a ratio of yield strength to Young’s modulus

πY ≡
Y

E
∼ 10−3 (27)

We have a ratio of timescales - time for a sound wave to cross sphere divided by
viscoelastic time

πν ≡
ts

τvisco
(28)

1.6 Is air resistance important?

To determine this we estimate a stopping time due to drag from air. The drag force

FD ∼ ρairπR2v20 ∼M
dv

dt
∼M v0

tstop
∼ πρR3 v0

tstop

This gives

tstop ∼
ρ

ρair

R

v0
∼ 2000× tcross ∼ 4 s

(
R

1 cm

)(
v0

5 m/s

)(
ρ

2 g/cc

)
(29)

How does this compare to the time between bounces? It exceeds the time between bounces
but not by a large factor. We have somewhat overestimated the stopping time because
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the trajectory is not at v0 the entire time. Because acceleration is constant the velocity
linearly depends on time. If v(t) = v0

T t then the average value of v2 in an interval of time

T is 1
T

∫ T
0

v20
T 2 t

2dt =
v20
T 3

T 3

3 = v20/3. We have only overestimated by a factor of about 3.
Air resistance may not be entirely negligible and it might really be important if you are
doing this experiment with a lightweight ball. Using an equation for drag one can probably
roughly estimate the energy loss between bounces due to drag from air.

What dimensionless parameter might tell us if air resistance is important? I would take

πair ≡
tstop
tbounce

=
ρ

ρair

tcross
tbounce

=
ρ

ρair

R

4h
(30)

∼ 4

(
ρ

2g/cc

)(
R

1 cm

)(
h

1 m

)−1

.

If this dimensionless ratio is large then the stopping time is long and air resistance is
negligible. Note that this ratio is primarily dependent on the density of the ball! So if the
ball is hollow then air resistance might be important.

Note that dimensionless ratio πair can be written as a produce of πρ and πR. However
we constructed πair to delineate physical regimes and so it might be more useful than πρ
or πR. Physical arguments might allow you to determine which dimensionless ratios are
likely to be important.

1.7 Does the ball significantly deform during the bounce?

Young’s modulus E has units of pressure. Stress σ has the same units and is a force
per unit area. In a linear regime, stress is Young’s modulus times strain where strain
ε = dL/L which is the amount of deformation. Potential energy is 1

2Eε
2 integrated over

the volume. We can balance potential energy with kinetic energy to estimate the maximum
strain during a bounce,

1

2
Eε2maxR

3 =
1

2
mv20.

This gives

εmax ∼
√
v20
E

m

R3
∼ v0
vp
∼ 2× 10−3

(
v0

5 m/s

)(
vp

2000 m/s

)−1

(31)

Note that εmax ∼ πv is related to our dimensionless velocity ratio. For a solid sphere made
of glass or hard plastic, it will not deform much but a rubber sphere will.

1.8 Is the yield strength important during the bounce?

The ball is likely to dissipate more energy if the yield strength is exceeded. We have an
estimate for the maximum strain in the bounce from equation 31. If the maximum stress
exceeds the yield strength, or

Eεmax > Y
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then it is likely that the yield strength is important.
Can we find a dimensionless parameter that tells us whether the yield strength is

exceeded during the bounce? We can use

πε ≡ εmax
E

Y
∼ v0
vp

E

Y
∼ v0

√
Eρ

Y
(32)

∼ 1×
(

v0
5 m/s

)(
vp

2000 m/s

)−1(Y/E
10−3

)−1

If this dimensionless parameter is greater than 1 then the yield strength is likely exceeded
during the bounce. We could also write

πε =
πv
πY

in terms of dimensionless ratios πv, πY .
What does it mean to go above the yield strength? We could assume that the material

deforms elastically until it reaches a maximum strain where it is at the yield strength. Past
this point we could assume that the remaining kinetic energy goes into irreversible plastic
deformation and is not regained. This description is backwards to what we might see if
we could look at the deformation in real time. At the contact side, the ball would deform
plastically but the rest of it might behave elastically. The fraction of energy lost depends
on how much plastic deformation takes place.

A real material does not necessarily have a quick transition between elastic and plastic
behavior. The material might be slightly plastic and mostly elastic in some intermediate
regime. A single stress strain curve may not be good enough to describe the material.
Compression and release might lie on different curves and the stress can be strain rate
dependent.

Suppose the bounce is well below the yield strength where deformation is plastic. A
material can deform elastically and reversibly like a spring and in this case no energy is
lost. If the material loses energy while compressed then we could modify the model to give
it a velocity dependent or strain rate dependent force. This is a ‘viscoelastic’ model and
could be applied to estimate energy loss in a predominantly elastic regime. Unfortunately
typical viscosity estimates for solids are not all that commonly estimated or measured.

So what might we expect for the coefficient of restitution? Because we might expect
more energy lost at higher strain rates and at higher stresses, we would expect a larger
fraction of energy is lost at higher bounce velocities than at lower velocities. The coefficient
of restitution would be larger for smaller bounces than larger bounces.

1.9 Contact time. When do the bounces stop?

As the ball deforms it maintains contact with the ground or table top. Approximately
what is the duration of the contact?
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Suppose I have a spring with spring constant k and I compress it with a mass m by
a distance d. Once released, how long does it take for the spring to reach its rest length?
The time is of order

√
m/k which is the oscillation period and is independent of how far

the spring is compressed. With this analogy the time of contact is

tcontact ∼
R

vp
∼ tcross

v0
vp

The crossing time is a few ms. If the sphere is hard then vp exceeds the impact velocity
by a hundred or so we expect the contact time to be of order 10−5 s. If the sphere is soft
then the contact time could be longer.

We previously made the assumption that bounces are instantaneous. Happily we find
here that this assumption is pretty reasonable, at least for the first few bounces!

The contact time is seems independent of the impact velocity. However, as the ball
slows down, eventually the contact time will be the same as the time between bounces. We
can make another dimensionless ratio

πcontact =
tcontact
tbounce

=
Rg

2vpv0

As the velocity gets slower, this dimensionless parameter gets larger. Eventually when it
nears 1, the sphere can no longer get off the table or ground.

We haven’t really discussed the role of the Froude number but it is important anywhere
where gravitational acceleration g is important. The dimensionless parameter πcontact can
be written in terms of πFr and πv.

1.10 The role of internal dissipation

At some point discuss the viscoelastic relaxation time. xxxxx

1.11 A comment on dimensionless numbers

Not all dimensionless numbers are necessarily meaningful. Physical arguments can help
you decide which ones might be useful or important. Dimensionless numbers might help
you determine which physical processes are important in a particular setting or problem.

In this discussion I neglected to discuss the elasticity of the table or ground and the
sound speed. The bounce velocity is well below the sound speed in air, (though elastic
waves in solids tend to be above the sound speed in air). The fraction of energy lost into
sound is probably small. However, some energy must be lost through generating sound
as we are using sound to make our measurements. Over much of this discussion we have
ignored the elasticity of the table, but if the table is softer than the ball, then the coefficient
of restitution would be more strongly dependent on the material properties of the table
than of the ball.

We have also neglected horizontal motion, friction and spin.
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