1. (2 points) setPHY141_WW7/comframe.pg

On transfering to the center of mass frame
Object 2 3m Object 1
m

$V_{1, \text { initial }}$

A particle of mass m (object 1) has initial velocity $v_{1, \text { initial }}=V_{0}$. It collides with a particle of mass $3 m$ (object 2) that is initially at rest.
The collision takes place in 1 dimension (along a line). Velocities are not relativistic. Objects moving to the right correspond to positive velocities.
What is the velocity of the center of mass?
Enter a value for $V_{c m}: \quad V_{0}$
Transfer to a center of mass frame. In this frame the center of mass is stationary.
What is the initial velocity $v_{1, \text { initial }}^{\prime}$ of object 1 in the center of mass frame?
Enter a value for $v_{1, \text { initial }}^{\prime}: \quad V_{0}$
What is the initial velocity $v_{2, \text { initial }}^{\prime}$ of object 2 in the center of mass frame?
Enter a value for $v_{2, \text { initial }}^{\prime}:-V_{0}$
If the collision is elastic what is the velocity of object 1 after the collision in the center of mass frame?
Enter a value for $v_{1, \text { final }}^{\prime}: ~-\quad V_{0}$
2. (1 point) setPHY141_WW7/pulse.pg

On a force pulse

A short force pulse, decribed by $F(t)$, is applied to a nonrelativistic particle of mass m.
The force is a function of time

$$
F(t)= \begin{cases}0 & \text { for } t<0 \\ F_{0} \sin (\omega t) & \text { for } 0 \leq t<\frac{\pi}{\omega} \\ 0 & \text { for } t \geq \frac{\pi}{\omega}\end{cases}
$$

and is only applied between $t=0$ and $t=\pi / \omega$.
The particle mass is $m=1 \mathrm{~kg}$, the coefficient $F_{0}=1 \mathrm{~N}$ and the coefficient $\omega=1 \mathrm{rad} / \mathrm{s}$.
The momentum principal $F=\frac{d p}{d t}$ where p is the momentum. This implies that a small change in momentum $d p$ over a small length of time $d t$ is $d p=F(t) d t$.
A total change in momentum between times t_{1}, t_{2} is $\Delta p=$ $\int_{t_{1}}^{t_{2}} F(t) d t$.
What is the total change in m 's velocity, Δv, after this pulse has ended?
Enter $\Delta v=\ldots \mathrm{m} / \mathrm{s}$.
3. (2 points) setPHY141_WW7/anelastic.pg

An anelastic collision

Object 1

Object 2
m

$V_{1, \text { initial }}$

Two masses, with initial velocity $V_{1, \text { init }}=2 \mathrm{~m} / \mathrm{s}$ and $V_{2, \text { init }}=1$ m / s approach each other and collide. The first mass $M_{1}=1 \mathrm{~kg}$ and the second mass $M_{2}=3 \mathrm{~kg}$. The collision is not elastic. They stick together.

What is the velocity of the center of mass? $V_{c m}=\ldots \quad \mathrm{m} / \mathrm{s}$
What is the velocity of the two masses after they stick together?
$V_{\text {final }}=$ \qquad m / s
What is the translational kinetic energy (that associated with the total mass and the center of mass velocity)? $K_{c m}=$ \qquad J
What is the initial relative velocity $V_{2, \text { init }}-V_{1, \text { init }}$? \qquad m / s (check your sign)
What is the reduced mass? $\mu=\ldots \mathrm{kg}$
What is the amount of energy lost during the collision? $E_{\text {lost }}=$ _ J

