0. (0 points) /opt/webwork/webwork2/conf/snippets/ASimpleCombinedHeaderFile.pg Alice Ouillen

Assignment PHY141_WW6 due 10/21/2022 at 11:59pm EDT

1. (2 points) setPHY141_WW6/T.pg On superposition and center of mass Calculate the center of mass of the object shown below. Assume that the mass density is uniform. За n 2a Y 0 X

The origin, O, is at the lower left. If the positive x-axis points to the right along the page, what is the x coordinate of the center of mass in terms of distance a?

Enter *x* coordinate of center of mass: _____ _ a.

۵

If the positive y-axis points up along the page, what is the y coordinate of the center of mass in terms of *a*?

Enter *y* coordinate of center of mass: _____ *a*. (Enter numbers accurate to 1 decimal place).

2. (2 points) setPHY141_WW6/disk.pg On superposition and center of mass

A circular steel plate disk of radius R = 1.5 m, thickness

h = 0.01 m, and density $\rho = 7000$ kg/m³ has a circular hole of radius r = 0.8 m located halfway between the center and circumference of the disk (at d = R/2 from the center of the disk). Find the distance of the center of mass of the steel disk from its center.

Enter $d_{cm} =: ___m$

How far is the center of mass from the center of the hole? Enter this distance : _____ m

(Enter numbers correct to 2 decimal places) Check your signs!

3. (2 points) setPHY141_WW6/driven_harmonic.pg On a damped driven harmonic oscillator

The amplitude of a damped driven harmonic oscillator as a function of frequency. The x axis in this plot is the frequency ratio ω/ω_0 where ω is the driving frequency and ω_0 is the resonant frequency. The y axis shows the amplitude of the steady state sinusoidal solution (after transients have died away). Here ζ is a damping parameter. If the damping is low, the oscillator has a very large amplitude. The figure is from Wikimedia Commons.

The equation of motion for the driven harmonic oscillator (where motion is along the coordinate x) is

$$\frac{d^2x}{dt^2} + 2\zeta\omega_0\frac{dx}{dt} + \omega_0^2 x = \frac{F}{m}\sin(\omega t)$$

Here F is the driving force amplitude. The harmonic oscillator's natural frequency $\omega_0 = \sqrt{k/m}$ where k is a spring constant and *m* is the mass.

After reaching a steady state, the solution can be written like $x(t) = A\sin(\omega t + \phi)$

with positive amplitude *A* and phase ϕ .

How does the amplitude of the peak depend on the damping parameter ζ ?

To answer this we, drive the oscillator near peak or its resonant frequency, at $\omega = \omega_0$.

To make the calculation simpler we set the oscillator's resonant frequency $\omega_0 = 1$.

a) At $\omega = \omega_0 = 1$ what is the amplitude <i>A</i> in terms of <i>m</i> , <i>F</i> , ζ ? Enter <i>A</i> =:	It make be useful to use the sum formula $sin(x + y) = sinx cos y + cos x sin y$.
You need to enter a formula. For example $m\zeta$ would be entered as m*zeta F/ζ would be entered as F/zeta 2F would be entered as $2*F2\pi would be entered as 2*pi\frac{x}{yz} would be entered as x/(y*z)help (formulas)You would find A by inserting the solution into the equation ofmotion.b) What is the phase \phi?Enter \phi =: radiansEnter an angle in radians within [0, 2\pi)$	4. (2 points) setPHY141_WW6/jupiter.pg On the center of mass of a star and planet system Jupiter is in orbit about the Sun. Assume a mass ratio $M_J/M_{\odot} = 10^{-3}$ where M_J is the mass of Jupiter and $M_{\odot} = 2 \times 10^{30}$ kg is the mass of the Sun.
	The distance between Jupiter and the Sun is approximately con- stant and is $a_J = 5.2$ AU where AU is an astronomical unit. 1 AU $\approx 1.5 \times 10^{11}$ m. Compute the distance r_{\odot} between the center of mass of the Sun- Jupiter system and the center of the Sun in meters. Enter the distance r_{\odot} : m (Enter numbers correct to 1 decimal places)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America