0. (0 points) /opt/webwork/webwork2/conf/snippets/ASimpleCombinedHeaderFile.pg Alice Quillen Assignment PHY141_WW3 due 09/23/2022 at 11:59pm EDT

fall22phy141

On amplitude and phase of harmonic motion A harmonic oscillator has displacement $x(t) = A \cos(\omega t + \phi_0)$ and velocity $v(t) = \frac{dx}{dt} = -A\omega \sin(\omega t + \phi_0)$ The angular frequency of oscillation is $\omega = 2$ radians per second. x(0), v(0) are the initial conditions and x(t), v(t) are the solution at all later times. At t = 0 the displacement is x(0) = 1 m and the velocity is

At t = 0 the displacement is x(0) = 1 m and the velocity is v(0) = 2 m/s.

What are the amplitude *A* and phase ϕ_0 ?

Enter the amplitude $A = : __m$ m

1. (1 point) setPHY141_WW3/spring.pg

Enter the phase ϕ_0 : _____ radians

Note see this ;a href="https://en.wikipedia.org/wiki/Atan2"; arctan link ;/a; on quadrants if you are using an arctan function. You may need to add π to your phase. Enter numbers accurate to 1 decimal place. Enter $\phi_0 \in (-\pi, \pi]$. **atan2 link**

2. (1 point) setPHY141_WW3/spring2.pg

On sine and cosine coefficients for harmonic motion

A harmonic oscillator has displacement

 $x(t) = A\cos(\omega t) + B\sin(\omega t)$ and velocity

 $v(t) = \frac{dx}{dt} = -A\omega\sin(\omega t) + B\omega\cos(\omega t)$

The angular frequency of oscillation is $\omega = 1.5$ radians per second.

x(0), v(0) are the initial conditions and x(t), v(t) are the solution at all later times.

At t = 0 the displacement is x(0) = 1 m and the velocity is v(0) = 4 m/s.

What are the coefficients *A* and *B*? Enter the coefficient A = : ____ m

Enter the coefficient A = : ____ m Enter the coefficient B = : ____ m

(Enter numbers accurate to 1 decimal place).

3. (2 points) setPHY141_WW3/dampedmotion.pg

On damped motion

A velocity dependent force is exerted on a particle giving equation of motion

 $m\frac{d^2x}{dt^2} = -\alpha \frac{dx}{dt}$ where *m* is the particle mass and α is a damping coefficient. The velocity $v = \frac{dx}{dt}$ obeys

 $\frac{dv}{dt} = -\frac{\alpha}{m}v$

The particle has mass m = 5 kg, damping coefficient $\alpha = 1$ s⁻¹ and initial velocity $v(t = 0) = v_0 = 5$ m/s.

A general solution for the velocity is $v(t) = Ae^{-at}$ with coefficients A, a. What are the coefficients A, a? Enter a value for A: ____ m/s Enter a value for a: ____ s

At what time *t* is the velocity equal to 0.5 m/s? Enter a value for $t : ___$ s (All answers should be numbers accurate to 1 decimal place).

4. (1 point) setPHY141_WW3/2strings.pg

On Force directions

A ball of mass *m* is suspected by two strings. The one on the right is horizontal. The angle between the leftmost string and horizontal is ϕ .

The tension the leftmost string tension exerts a force ${\bf T}$ on the ball.

Gravity exerts a downward force on the ball.

x, z coordinate axes are shown on the left.

Which is equivalent to T_x , the *x* component of the tension force vector?

- A. mg
- B. $T\cos\phi$
- C. $T \sin \phi$
- D. $-T\cos\phi$
- E. $-T\sin\phi$
- F. –*mg*

Which is equivalent to T_z , the *z* component of **T** ?

- A. mg
- B. -mg

- C. $T\cos\phi$
- D. $-T\sin\phi$
- E. $-T\cos\phi$
- F. $T \sin \phi$

(Note: you have to have all correct answers checked and none of the incorrect answers checked for the problem to be marked as correct).

5. (2 points) setPHY141_WW3/tether.pg On force directions.

A tether ball is undergoing circular motion while attached to a pole by a string.

The angle between pole and the string is $\theta = 60^{\circ}$.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The tension on the string is T = 3 N (here N is Newtons).

A Cartesian coordinate system is shown on the lower right. At a particular moment, the ball is on the x axis (it has a maximum x value in its orbit). At this moment in time what are the vector components of the force on the ball due to tension in the string?

 $\mathbf{T}=\underline{\qquad}\hat{\mathbf{x}}+\underline{\qquad}\hat{\mathbf{z}}\;(\mathbf{N}).$

Here $\hat{\mathbf{x}}, \hat{\mathbf{z}}$ are unit vectors pointing in x and z coordinate directions, respectively. Enter numbers good to 1 or 2 decimal places. Check your signs.

What is the mass of the ball?

m = _____ kg.

Enter a number good to 1 or 2 decimal places.

6. (1 point) setPHY141_WW3/twospring.pg On springs in series

Two springs are connected in series to a mass that rests on a frictionless surface.

The spring constants are $k_1 = 2$ N/m, $k_2 = 1$ N/m, and the mass is m = 4 kg.

Enter a value for the Period of oscillation *P*: ______s. (Enter a number good to 1 decimal place).