0. (0 points) /opt/webwork/webwork2/conf/snippets/ASimpleCombinedHeaderFile.pg

Alice Quillen
Assignment PHY141_WW2 due 09/16/2022 at 11:59pm EDT

1. (1 point) setPHY141_WW2/time_g.pg

Gravity!

A ball is tossed upward from near the groud at time $t=0$. When it leaves the ground it has $z=0$ and an upward velocity of $v_{0, z}=$ $5 \mathrm{~m} / \mathrm{s}$.
At what time does the ball reach its maximum height?
Enter time of maximum height: $t=$ \qquad s.

What is the maximum height reached?
Enter maximum height:__m.
(Enter numbers good to 2 decimal place).
2. (1 point) setPHY141_WW2/acc.pg

On acceleration and integration.

A particle moves along a line in one dimension with coordinate x.
Its acceleration $\frac{d x^{2}}{d t^{2}}$ is described by the function $f(t)=3 t^{2}+$ $3 t-1$.
Its velocity $v=\frac{d x}{d t}$.
How much the velocity change during the time interval $t=$ [0, 2]?
Enter Δv : \qquad
$(\Delta v=v(2)-v(0)$ as a number accurate to 1 decimal place $)$.
3. (1 point) setPHY141_WW2/unitsG.pg

On units of G.

What are the MKS units for the Gravitational constant G ? Fill in the exponents:
$G=6.67430(15) \times 10^{-11} \times \mathrm{m}-\mathrm{kg}-\mathrm{s}-$
 ${ }_{i} \operatorname{small}_{i} \quad \ldots \quad$ _ $/ \operatorname{small}_{i} \quad i / \sup _{i j} / \sup _{i j} / \sup _{i j} / \sup _{i} \quad$; $\operatorname{big}_{i} \mathrm{~kg} \quad$ i/big i isup ${ }_{i j} \sup _{i} \sin _{i j} \sup _{i} \quad i \operatorname{small}_{i} \quad \ldots \quad$ _i/small $i \quad i / \sup _{i j} / \sup _{i}$ ¡/supij/supi \quad ¡igi \quad s \quad i/bigi \quad isupijsupijisupijsupi ${ }_{i} \operatorname{small}_{i}^{i} \ldots i / \operatorname{small}_{i}{ }_{i} / \sup _{i j} / \sup _{i} \mathfrak{i} / \sup _{i j} / \sup _{i}$
(Answers should be numbers)

4. (1 point) setPHY141_WW2/Kepler.pg

On scaling from things we know about.

The period P of an orbit about a star of mass M_{*} depends on the orbit's semi-major axis a. Scaling from the Earth's orbit, Kepler's third law implies that

$$
\left(\frac{P}{1 \text { year }}\right)=\left(\frac{a}{1 \mathrm{AU}}\right)^{\frac{3}{2}}\left(\frac{M_{*}}{M_{\odot}}\right)^{-\frac{1}{2}}
$$

The S02 star near the Galactic center has a period of 16 years and a semi-major axis of 970 AU . Here AU is the astronomical
unit and the distance between Earth and Sun, and M_{\odot} is a solar mass.
What is the mass in solar masses of the massive black hole that the S02 star orbits?
Enter $M_{\text {blackhole }}: \quad M_{\odot}$
(Enter a number to a precission of 1 decimal place in exponential notation. For example 1.5E5).
5. (1 point) setPHY141_WW2/vector1.pg

On vector directions

A pingpong ball impacts an inclined table top. The angle between the ball trajectory and the table is 30°. The table top is inclined by 10° from horizontal. The ball's velocity upon impact is $v=2 \mathrm{~m} / \mathrm{s}$. The ball rebounds elastically.
After impact what is the vertical component of the ball's velocity?
Enter v_{z} : \qquad m / s
(Enter a number accurate to 1 decimal place).
6. (1 point) setPHY141_WW2/motor.pg

On circular motion.
A motor rotates at 300 rpm (rotations per minute).
What is the angular rotation rate $\dot{\theta}$ of the motor's axle?
Enter $\dot{\theta}$: \qquad radians/s.
(Enter a number accurate to 1 decimal place).
7. (1 point) setPHY141_WW2/circ2.pg

On circular motion
A motor turns at a frequency of $f=100 \mathrm{~Hz}$. It turns a flywheel that has a radius of $R=0.19$ meters.
What is the tangential velocity v_{θ} of the edge of the flywheel?
Enter v_{θ} : \qquad m / s.
(Enter a number accurate to 2 decimal places).

8. (1 point) setPHY141_WW2/circ3.pg

On circular motion

A mass is in a circular orbit with radius $R=1 \mathrm{~m}$ and tangential velocity $v_{\theta}=1 \mathrm{~m} / \mathrm{s}$.
What is the rotation period? $P=$ \qquad S.
(Enter a number that is accurate to 1 decimal place).

