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Assignment PHY141 WW12 due 12/14/2022 at 11:59pm EST

1. (1 point) setPHY141_WW12/maxwell_boltzmann.pg
On the Maxwell-Boltzmann velocity distribution
A bottle contains a mixture of Helium and Oxygen molecules
(O2). The root-mean-square velocity for the oxygen molecules
is vrms,O2 = 480 m/s.
Find the root-mean-square velocity vrms of the Helium
molecules.
Enter vrms,He = m/s.
Find the temperature of the gas.
Enter T = K.
It may be useful to know the Boltzmann constant
kB = 1.3806503E-23 m2 kg s−2K−1

and the atomic mass unit 1.66053906660E-27 kg.

2. (1 point) setPHY141_WW12/pnkt.pg
On the Ideal Gas law
A bottle contains argon at a pressure of Pinit = 2 bar and at a
temperature of Tinit = 285 K.
The temperature increases by 20 K while the volume remains
fixed.
After the temperature increase, what is the pressure inside the
bottle?
Enter P = bar
3. (1 point) setPHY141_WW12/adiabatic.pg
On adiabatic expansion
What is the adiabatic index, γ of an ideal monatomic gas?
Enter γ =
An ideal, monatomic gas is allowed to expand quasi-statically
and adiabatically from an initial volume Vi = 2 liters and initial
temperature Ti = 300 K to a final volume of Vf = 6 liters.
What is the final temperature?
Enter Tf = K
Hint: PV = NkBT for an ideal gas and PV γ is constant for adi-
abatic changes. Here P is pressure, kB is Boltzmann’s constant,
and N is the number of molecules.
4. (1 point) setPHY141_WW12/col.pg
A collision rate and a mean free path
In space, a very small particle is moving at a velocity v = 6 m/s
through a sea of hard spherical pebbles.
The pebbles have a radius of r = 1 cm and the number of them
per cubic meter is n = 12 m−3. Here n is the number density of
pebbles.
The small particle can collide with and bounce off the pebbles,
but it keeps moving at the same speed.
What is the rate that the small particle has collisions?
Enter dc

dt = collisions/second.
What is the small particle’s mean free path, λ?
Enter λ = m.

5. (1 point) setPHY141_WW12/PVline.pg
Work is the integral of P dV

A sample of gas expands in volume from V1 = 1 m3 to V2 = 2 m3

while its pressure decreases from P1 = 13 Pa to P2 = 2 Pa.
How much work is done by the gas if its pressure changes with
volume according to path A shown in the PV diagram in the
Figure?
Enter WA = J.
How much work is done by the gas if its pressure changes with
volume according to path B shown in the PV diagram in the Fig-
ure?
Enter WB = J.
How much work is done by the gas if its pressure changes with
volume according to path C shown in the PV diagram in the Fig-
ure?
Enter WC = J.
Hint: work done by the gas is W =

∫ V2
V1

P dV .

6. (1 point) setPHY141_WW12/isothermal_compression.pg
Isothermal compression

Isothermal variation in an ideal gas has pressure P ∝ 1/V
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whereas adiabatic variation (the steeper curve) has P ∝ V−γ.
Here V is volume and γ is the adiabatic index. We are con-
sidering a fixed number of gas particles but the gas is in ther-
mal contact with a thermal reservoir and can exchange volume
with the reservoir. Because the total energy depends depends on
kBT ∝ PV (through the ideal gas law), the isothermal curves are
also constant energy curves. Adiabatic curves are curves where
no heat is transferred but energy is not constant. In both cases
work done on the system W =−

∫
P(V )dV and depends on the

area integrated under the curve.
Consider an isothermal path that starts at V1 = 9 m3 with pres-
sure P1 = 100000 Pa and ends at V2 = 1 m3 and with pressure
P2.
What is the final pressure P2?
Enter P2 = Pa.
What is the work W done on the gas during compression?
Enter W = J.
What is the heat transfered Q to the system during compression?
Enter Q = J.
What is the change in total energy ∆U =U2−U1 ?
Enter ∆U = J.
Numbers can be entered as 1E5 not as 1e5. Answers can be
positive, negative or zero.

7. (1 point) setPHY141_WW12/adiabatic_compression.pg
Adiabatic compression

Isothermal variation in an ideal gas has pressure P ∝ 1/V
whereas adiabatic variation (the steeper curve) has P ∝ V−γ.
Here V is volume and γ is the adiabatic index. We are con-
sidering a fixed number of gas particles but the gas is in ther-
mal contact with a thermal reservoir and can exchange volume
with the reservoir. Because the total energy depends depends on
kBT ∝ PV (through the ideal gas law), the isothermal curves are
also constant energy curves. Adiabatic curves are curves where
no heat is transferred but energy is not constant. In both cases
work on the system W = −

∫
P(V )dV and depends on the area

integrated under the curve.
Consider an adiabatic path that starts at V1 = 6 m3 with pres-
sure P1 = 100000 Pa and ends at V2 = 1 m3 and with pressure
P2. The adiabatic index γ = 5/3.
What is the final pressure P2?
Enter P2 = Pa.

What is the work W done on the system during compression?
Enter W = J.
What is the heat transfered Q to the system during compression?
Enter Q = J.
What is the change in total energy ∆U =U2−U1 ?
Enter ∆U = J.
Numbers can be entered as 1E5 not as 1e5.

8. (1 point) setPHY141_WW12/PVcurve.pg
Energy is heat plus work

When a system is taken from state i to state f along the path
ia f , as shown in the figure, the heat transferred into the system
is Qia f = 40 cal and the work done by the system Wia f = 30 cal.
a) If the energy Ui = 10 cal, what is the energy at the point f or
U f ?
Enter U f = cal.
b) Along the path ib f , Qib f = 60 cal.
What is Wib f , the work done by the system along the path ib f ?
Enter Wib f = cal.
c) If Wf i =−40 cal is the work done by the system on the curved
return path f i, what is Q f i ?
Enter Q f i = cal.
d) If Ub = 15 cal, what is Qb f ?
Enter Qb f = cal.
e) What is Qib ?
Enter Qib = cal.
Hints: Internal energy is heat transferred to system + work done
on system. ∆U = Q +W ′ where work done on the system
W ′ =−

∫
P dV .

Here we are giving works done by the system (Wia f ,Wib f ,Wf i )
and these are W =

∫
PdV . This means that we can write

∆U = Q−PdV = Q−W with W =
∫

PdV .
Vertical paths do no work.

9. (1 point) setPHY141_WW12/CV.pg
On the heat capacity of a diatonic molecule
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In this problem we use the results of measurements of the tem-
perature dependence of the heat capacity of Hydrogen gas, H2,
at constant volume to determine some properties of molecular
Hydrogen.
a. At temperatures below 80 K the heat capacity at constant vol-
ume is CV = 3

2 kB per molecule, but at higher temperatures the
heat capacity increases to CV = 5

2 kB per molecule due to con-
tributions from rotational energy states. Use these observations
to estimate the distance d between the hydrogen nuclei in an H2
molecule.
Enter d = m
b. At about 2000 K the heat capacity at constant volume in-
creases to CV = 7

2 kB per molecule due to contributions from vi-
brational energy states. Use these observations to estimate the
stiffness k of the spring that approximately represents the inter-
atomic force binding the molecule.
Enter k = N / m
Some constants:
Boltzmann constant: kB = 1.38065E-23 J/K
Planck constant: h = 6.626E-34 J s
Proton mass: mp = 1.6726E-27 kg
Speed of light: c = 2.99792E8 m/s

You will need to compute the reduced mass µ of a hydrogen
molecule.
Vibrational energy spacings kBT ∼ ~ω with ω =

√
k/µ and

~= h
2π

Here ω is the angular frequency, and k is the spring constant.
Rotational energy spacings kBT ∼ hcB with rotational constant
B = h

8π2cI and moment of inertia I = µd2.
Here d is the distance betweent the two atoms.
Numbers can be entered as 1E-10 not 1e-10.

10. (1 point) setPHY141_WW12/heatengine.pg
On the efficiency of a Carnot cycle heat engine in space

A Carnot cycle converts heat flow from a hot reservoir at tem-
perature TH and to cold reservoir at temperature TL into work W
done by the engine.
The Carnot cycle achieves the maximal possible efficiency
where efficiency ε is the ratio of benefit to cost.
Here ε = W

QH
where QH is the heat absorbed from the hot reser-

voir in a cycle and W is the work done by the engine in a cycle.
Consider a near-Earth asteroid in outer space, such as Asteroid
101955 Bennu, with one side illuminated by the Sun and with
an equilibrium temperature TH = 300 K. The other side is fac-
ing away from the Sun and as radiation can escape, it is much
colder at TL = 30 K.
What is the maximum efficiency ε of the Carnot cycle that uses
these two thermal reservoirs?
Enter ε =
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