0. (0 points) /opt/webwork/webwork2/conf/snippets/ASimpleCombinedHeaderFile.pg
Alice Quillen

Assignment PHY141_WW11 due 12/02/2022 at 11:59pm EST

1. (1 point) setPHY141_WW11/multiplicity1.pg

On multiplicity function of a binary spin system

A system has N = 5 particles. Each particle can be in 1 of two possible spin states, up or down.

What is the multiplicity $g(N_{\uparrow}, N_{\downarrow})$ of a state with $N_{\uparrow} = 2$ particles with spin up and $N_{\downarrow} = 3$ particles with spin down? Enter a value for $g(N_{\uparrow}, N_{\downarrow})$: _____

If all spin states are equally probable what is the probability that the system will be found with $N_{\uparrow} = 2$ and $N_{\downarrow} = 3$? Enter probability: ____

2. (1 point) setPHY141_WW11/multiplicity2.pg

On multiplicity function of a system of harmonic oscillators We denote the multiplicity of a system of N harmonic oscillators with n quanta of energy as g(N, n).

A system of N = 5 harmonic oscillators has n = 2 quanta of energy.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

What is the multiplicity of this state?

Enter a value for g(5,2): _____

How many of these states correspond to all 2 quanta given to the same oscillator?

____ Ways

The ground state of a single oscillator has energy E_0 and its energy levels are $E_m = m\hbar\omega + E_0$ for integer *m*. The quanta of energy that we add to the system each have size $\hbar\omega$.

What is the total energy in the state with N = 5 harmonic oscillators and n = 2 quanta of energy?

Energy $E = 5E_0 + \dots \hbar \omega$

3. (1 point) setPHY141_WW11/heat.pg

On heat, temperature and entropy

A large isolated system has a temperature of 300° K. It absorbs 1 J of heat. What is the change in the entropy? Enter a value for ΔS : _____ J K⁻¹.

fall22phy141