0. (0 points) /opt/webwork/webwork2/conf/snippets/ASimpleCombinedHeaderFile.pg

Alice Quillen

Assignment PHY141_WW11 due 12/02/2022 at 11:59pm EST

1. (1 point) setPHY141_WW11/multiplicity1.pg

On multiplicity function of a binary spin system

A system has $N=5$ particles. Each particle can be in 1 of two possible spin states, up or down.
What is the multiplicity $g\left(N_{\uparrow}, N_{\downarrow}\right)$ of a state with $N_{\uparrow}=2$ particles with spin up and $N_{\downarrow}=3$ particles with spin down?
Enter a value for $g\left(N_{\uparrow}, N_{\downarrow}\right)$:
If all spin states are equally probable what is the probability that the system will be found with $N_{\uparrow}=2$ and $N_{\downarrow}=3$?
Enter probability:
2. (1 point) setPHY141_WW11/multiplicity2.pg

On multiplicity function of a system of harmonic oscillators We denote the multiplicity of a system of N harmonic oscillators with n quanta of energy as $g(N, n)$.
A system of $N=5$ harmonic oscillators has $n=2$ quanta of energy.

What is the multiplicity of this state?
Enter a value for $g(5,2)$: \qquad
How many of these states correspond to all 2 quanta given to the same oscillator?

_ Ways

The ground state of a single oscillator has energy E_{0} and its energy levels are $E_{m}=m \hbar \omega+E_{0}$ for integer m. The quanta of energy that we add to the system each have size $\hbar \omega$.
What is the total energy in the state with $N=5$ harmonic oscillators and $n=2$ quanta of energy?
Energy $E=5 E_{0}+\ldots \hbar \omega$
3. (1 point) setPHY141_Ww11/heat.pg

On heat, temperature and entropy

A large isolated system has a temperature of $300^{\circ} \mathrm{K}$. It absorbs 1 J of heat.
What is the change in the entropy?
Enter a value for ΔS : \qquad J^{-1}.

[^0]
[^0]: Generated by ©(CeBWorK, http://webwork.maa.org, Mathematical Association of America

