Assignment PHY141_WW10 due 11/18/2022 at 11:59pm EST

1. (1 point) setPHY141_WW10/log.pg
On torque

On torque

A \log of mass m and length L is held by a pivot that is $1 / 4$ of the distance from its left end. The log has a uniform density per unit length. The angle between horizontal and long axes is $\theta=30$ degrees. The gravitational acceleration is g.
What is the torque on the \log (about the pivot) due to gravity?
Enter a value for the magnitude of the torque:
$\tau=$
\qquad mg L
You can enter a number!
Torque has a direction. Using the right-handed coordinate system defined in the above figure fill in the blanks with numbers $\frac{\tau}{m g L}=_\hat{\mathbf{x}}+\ldots \hat{\mathbf{y}}+\ldots \hat{\mathbf{z}}$
(Numbers should be accurate to 1 or 2 digits of precision.)
Check your signs!
2. (1 point) setPHY141_WW10/small_osc.pg

On small oscillations

A particle of mass m is moving along the x axis. It feels a force with potential energy that is sinusoidal
$U(x)=-A \cos \left(\frac{2 \pi x}{\lambda}\right)$
Here constant A is an amplitude and constant λ is a wavelength for the potential energy function.
The particle is near an equilibrium point.

The angular frequency ω of small oscillations about the equilibrium point is equal to

- $\sqrt{A 4 \pi / m}$
- $\sqrt{\frac{A}{m}} \frac{2 \pi}{\lambda}$
- $\sqrt{\frac{k}{m}}$
- $\sqrt{\frac{A}{\lambda m}}$
- None of these

3. (1 point) setPHY141_WW10/unstable.pg

On an unstable equilibrium point
A particle of mass m is moving along the x axis under the influence of a force
$F=k x$
Notice that the force has the opposite sign as that of a spring that obeys Hooke's law.
The equation of motion is
$m \ddot{x}=k x$
Initial conditions at $t=0$ are
$x(0)=\varepsilon$ and velocity $v(0)=0$.
We assume that ε is small.
Here $v=\dot{x}=\frac{d x}{d t}$.
The solution at later times is approximately
$x(t) \approx$

- $\varepsilon \cos \left(\sqrt{\frac{k}{m}} t\right)$
- $\varepsilon \sin \left(\sqrt{\frac{k}{m}} t\right)$
- $\frac{\varepsilon}{2} e^{\sqrt{\frac{k}{m}} t}$
- $\frac{\varepsilon}{2} e^{-\sqrt{\frac{k}{m}} t}$
- $\varepsilon e^{-\sqrt{\frac{k}{m}} t}$
- $\varepsilon e^{\sqrt{\frac{k}{m}} t}$
- None of these

Hint: If $a>0$ the exponential $e^{a t}$ grows quickly with time, whereas if $a<0$ the exponential decays quickly.

Generated by © CeBWorK, http://webwork.maa.org, Mathematical Association of America

