
Solving Pattern Formation Partial Differential Equations 
on Triangular Meshes with a Finite Element Method

Abstract: 

We solve pattern formation partial 

differential equations with a finite 
element method on 2D triangular meshes, 
in different shaped domains and with a 
variety of boundary conditions. We solve 
reaction-diffusion Brusselator and Gray-
Scott systems, the complex Landau-
Ginzburg model and the 4-th order 
Swift-Hohenberg model. The Brusselator 
model is more sensitive to the boundary 
than the Gray-Scott model, with 
crystallization or linear features likely to 
be present on the boundary after 

equilibrium is reached. 

Motivation:

Biological/Chemical/Active matter continuum 
systems are necessarily confined. Pattern 
formation models are often solved on square 
Cartesian grids with periodic boundary conditions. 
Finite element methods make it possible to study 
these systems on different shaped domains with 
different types of boundary conditions. 

PDE Method:

∫Ω
∂tu w dx = ∫Ω

Du(Δu) w dx + ∫Ω
g(u) w dx

∂tu = DuΔu + g(u) Reaction/diffusion with 
nonlinear term 

Weak form 
of PDE

∫Ω
∂tu w dx = − Du∫Ω

∇u∇w dx + Du ∫∂Ω
∇u w ds + ∫Ω

g(u) w dx
linear 
operator boundary 

term
un+1 = (1 −

Δt
2

DuL)
−1

(1 +
Δt
2

DuL) un + Δt g(un)

Crank-Nicholson method 
for linear operators

Nonlinear part

Added in by hand

(Operator split)

 is a test 
function

wImplementation:

We built on https://github.com/kinnala/scikit-fem


Tom Gustafsson and GD McBain’s Finite element code

In python and with minimal dependancies 

Spirit of FEniCS but actually works

Galerkin method:  turn the weak formulation into a 
discrete method using a finite set of orthogonal basis 
functions. The approximate solution is a linear combination 
of the basis functions which are defined on “elements”. 
The problem is approximated by a linear algebra problem, 
with sparse matrices (sparse because interactions are 

local)

The elements:
Lagrange finite element 

Basis elements {1, x, y}

Gradients can be 
described with 
polynomials in this basis 

PDE contains then we 
need a quadratic element

Δ2

PDE contains 

Test functions in 

Δ
H1

Morley element
Basis elements 

  {1,x,y,x2,y2,xy}

Normal derivatives at 
edge midpoints, giving 
continuity for derivatives 
across cells

Test functions , 
 finite

∈ H2

∫Ω
|∇2w |2 dx

P1 first order polynomials


P2 second order polynomials

∂tu = ru − (1 + Δ)2u

Integrate by parts

Complex Landau-Ginzburg Natural BC

|A|

Reaction diffusion equations

Ru = α − (β + 1)u + u2v
Rv = βu − u2v

Brusselator model

Ru = − uv2 + α(1 − u)
Rv = uv2 − (α + β)v

Gray-Scott model

=5, =9,

 ,
α β
Du = 10−3 Dv = 11Du

=0.05, =0.063,

 ,
α β
Du = 3 × 10−5 Dv = Du /2

Boundary Conditions

Natural Neumann

Brusselator is more 
sensitive to the 
boundary than Gray-
Scott

∂u
∂n

=
∂v
∂n

= 0

Initial conditions:

In most cases noise

∂tv = DvΔv + Rv(u, v)

r = 0.2,γu = 0Swift-Hohenberg model

+γuu2 − u3

Biharmonic so we

use a quadratic 

element.

Both first and 
second derivatives 
are zero on the 
boundary  
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code: 

https://github.com/aquillen/Pattern_Formation_FEM

Discussion

We find that we can simulate growth of patterns in 
2D domains with a variety of shapes. Patterns are 
least affected by natural (zero Neumann) boundary 
conditions. We adjusted domain and element size so 
that the most unstable wavelength fits within the 
domain. We find that there is a characteristic 
distance over which the boundary affects the 
patterns which form. Boundaries can be used to 
control some of the behavior of pattern formation 
models. 

Brusselator is quite sensitive to boundary!

∂tu = DuΔu + Ru(u, v)

b1 = b3 = 2

   phase
∂tA = A + (1 + ib1)ΔA − (b3 − i) |A |2 A
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