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1 Reaction-Diffusion equations

Alan Turing found mathematical models that would produce spatial patterns from arbitrary
initial states. These models were based on coupled chemical reactions but have since been
applied in numerous fields.

1.0.1 The diffusion or heat equation

Let u(x, t) be a concentration of something, e.g., numbers of molecules per unit volume.
The concentration is a function of position x and time t. The position x ∈ Rd for some
dimension d.

The gradient of the concentration of u is ∇u. The rate of flow F or flux of u should
depend on the gradient F = −D∇u with positive coefficient D. The rate of change of u
depends on the divergence of the flux or

∂u

∂t
= −∇ · F.

We expect there to be change in the local quantity of u only if there is variation in the
gradient of the flux. If the coefficient D is independent of position then we find

∂u

∂t
= D∇2u

which is known as the diffusion equation or if we replace u with temperature T , it is called
the heat equation.

1.0.2 Reaction Diffusion equations

Consider u and v to be concentrations of two chemicals. This means u ≥ 0 and v ≥ 0. The
chemicals can diffuse through space and they can react with one another and with other
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Figure 1: Patterns formed with the Brusselator model. u is on the left and v on the right.
The grid has a sinusoidal variation in α (horizontally on the grid) and β (vertically on the
grid). The mean values are αm = 5 and βm = 9 with amplitudes of variation 1 and 1.
Diffusion coefficients are Du = 2, Dv = 22, the grid is n = 400 grid points and square and
∆x = 1,∆t = 0.0025. The axes are x, y. Boundary conditions are periodic. The patterns
grow and then become fixed.

reagents.

∂u

∂t
= Du∇2u+ fu(u, v) (1)

∂v

∂t
= Dv∇2v + fv(u, v). (2)

Here Du, Dv are the diffusion coefficients for u and v respectively. The functions fu(u, v)
and fv(u, v) are the local reaction rates. In two dimensions u(x, y, t) and v(x, y, t) and the
Laplacian operator

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
. (3)

1.1 The Brusselator model

The Brusselator model (developed by a group in Brussels) has reactions

α→ u

β + u→ v

2u+ v → 3u

u→ E
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where the concentrations of the reagents α, β,E ≥ 0 are kept constant. The reactions
together give

fu(u, v) = α− (β + 1)u+ u2v

fv(u, v) = βu− u2v. (4)

Here α is a feeding rate for u. The parameter β is a kill rate for u that converts u to v.
The uv2 term is a reaction term, producing u at the expense of v.

Allowing u, v to also diffuse

∂u

∂t
= Du∇2u+ α− (β + 1)u+ u2v (5)

∂v

∂t
= Dv∇2v + βu− u2v. (6)

This set of coupled equations displays a variety of phenomena, including growth of patterns
(see Figure 1) and long lived oscillating behavior (see Figure 3).

1.1.1 The steady state of the Brusselator model

We consider the reaction alone. What is the steady state solution? The steady state
solution satisfies

fu(u, v) = α− (β + 1)u+ u2v = 0

fv(u, v) = βu− u2v = 0

The second equation gives β = uv and this in the first equation gives α = u and conse-
quently v = β/α. The steady state solution is

u0 = α

v0 =
β

α
. (7)

We can consider trajectories on the u, v plane. The steady state solution is a fixed
point.

1.2 Wavelengths of the patterns that grow

To try to understand which types of patterns grow we look at the stability of perturbations
near the steady state solution. Using linearized equations we estimate the growth rate as
a function of wavevector or wavelength.
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1.2.1 Linear perturbations near the steady state solution for the Brusselator
model

We assume a solution that is near the steady state solution.

u(x, y, t) = u0 + u1(x, y, t)

v(x, y, t) = v0 + v1(x, y, t), (8)

where the steady state solution satisfies

fu(u0, v0) = 0

fv(u0, v0) = 0.

We expand the equations of motion to first order in u1, v1, assuming that they are
small.

We write down the equation of motion again (equation 6)

∂u

∂t
= Du∇2u+ α− (β + 1)u+ u2v (9)

∂v

∂t
= Dv∇2v + βu− u2v. (10)

Here is how to compute the non-linear terms

u2v = (u0 + u1)
2(v0 + v1)

= (u20 + 2u0u1 + u21)(v0 + v1)

= u20v0 + 2u0u1v0 + u21v0 + u20v1 + 2u0u1v1 + u21v1

= u20v0 + 2u0v0v1 + u20v1 + ....

The first order terms are 2u0v0v1 + u20v1.
We plug equations 8 into the equations of motion and only keep zeroth and first order

terms

u0,t + u1,t = Du(u0,xx + u1,xx + u0,yy + u1,yy) + α− (β + 1)(u0 + u1) + u20v0 + 2u0v0v1 + u20v1

v0,t + v1,t = Dv(v0,xx + v1,xx + v0,yy + v1,yy) + β(u0 + u1)− u20v0 − 2u0v0v1 + u20v1.

The steady state solution in independent of position so it has u0,xx = 0, u0,yy = 0, u0,t = 0
and v0,xx = 0, v0,yy = 0, v0,xx = 0. Deleting those terms we get

u1,t = Du(u1,xx + u1,yy)− (β + 1)u1 + 2u0v0v1 + u20v1 + α− (β + 1)u0 + u20v0

v1,t = Dv(v1,xx + v1,yy) + βu1 − u20v0 − 2u0v0v1 + u20v1 + βu0 − u20v0.
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The terms that are zeroth order now drop out precisely because they involve the steady
state solution. We delete the zero-th order terms. To first order in u1, v1 and in two
dimensions the equations of motion for the Brusselator model are

u1,t = Du(u1,xx + u1,yy)− (β + 1)u1 + u20v1 + 2u0v0u1

v1,t = Dv(v1,xx + v1,yy) + βu1 − u20v1 − 2u0v0u1.

Figure 2: The real part γ+(k) giving the growth rate of perturbations for the Brusselator
model. The left axis shows the wavelength λ = 2π/k. The diffusion coefficients and α
are fixed and equation 14 used to compute the growth rate as a function of wave-vector k
and parameter β. The parameter α and diffusion coefficients are printed on the top of the
figures. Negative portions of the images are not shown. The white lines show zero growth
rate. If the diffusion coefficients are reduced, smaller wavelengths can become unstable.

Using the steady state solution this becomes

u1,t = Du(u1,xx + u1,yy) + (β − 1)u1 + α2v1

v1,t = Dv(v1,xx + v1,yy)− βu1 − α2v1.

We adopt a trial solution in the form

u1 = ũ1e
γt+ikxx+ikyy

v1 = ṽ1e
γt+ikxx+ikyy

giving [
γ +Du(k

2
x + k2y)− (β − 1)

]
ũ1 = α2ṽ1[

γ +Dv(k
2
x + k2y) + α2

]
ṽ1 = −βũ1.

We combine these together to find[
γ +Du(k

2
x + k2y)− (β − 1)

] [
γ +Dv(k

2
x + k2y) + α2

]
+ α2β = 0
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This can be called the ‘characteristic equation’.
The characteristic equation is a quadratic equation for γ that is a function of k2 = k2x+k

2
y

and parameters α, β. This characteristic equation can be written in the form

γ2 +B(k)γ + C(k) = 0 (11)

with coefficients

B(k) = (Du +Dv)k
2 + α2 − β + 1 (12)

C(k) = DuDvk
4 +Duk

2α2 +Dvk
2(1− β) + α2. (13)

The quadratic formula

γ(k) = −B(k)

2
± 1

2

√
B2(k)− 4C(k). (14)

If there are values of wave vector k giving solutions for γ that have a positive real part,
these would correspond to perturbations that can grow exponentially quickly.

What wavevectors give a zero growth rate? These can be considered transition regions
and they would satisfy C(k) = 0.

Because B(k), C(k) are real functions, the larger of the two possible values for Reγ

Reγ+(k) =

{
−B(k)

2 + 1
2

√
B2(k)− 4C(k)

−B(k)
2

if
B2(k)− 4C(k) ≥ 0
B2(k)− 4C(k) < 0

(15)

The Brusselator model is specified by four parameters Du, Dv, α, β, but growth rate
γ+ also depends on k. If you fix three of the parameters, say Du, Dv, α, you can show the
value of Reγ+ on a two-d plot with the other two degrees of freedom β, k as axes. Where
this is positive, you expect growth of structure with wavelength λ = 2π/k and with growth
rate given by Reγ+. See Figure 2 for some plots of Reγ+.

1.2.2 Linear analysis with a Jacobian

Using reaction functions to first order about the steady state solution

fu(u0 + u1, v0 + v1) = fu(u0, v0) +
∂fu
∂u

∣∣∣∣
u0,v0

u1 +
∂fu
∂v

∣∣∣∣
u0,v0

v1

fv(u0 + u1, v0 + v1) = fv(u0, v0) +
∂fv
∂u

∣∣∣∣
u0,v0

u1 +
∂fv
∂v

∣∣∣∣
u0,v0

v1.

Let u = (u, v) and f(u) = (fu(u), fv(u)). The steady state solution u0 satisfies f(u0) = 0.
Expanding about the steady state solution

fu(u0 + u1) = fu(u0) +Df
∣∣∣
u0

u1 + ...
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Figure 3: The Brusselator model in 1-dimension integrated with Du = 0.3, Dv = Du/8,
α = 2, β = 5.4, ∆x = 1, ∆t = 0.005. The horizontal axis is time, and the vertical axis is
x. The boundary condition is periodic. This shows both development of spatial patterns
and time dependent structures.

where Df is the Jacobian matrix. For the Brusselator model, the Jacobian matrix

Df =

(∂fu
∂u

∂fu
∂v

∂fv
∂u

∂fv
∂v

)
=

(
−(β + 1) + 2uv u2

β − 2uv −u2
)
.

Evaluated at the steady state solution or fixed point (equation 7) the Jacobian matrix

Df
∣∣∣
u0

=

(
β − 1 α2

−β −α2

)
. (16)

The equation of motion in vector form

∂u

∂t
=

(
Du 0
0 Dv

)
∆u+ f(u) (17)

where the Laplacian operator ∆ = ∂2

∂x2 +
∂2

∂y2
. To first order in u1 and expanded about the

steady state solution, the equation of motion is

∂u1

∂t
=

(
Du 0
0 Dv

)
∆u1 +Df

∣∣∣
u0

u1.
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With trial solution u1 = ũ1e
γt+ik·x with k = (kx, ky) and x = (x, y) the first order equation

gives

γũ1 =

[
−
(
Du 0
0 Dv

)
k2 +Df

∣∣∣
u0

]
ũ1.

This can be rewritten with an identity matrix I[
−
(
Du 0
0 Dv

)
k2 +Df

∣∣∣
u0

− γI

]
ũ1 = 0 (18)

The thing inside the brackets is a matrix. We find the characteristic equation by taking
the determinant of the matrix and setting it to zero;

det

[(
γ +Duk

2 0
0 γ +Dvk

2

)
−Df

∣∣∣
u0

]
= 0.

For the Brusselator model and using equation 16 for the Jacobian matrix

det

[(
γ +Duk

2 0
0 γ +Dvk

2

)
−
(
β − 1 α2

−β −α2

)]
= 0. (19)

This gives the following equation for the growth rate γ(k)(
γ +Duk

2 − β + 1
) (
γ +Dvk

2 + α2
)
+ α2β = 0. (20)

We find the same characteristic equation as we derived in the last section but using
different notation. As discussed in the last section, solutions to the characteristic equation
tell you whether small perturbations can grown. If the real part of γ(k) is positive then
perturbations with wavelength 2π/k are likely to grow. The linear analysis does not tell
you what types of patterns (like dots or ridges or spirals) are likely to form.

1.3 Temporal behavior of the Brusselator model

We consider the Brusselator model near its steady state solution. The steady state solution
may not be stable. Without diffusion, the Brusselator model

∂u

∂t
= fu(u, v)

∂v

∂t
= fv(u, v)

with reaction functions in equation 4 which we repeat here

fu(u, v) = α− (β + 1)u+ u2v

fv(u, v) = βu− u2v.
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Figure 4: Trajectories in u, v space for the Brusselator model taking into account only
evolution in u, v (without diffusion). The parameters α = 1, β = 2.5. The fixed point is
shown with a red dot and is unstable. Orbits are shown with colored lines. Arrows on the
left show vectors (dudt ,

dv
dt ). Arrows on the right show the same vectors but normalized so

that they all have the same length. Orbits are attracted to a limit cycle giving periodic
behavior.

On a plot of u vs v, the point u0, v0 is a fixed point.
We look at trajectories near the steady state solution u0, v0. Let u = u0 + u1 and

v = v0 + v1. The equations of motion expanded about the fixed point

∂u1
∂t

= fu(u0, v0) +
∂fu
∂u

∣∣∣
u0,v0

u1 +
∂fu
∂v

∣∣∣
u0,v0

v1

∂v1
∂t

= fv(u0, v0) +
∂fv
∂u

∣∣∣
u0,v0

u1 +
∂fv
∂v

∣∣∣
u0,v0

v1

The terms fu(uv, v0) = 0 and fv(uv, v0) = 0 because u0, v0 give the steady state solution.

The above equation can be written in vector form with w =

(
u1
v1

)
as

∂w

∂t
= Jw (21)

with J the Jacobian matrix evaluated at w0 = (u0, v0).
Let us look at the Jacobian matrix computed at the fixed point (equation 16) for the

Brusselator model, repeated here

J = Df
∣∣∣
w0

=

(
β − 1 α2

−β −α2

)
. (22)
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Figure 5: Time evolution of u, v in the Brusselator model (without any diffusion and at a
single point) for α = 1, β = 2.5, showing a limit cycle.

Consider an eigenvector wλ of the Jacobian matrix J with eigenvalue λ. Because it is
an eigenvector

Jwλ = λwλ

and equation 21 has solution
w(t) = wλe

λt.

If the eigenvalue has a real positive part then the solution near the fixed point moves away
from the fixed point. If the eigenvalue has a real negative part then the solution moves
toward the fixed point.

To help us compute the eigenvalues of the Jacobian matrix for the Brusselator model,
we compute its trace and determinant

trJ = β − 1− α2

detJ = α2. (23)

We can compute the eigenvalues of the Jacobian matrix. The eigenvalues of a 2x2
matrix in terms of its trace and determinant

λ± =
1

2

(
trA+

√
trA− 4 detA

)
=

1

2

(
β − 1− α2 ±

√
(β − 1− α2)2 − 4α2

)
. (24)

The trace is the sum of the two eigenvalues and the determinant is the product of the two
eigenvalues. If both trace and determinant are positive the fixed point is a repeller and is
not stable.

11



Equations 23 and 24 show that the fixed point is unstable with positive real parts for
both eigenvalues if trJ > 0. This condition is

β − 1− α2 > 0 (25)

or equivalently
β > 1 + α2. (26)

If the two eigenvalues are complex then the unstable fixed point has circulation and
can give birth to a limit cycle (see Figures 4 and 5). The eigenvalues have a complex part
if the quantity inside the square root (in equation 24) is negative or

2α > β − 1− α2,

where I assumed the sign for (β−1−α2) giving instability from equation 25. Equivalently
for the eigenvalues to have complex parts we require

β < (1 + α)2. (27)

Combining equations 26 and 27, the fixed point is both unstable and has complex
eigenvalues, (giving birth to a limit cycle and with what is known as a Hopf bifurcation) if

1 + α2 > β > (1 + α)2. (28)

We will get interesting temporal behavior in the Brusselator model if this condition is
satisfied.

We should have discussed the global morphology of the system (see Figure 6). For a
limit cycle to appear, the dynamical system must be sufficiently non-linear that distant
from the fixed point, trajectories move or contract toward the fixed point. We could make
a quiver plot of the vector u̇, v̇ on the u, v plane to show that trajectories tend to circulate
and move inwards at large values of u, v. Then orbits move away from the fixed point
near the fixed point and move toward it at large distances from it. The attracting stable
trajectory is a limit cycle which looks like a loop on the u, v plane, as shown in Figure 4
and gives periodic behavior for u and v, as shown in Figure 5 and Figure 6.

1.4 Temporal or Turing instability

For the Brusselator model Turing instability (giving growth of spatial patterns) can occur1

for

β < (1 + ηα)2η ≡
√
Du

Dv
<
√
1 + α2 − 1 (29)

1G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995). or J.
Verdasca, A. D. Wit, G. Dewel, and P. Borckmans, Physics Letters A 168, 194 (1992). or B. Pena and C.
Perez-Garcia, Physical Review E 64, 056213 (2001).
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Figure 6: The fixed point at the center is an unstable spiral. At large distances from
the fixed points orbits contract toward the fixed point. Orbits must be attracted to the
limit cycle which is shown in blue. The axis would be u, v and the arrows show the vector(
∂u
∂t ,

∂v
∂t

)
.

For the Brusselator model temporal instability (sometimes called Hoft instability) occurs
in a different region of parameter space than Turing instability. Other dynamical systems,
including some reaction diffusion pattern formation models can exhibit chimera states2

where both temporal instability and growth of spatial patterns can occur.

1.5 Numerical implementation on a Cartesian grid

We model a reaction diffusion system discretely in both space and time.
In two dimensions we make an evenly spaced grid for the u, v values. The 2-dimensional

spatial grid is specified by indices i, j where i = 0, 1, ...., N − 1 and j = 0, 1, ...., N − 1 for
an N ×N grid. The value of u at the i, j grid point is uij and the value of v is vij . The
distance between consecutive grid points in either x or y directions is ∆x.

We also discretize the system in time. We specify u, v values at evenly spaced times or
separated in time by a time-step ∆t. The value of uij at the n-th time-step is unij .

1.5.1 The Laplacian operator

Note, we have used ∆x,∆t to represent grid spacing and time step. However ∆ is also
often used to represent the Laplacian operator.

2Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled
phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002). D. M. Abrams and S. H. Strogatz,
Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004). Spiral wave chimeras in
reaction-diffusion systems: phenomenon, mechanism and transitions, Li et al. 2020, arXiv:2012.00983
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On a 1 dimensional spatial grid we can approximate the second derivative

∂2uj
∂x2

≈ uj+1 + uj−1 − 2uj
(∆x)2

. (30)

We explain why this is an approximation by expanding u(x) in a Taylor series

u(x+∆x) = u(x) + u′(x)∆x+ u′′(x)
(∆x)2

2
+O(∆x3) + ....

uj+1 = uj + u′j∆x+ u′′j
(∆x)2

2
+O(∆x3) + .......

uj−1 = uj − u′j∆x+ u′′j
(∆x)2

2
+O(∆x3) + .......

uj+1 + uj−1 − 2uj = u′′j∆x
2 +O(∆x3) + ....

This lets us see not only that equation 30 is an approximation but also how accurate it is.
The two dimensional Laplacian

∂2uij
∂x2

+
∂2uij
∂y2

≈ ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4uij
(∆x)2

(31)

Notice that the Laplacian is a linear operator that operates on u. Given a vector of u
values, one can write the discrete operator as a sparse matrix.

1.5.2 A first order forward Eulerian method

We describe an Eulerian scheme to update the grid at the next time step using the u, v
values at the current time step. We approximate the time derivative

∂unij
∂t

≈
un+1
ij − unij

∆t

This gives

un+1
ij = unij +∆t

∂unij
∂t

.

The time derivative on the right is specified by the right hand side for our equations of
motion. The full scheme is then

un+1
ij = unij +∆t

(
Du

uni,j+1 + uni,j−1 + uni+1,j + uni−1,j − 4unij
(∆x)2

+ fu(u
n
ij , v

n
ij)

)
vn+1
ij = vnij +∆t

(
Dv

uni,j+1 + uni,j−1 + uni+1,j + uni−1,j − 4unij
(∆x)2

+ fv(u
n
ij , v

n
ij)

)
where fu, fv are the reaction rate functions. Starting with some initial conditions for u, v 2-
dimensional arrays, we can using this equation to compute new arrays for u, v consecutively
for each time-step.
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1.5.3 Fitting the pattern into the domain and grid or element space

To see patterns the most unstable wavelength should fit within the domain.
Also the distance between grid points or the size of your elements should be smaller

than the most unstable wavelength.
The only terms in the reaction diffusion equation that contain spatial dimensions are

the diffusive terms. Hence, scaling your domain is equivalent to rescaling the diffusion
coefficients.

1.5.4 Initial conditions

Reaction-diffusion equations can be sensitive to initial conditions. For the Brusselator
model, I find I tend to get nice patterns with u, v small but randomly chosen. For example,
u, v values on the grid chosen from uniform distributions in [0, 0.05).

For the Gray-Scott model, I find that the v field should be seeded with a few positions
that have v = 1 to get interesting patterns.

1.5.5 Periodic boundary conditions

Boundary conditions can affect the behavior of the model. The easiest type of boundary
condition to implement numerically is the periodic boundary condition where we take i
and j modulo N (the grid length) when computing the Laplacian.

1.5.6 Numerical Stability

The Eulerian updating scheme will not be be stable unless we keep

∆t ≲
(∆x)2

max(Du, Dv)
. (32)

For the diffusion equation, this can be shown using von-Neumann stability analysis.3

Physically this condition can be understood by considering the time it takes information to
travel between grid cells. Diffusion coefficients have units of Length2/Time and information
on the grid travels with scaling similar to that of a random walk. For a random walk, the
variance of a number of walkers (a distance squared) is proportional to time. The time
required for the bulk of them to travel a particular distance depends on the square of
this distance. If the diffusion coefficient is larger or/and the grid spacing is smaller, then
the time step must be reduced for the scheme to be numerically stable. If the scheme is
unstable you will probably notice because you will get zigzags in u and v and numerical
values will then increase rapidly to ∞.

3Take a Fourier transform, write the update procedure in terms of a matrix times a vector, then look at
eigenvalues of the matrix. If any of the eigenvalues are real and positive, the system is unstable.
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The condition is similar to the CFL (Courant-Friedrichs-Lewy) condition for a numeri-
cally integrated hydrodynamic system where ∆t should be lower than the time it takes for
sound waves to travel between grid points.

1.5.7 The Crank-Nicolson method for Diffusion

The Crank Nicolson method is an implicit method which lends itself to using matrix oper-
ators during computation. We want to integrate u(x, t) with

∂tu = F (u, ∂xux, ∂xxu). (33)

We take u to represent a vector of u values at different positions. Equation 33 is approxi-
mated by

un+1 − un

∆t
=

1

2

(
Fn+1(u, ∂xu, ∂xxu) + Fn(u, ∂xu, ∂xxu)

)
. (34)

If the function F is a linear function of u, when put on a grid (or mesh), this equation
becomes a matrix equation. Suppose we can write F(u, ∂xu, ∂xxu) = Au for some linear
operator A. Then equation 36 becomes

un+1 − un

∆t
=

1

2

(
Aun+1 +Aun

)
. (35)

With some rearrangement

un+1 − ∆t

2
Aun+1 = un +

∆t

2
Aun(

I− ∆t

2
A

)
un+1 =

(
I+

∆t

2
A

)
un

un+1 =

(
I− ∆t

2
A

)−1(
I+

∆t

2
A

)
un (36)

where I is the identity operator. A vector of un+1 values can be solved in terms of a vector
of un values by inverting a matrix that is usually sparse.

How is this method relevant for integrating reaction diffusion systems? The Laplacian
operator is a linear operator (determines A).

1.6 Stability of numerical schemes

Can we tell if a numerical scheme is stable? Examine equation 36. On the right hand side
is a linear operator that depends upon the time-step ∆t. This equation can be written as

un+1 = Bun (37)
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where B is a matrix. The stability of the scheme depends upon the eigenvalues of the
linear operator B. If there are positive eigenvalues then the scheme can be unstable. The
sign of the eigenvalues can depend on the time step which is why many numerical methods
require that a CFL like condition is satisfied.

The Crank-Nicolson method is a second order scheme that is numerically stable. A low
CFL number is not required for stability of the Crank-Nicolson numerical scheme, however,
it is required for numerical accuracy.

1.6.1 Operator splitting

A possible method is to split the system into two steps, first taking a Crank-Nicolson
step for the diffusive part of the reaction diffusion equation. Then afterwards a first order
Eulerian step is taken to take into account the reaction terms.

We discretize u (for example, as before on our 2d Cartesian grid) but we flatten it so
that it is a vector, one number for each node of our grid or mesh. We write u to describe
this vector. The diffusion part of the reaction diffusion equation is written in terms of a
Laplacian operator L (equation 31) that is a matrix that operates on the vector u. The
Crank Nicolson scheme (equation 36) becomes

un+1 = un +
Du∆t

2
Lun+1 +

Du∆t

2
Lun (38)

vn+1 = vn +
Dv∆t

2
Lun+1 +

Dv∆t

2
Lvn (39)

Using the identity matrix I we regroup(
I− Du∆t

2
L

)
un+1 =

(
I+

Du∆t

2
L

)
un (40)

and similarly for v. This gives the matrix equation for the un+1 in terms of un

un+1 =

(
I− Du∆t

2
L

)−1(
I+

Du∆t

2
L

)
un (41)

vn+1 =

(
I− Dv∆t

2
L

)−1(
I+

Dv∆t

2
L

)
vn. (42)

Here we have written −1 to denote matrix inversion, but this could also be solved via LU
decomposition. Doing both the reaction and diffusive parts of a reaction diffusion equation,

un+1 =

(
I− Du∆t

2
L

)−1(
I+

Du∆t

2
L

)
un +Ru(u

n,vn)∆t (43)

vn+1 =

(
I− Dv∆t

2
L

)−1(
I+

Dv∆t

2
L

)
vn +Ru(u

n,vn)∆t. (44)
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1.7 The Gray-Scott model

The Gray-Scott model has

fu(u, v) = −uv2 + α(1− u) (45)

fv(u, v) = uv2 − (α+ β)v (46)

and

∂u

∂t
= Du∇2u− uv2 + α(1− u) (47)

∂v

∂t
= Dv∇2v + uv2 − (α+ β)v. (48)

The parameter α is feeding rate for u. The parameter β gives a kill or drain rate for v. The
uv2 term is a reaction term, producing v at the expense of u. In some ways the Gray-Scott
model, looks and behaves remarkably similar to the Brusselator model.

Nice initial conditions (giving patterns) for the Gray-Scott model are u = 1, v = 0 and
some locations in the v array set to 1.

A comprehensive site describing and illustrating (with videos!) phenomenology of the
Gray-Scott reaction diffusion equation pattern formation model is here http://www.mrob.
com/pub/comp/xmorphia/index.html where their F, k parameters, short for feed, kill,
equals our α, β parameters, respectively.

1.8 The FitzHugh-Nagumo model

The reaction diffusion part of the FitzHugh-Nagumo are based on an excitable neuron.
With appropriate values of the constants, rescaling and shifting of the fields and neglecting
the diffusion terms, a special case of the system is equivalent to the Van der Pol oscillator
which is discussed below!

A version of the FitzHugh-Nagumo model has

fu(u, v) = u− u3 − v + α

fv(u, v) = β(u− v) (49)

and

∂u

∂t
= Du∇2u+ fu(u, v)

∂v

∂t
= Dv∇2v + fv(u, v) (50)
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Figure 7: Patterns formed with the Gray-Scott model. u is on the left and v on the right.
The grid has a sinusoidal variation in α (horizontally on the grid) and β (vertically on the
grid). The mean values are αm = 0.037 and βm = 0.06 with amplitudes of variation αm/2
and βm/8. Diffusion coefficients are Du = 0.2, Dv = Du/2, the grid is n = 400 grid points
and square and ∆x = ∆t = 1. Boundary conditions are periodic. The patterns grow but
some regions of the plot (lower right) vary in time. In most regions, the patterns become
fixed.
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Figure 8: The FitzHugh-Nagumo model of equation 49 and 50 with Du = 1, Dv = 10, α =
0.01, β = 1 on a spatial grid with dx = 1 and updating with time-step dt = 0.01. The field
u is on the left and v is on the right. The left and right boundaries are periodic, whereas
the top and bottom are Neumann with normal component of gradient of the fields equal
to zero.
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Figure 9: Different types of non-degenerate fixed points in 2-dimensional dynamical systems
that are in the form ẋ = f(x). The eigenvalues of the Jacobian matrix evaluated at the
fixed point has imaginary components for the three systems in the top row. In the bottom
row, both eigenvalues are different and real. Nodes are stable if the real part of both the
eigenvalues are positive and unstable if they are both negative. If one eigenvalue is real
and negative and the other is positive, the fixed point is a saddle node.
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1.9 The Barkley model

The Barkley model is related to the Fitzhugh-Nagumo model. http://www.scholarpedia.
org/article/Barkley_model The Barkley model depends on parameters a, b, ϵ and shows
very pretty spirals!

∂tu = δu+ f(u, v)

∂tv = g(u, v)

f(u, v) =
1

ϵ
u(1− u)

(
u− v + b

a

)
g(u, v) = u− v. (51)

2 Stability of fixed points in a 2-dimensional dynamical sys-
tem

A dynamical system on the (x, y) can be described with a trajectory (x(t), y(t)). Consider
the system

dx

dt
= f(x, y)

dt

dt
= g(x, y)

specified by two functions f(x, y) and g(x, y).
A fixed point (x∗, y∗) satisfies

f(x∗, y∗) = 0

g(x∗, y∗) = 0. (52)

We can look at the vicinity of the fixed point. Let’s change variables to

x = x∗ + u

y = y∗ + v

Because x∗, y∗ are constants, dx
dt = du

dt and dy
dt = dv

dt The equation of motion becomes

du

dt
= f(x∗ + u, y∗ + v) ≈ f(x∗, y∗) + u

∂f(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂f(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

dv

dt
= g(x∗ + u, y∗ + v) ≈ g(x∗, y∗) + u

∂g(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂g(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)
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Because (x∗, y∗) is a fixed point (equation 52) the equations of motion become

du

dt
= u

∂f(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂f(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

dv

dt
= u

∂g(x, y)

∂x

∣∣∣∣∣
(x∗,y∗)

+ v
∂g(x, y)

∂y

∣∣∣∣∣
(x∗,y∗)

to first order in u, v. In vector notation

u =

(
u
v

)
.

The Jacobian matrix

J(x, y) =

(
∂f(x,y)

∂x
∂f(x,y)

∂y
∂g(x,y)

∂x
∂g(x,y)

∂y

)
.

In matrix form the equation of motion near the fixed point is the linear dynamical system

du

dt
= J∗u

where the matrix J∗ = J(x∗, y∗) is evaluated at the fixed point.
This is a linear system and its behavior depends on the eigenvalues of the matrix J∗.

We assume a solution in the form u = eλtw with w a constant vector. We insert this into
the equation of motion to find

λw = J∗w. (53)

This implies that λ is an eigenvalue of J∗ andw = (uw, vw) is its accompanying eigenvector.
As the matrix is a 2x2 matrix, there are two eigenvalues λ1, λ2. If λ1 is real and positive

then trajectories exponentially diverge from the fixed point along the direction specified
by its eigenvector. If both λ1, λ2 are real and positive then the fixed point is a repeller and
is called an unstable node. If both λ1, λ2 are real and negative then the fixed point is an
attractor and is called a stable node. If one of the eigenvalues is positive and the other is
negative then the fixed point is a saddle node and nearby trajectories resemble hyperbolas.

Equation 53 can be rewritten using the identity matrix as

(J∗ − λI)w =

(
∂f
∂x − λ ∂f

∂y
∂g
∂x

∂g
∂y − λ

)(
uw
vw

)
= 0 (54)

where the derivatives are evaluated at the fixed point. This has a solution if and only if
the determinant of the matrix J∗ − λI is zero;∣∣∣∣∣∂f∂x − λ ∂f

∂y
∂g
∂x

∂g
∂y − λ

∣∣∣∣∣ = 0. (55)
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Figure 10: Classification of fixed points in 2-dimensional dynamical systems. J is the
Jacobian matrix evaluated at the fixed point.

This gives the following equation which is called the characteristic equation

λ2 −
(
∂f

∂x
+
∂g

∂y

)
λ+

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 0.

The characteristic equation can be written in terms of the trace of the Jacobian tr(J∗) and
the determinant of the Jacobian det(J∗),

λ2 − tr(J∗)λ+ det(J∗) = 0.

The quadratic formula gives the eigenvalues

λ1, λ2 =
1

2
tr(J∗)±

1

2

√
(tr(J∗))2 − 4detJ∗.

The general solution near the fixed point is

u = c1e
λ1tw1 + c2e

λ2tw2

where w1 and w2 are the eigenvectors and constants c1, c2 are set by the initial condition.
Note that there is a degenerate case; two eigenvectors might not exist.

If the eigenvalues have imaginary parts then these parts are equal and opposite in sign
and there is rotation in the trajectories near the fixed point. If the real parts are positive
and the eigenvectors have imaginary components then the fixed point is an unstable spiral
or a spiral repeller. If the real parts are negative and the eigenvectors have imaginary com-
ponents then the fixed point is a stable spiral node or a spiral attractor. If the eigenvalues
are both imaginary (and the real parts are zero) then trajectories circle the fixed point and
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the motion resembles that of a harmonic oscillator. See Figure 9 for some illustrations of
non-degenerate cases.

There are some other annoying details: If both eigenvalues are zero, then a whole
region is full of fixed points. If one eigenvalue is zero, there is a line of fixed points. There
are degenerate nodes that are at the boundary between spiral and not spiral. These can
have only a single eigenvector direction. If both eigenvalues are the same and are non-zero
and there are two eigenvectors then the trajectories look like a star. The entire range of
possibilities is shown in Figure 10.

3 Hopf bifurcation and the birth of limit cycles

A Hopf Bifurcation is a kind of bifurcation that only occurs in a two dimensional dynamical
system. A limit cycle is born from a fixed point that becomes unstable.

A Hopf bifurcation is a system that is sensitive to a parameter that we can vary. As
the parameter is varied, the stability of the fixed point changes its nature and a periodic
solution is born. The fixed point loses its stability.

The eigenvalues of the Jacobian must be complex when the fixed point is unstable. The
fixed point becomes a spiral repeller. If the map distant from the fixed point contracts, a
stable and attracting periodic orbit known as a limit cycle is born.

3.0.1 The van der Pol oscillator

An example of a dynamical system that can exhibit a limit cycle is the van der Pol oscillator

dx

dt
= µ(1− y2)x− y

dy

dt
= x. (56)

The Jacobian matrix is

J(x, y) =

(
µ(1− y2) −2µxy − 1

1 0

)
. (57)

The fixed point is at (x, y) = (0, 0). At the fixed point

J(0, 0) =

(
µ −1
1 0

)
. (58)

Taking the determinant of J(0, 0) we find the characteristic polynomial

λ2 − µλ+ 1 = 0,
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Figure 11: Eigenvalues of the Jacobian of the fixed point (computed using equation 59) of
the van der Pol oscillator (with equation of motion in equation 56). Both eigenvalues are
plotted on both plots. On the left we plot the real and complex part of the eigenvalues
as a function µ. On the right we show the positions of the eigenvalues on the complex
plane. The Hopf bifurcation occurs at µ = 0 because just above this value of µ, the real
component of the eigenvalues is positive. For 0 < µ < 2 the fixed point is an unstable
spiral, and the system exhibits a limit cycle.

which has solutions

λ1, λ2 =
µ

2
± 1

2

√
µ2 − 4. (59)

See Figure 11 for the behavior of real and complex parts of the eigenvalues.
As long as |µ| < 2 there is an imaginary part. If 0 < µ < 2 the real parts of the

eigenvalues are positive, there are imaginary parts and the fixed point is an unstable spiral
node. If −2 < µ < 0 the real part of the eigenvalues are negative, there are imaginary
parts and the fixed point is a stable spiral node.

The fixed point makes a transition from a stable to an unstable one at µ = 0. We
say the Hopf bifurcation occurs at µ = 0. We can consider the trajectories of the two
eigenvalues on the complex plane as µ is increased. The eigenvalues cross the imaginary
axis when µ = 0 (see Figure 11 right plot). The limit cycle only exists for 0 < µ < 2.

Take a look at Figures 4 and 5 showing limit cycles in the Brusselator model.

4 The complex Ginzburg-Landau model

Many pattern forming models can be analyzed perturbatively by using equations called
amplitude equations, which describe slow modulations in space and time of a simple basic
pattern that can be determined from the linear analysis of the equations of motion of
the physical system. This leads to a model that depends on a complex number, which is
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equivalent to looking at evolution of an amplitude and a phase. In addition to the book
by Cross and Greenside, there are review articles 4.

There are various forms of the complex Ginzburg-Landau equation for a fieldA(x, t) ∈ C
with x ∈ Rd. From Cross’ book5

∂tA = A+ (1 + ic1)∇2A− (1− ic3)|A|2A. (60)

From https://codeinthehole.com/tutorial/index.html (Winterbottom)

∂tA = A+ (1 + iα)∇2A− (1 + iβ)|A|2A. (61)

These two are the same PDE if you associate α = c1 and β = −c3. From Chaté’s and
Manneville’s 1996 review https://arxiv.org/abs/1608.07519

∂tA = A+ (1 + ib1)∇2A− (b3 − i)|A|2A. (62)

It is possible to convert between Chaté and Manneville’s form and the other two.
Some transformations:

The complex Ginzburg Landau equation does not change if we make the transformation
the transformation A→ eiαA for some real phase α.

If we rescale the spatial coordinate x→ βx then equation 62 becomes

∂tA = A+ β−2(1 + ib1)∇2A− (b3 − i)|A|2A. (63)

If we rescale time t→ δt then the equation becomes

δ−1∂tA = A+ (1 + ib1)∇2A− (b3 − i)|A|2A. (64)

If we rescale amplitude A→ γA then

∂tA = A+ (1 + ib1)∇2A− γ2(b3 − i)|A|2A. (65)

A spatially dependent phase A = eik·xψ gives

∇2(eik·xψ) = ∇ · ∇(eik·xψ)

= ∇ · (ikeik·xψ + eik·x∇ψ)
= eik·x

(
−k2ψ + 2ik · ∇ψ +∇2ψ

)
. (66)

4e.g., Pattern formation outside of equilibrium, M. Cross and P. Hohenberg, Reviews of Modern Physics,
65, 3, 1993, Chaté’s and Manneville’s 1996 review https://arxiv.org/abs/1608.07519. The world of the
complex Ginzburg-Landau equation, Aranson and Kramer ,Reviews of Modern Physics, 74, 2002

5Pattern Formation and Dynamics in Non-equilibrium Systems, Michael Cross & Henry Greenside,
Cambridge University Press, 2009.
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We gain an advective term. We can go into a frame with a rotating phase by taking
A = eiωtψ. Inserting this into equation 62 gives

iωψ + ∂tψ = ψ + (1 + ib1)∇2ψ − (b3 − i)|ψ|2ψ
∂tψ = (1− iω)ψ + (1 + ib1)∇2ψ − (b3 − i)|ψ|2ψ. (67)

Equation 65 (rescaling amplitude) can be used to relate equation 61 to equation 62.

We choose γ = b
−1/2
3 giving

∂tA = A+ (1 + ib1)∇2A− (1− ib−1
3 )|A|2A. (68)

Consequently if we choose

α = b1 β = −1/b3 (69)

we should have the same PDE models.
The real Ginzburg-Landau equation is with c1, c3 = 0 of equation 60 or α = β = 0 of

equation 61 giving A ∈ R and

∂tA = A+∇2A−A3. (70)

This has no free parameters! A coefficient on the Laplacian term can be removed via
rescaling the spatial dimension. A coefficient on the time dependent term can be removed
via rescaling time. A coefficient on one of the A or A3 term can be removed via rescaling
A.

When b1 → ∞, b3 = 0 (using equation 62) dispersion is important and one recovers the
non-linear Shrödinger equation.

In the above forms, the domain typically has size a few hundred so that interesting
phenomena is seen.

5 The Swift-Hohenberg model

Reaction diffusion equations describe patterns developing with two fields. Pattern for-
mation models exist for a single field, however with higher order derivatives. The Swift-
Hohenberg model for u(x, t)

∂tu = ru− (1 + ∆)2u− u3. (71)

This is derived for systems that are isotropic (the equation is invariant under x→ −x and
rotations) so lacks terms that depend upon ∇u.

We first discuss linear stability in the 1 dimensional case. In 1 dimension the operator
of equation 71

(1 + ∆)2 = 1 + 2∂xx + ∂xxxx.
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Figure 12: The complex Ginzburg-Landau model integrated on a triangular mesh with
a Neumann boundary condition (∇u · n̂ = 0 on the boundary). The panel on the left
shows the amplitude of the field and that on the right shows its phase. The model has
b1 = 0, b3 = 0.56 and the timestep was dt = 0.01. The scheme was Crank-Nicolson for the
Laplacian operator which was constructed with a finite element method. The non-linear
term was added in afterwards with a forward Eulerian step.

The Swift-Hohenberg equation has a steady state solution u(x, t) = 0. We consider u small
and insert a trial solution

u ∝ eσt+ikx

which is wavelike in x. The wavevector k is related to wavelength via k = 2π/λ. Taking
only first order terms after inserting our trial solution into the Swift-Hohenberg equation,
we find

σ = r − (1− k2)2. (72)

If σ > 0 the solution will exponentially grow. We can consider the above equation as a
function σ(k) which has a maximum value at k = 1 which is equal to r. If r > 0 there
are unstable solutions, with peak instability giving peak growth rates at a wavelength with
k = 1 and growth rate equal to r.

A variant of the Swift-Hohenberg model includes a quadratic term with size controlled
by an additional parameter γu

∂tu = ru− (1 + ∆)2u+ γuu
2 − u3. (73)
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Figure 13: The Swift-Hohenberg model (equation 73) integrated on a triangular mesh in a
circle with a natural boundary boundary (Neumann with normal gradient set to zero) and
r = 0.2, γu = 0.

6 Practical issues and problems

The patterns that develop are dependent upon the initial conditions. For some models, like
the Brusselator model, starting with initial conditions that look like noise (for example,
drawn from a uniform or Gaussian distribution) is likely to give nice patterns. For other
models, like the Gray-Scott model, you are better off setting a couple pixels to high values.

If your domain is too small or your pixel scale too big you may miss the patterns.
You need to match your diffusion coefficients, pixel scale, and domain size so that the
wavelength of the maximum growth rate fits nicely (is greater than the pixel scale but a
few wavelengths smaller than your domain size). As is true for most diffusive numerical
problems (using low order integration schemes), it is a good idea choose your timestep so
that the time step is smaller than the rate that diffusion travels across a pixel.

I find that Dirichlet boundary conditions tend to kill the pattern growth (with the
exception of the Gray Scott model), but Neumann boundary conditions (with gradient
along the normal direction ∂nu = ∂nv = 0) makes fine patterns.

If you have a numerical way to compute the Laplacian operator (either using a Laplace-
Beltrami operator) or via a finite element method, the models are fairly forgiving and you
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be able to grow fine patterns on a mesh rather than on a Cartesian grid.
It is much hard to numerically implement the Swift-Hohenberg model because of the

4-th order biharmonic operator. On a periodic boundary and on a Cartesian square, I had
success with a spectral method (transfer to Fourier space and do the Crank-Nicolson step
in Fourier space instead of real space). On a triangular mesh I finally (with some effort).
had success using a finite element method based on a Morley element and with a natural
boundary condition.

6.1 Problems

In a triangular mesh, with Neumann boundary conditions, how does boundary size and
shape affect the different models? (We have something to say about this now!)

How are models generalized on curved surfaces? (There is existing literature on this
topic).

What happens if we slowly move the boundary mesh points?
How can we code more interesting boundary conditions? We can now have answered

for the ones that only involved second order derivatives.
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