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1 Quick introduction to the ideas of finite element methods!

I am mostly following the zeroth chapter of the book The Mathematical Theory of Finite
Element Methods by Susanne C. Brenner and L. Ridgway Scott.

Many books and software packages on finite element methods start with the following
problem: Find u(x) such that

∆u = f on Ω (1)

where u() is a function on some domain in Rn that is called Ω. There would also be a
boundary condition. This would be a condition on u or its derivative on the boundary of
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Ω which is called ∂Ω. Here ∆ is the Laplacian operator which in 2 dimensions is ∂2
x + ∂2

y

where ∂x = ∂
∂x .

To place this generic example context we will start with a 1 dimensional example, with
domain Ω equal the unit interval, x ∈ [0, 1]. The boundary of the unit interval consists of
two points x = 0 and x = 1. Our example is

−d2u

d2x
= f on (0, 1) (2)

u(0) = 0, u′(1) = 0 (3)

where u′ = du
dx . Equations 3 are the boundary conditions. The goal is to find u(x) given

function f(x).
In the conventional theory of partial differential equations (PDE)s, we would use a set

of orthogonal functions (such as sine functions sin(kx) for suitably chosen values of k),
and would write the solution in terms of a sum of coefficients times these functions. The
solution could be divided into a sum of homogeneous and inhomogeneous pieces. The goal
would be to solve for coefficients of the homogeneous terms.

With a finite element method, instead we work with an integral form of the PDE.
We multiply equation 2 with a test function v(x) ∈ V and integrate over Ω;

−
∫ 1

0
u′′(x)v(x) dx =

∫ 1

0
f(x)v(x) dx. (4)

Here u′′ = d2u
dx2 . The solution for u should satisfy equation 4 for all v ∈ V , with a nice space

V to be determined.
Integrating by parts is frequently done in finite element methods.

d

dx

[
u′v

]
= u′′v + u′v′

u′′v =
d

dx

[
u′v

]
− u′v′. (5)

We replace u′′v in equation 4 using equation 5

−
∫ 1

0

d

dx

[
u′v

]
dx+

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx

−u′(1)v(1) + u′(0)v(0) +

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx. (6)

We use the boundary condition u′(1) = 0 and set a requirement on the test function v. We
require v to obey v(0) = 0. Both boundary terms vanish giving∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)dx. (7)
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Notice that equation 2 we chose to put a minus sign on the second derivative. However,
because we integrated by parts equation 7 lacks a minus sign. I have noticed that there is
ambiguity in the sign chosen for an operator that is called a Laplacian.

Let

(f, v) =

∫ 1

0
f(x)v(x)dx (8)

a(u, v) =

∫ 1

0
u′(x)v′(x)dx. (9)

Notice that a(u, v) = a(v, u) is symmetric. Using the definitions in equation 9, equation 7
can be written

(f, v) = a(u, v). (10)

So far we did not put any conditions on the space V other than functions in it should
satisfy v(0) = 0.

Let v ∈ V with V

V =
{
v ∈ L2(0, 1) : a(v, v) < ∞, v(0) = 0

}
. (11)

The space Lp is a space of measurable functions for which the pth power of the the absolute
value of the function is Lebesgue integrable. In the above equation the requirement that v ∈
L2 means that v ∈ V should have a finite Lebesgue integral

∫ 1
0 dx|v(x)|2. The requirement

that a(v, v) is finite means that v′2 also has a finite Lebesgue integral.
The solution u to equations 2, 3 should be a function u ∈ V such that

(f, v) = a(u, v) for all v ∈ V (12)

where V is the space given in equation 11. Equation 12 (equivalent to equation 7) is called
the weak form of the problem given in equations 2, 3 and it is called variational because
the test function v is allowed to vary.

1.1 Boundary conditions

Notice that the boundary condition u(0) = 0 led us to restrict the space V so that v ∈ V
satisfies v(0) = 0 (see equation 11). This type of boundary condition is called Dirichlet
in the context of PDEs and in the context of weak or variational formulation it is called
essential as it appears in the variational formulation explicitly, i.e., in the definition of
the space V for test and trial solutions.

The boundary condition u′(1) = 0 is called a Neumann boundary condition. In the
context of the variational formulation, it is called natural because it is incorporated im-
plicitly. Neumann boundary conditions don’t affect the space V for trial and test solutions
but can give additional terms in the weak formulation.
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1.2 Ritz-Galerkin Approximation

In a finite element method, we approximate the solution. Let

S ⊂ V (13)

be a finite dimensional subspace of V . Recall V contains functions on the unit interval
that are zero at x = 0. We take function uS

uS ∈ S such that a(uS , v) = (f, v) ∀v ∈ S. (14)

The function uS is not the solution of equation 2 but it might be close to it.
We create a basis1 for functions on S, the functions {ϕ1, ϕ2, . . . , ϕn} where n is the

dimension of S.
Using this basis, we can write a function v ∈ S in terms of the basis v =

∑
i Viϕi. We

could consider the list V = (V1, V2, . . . , Vn) to be a vector.
Using the function f , (given in the original problem of equation 2) we compute the

coefficients

Fi = (f, ϕi) =

∫ 1

0
f(x)ϕi(x)dx. (15)

The coefficients F = (F1, F2, . . . , Fn) also form a vector!
We create a matrix K, called the stiffness matrix, with coefficients Kij = a(ϕi, ϕj).
Suppose we find a function ũ =

∑
i Uiϕi ∈ S with coefficients Ui, giving a vector

U = (U1, U2, . . . , Un), that satisfies the matrix equation

KU = F. (16)

Choose index j of the above matrix equation∑
i

KjiUi = Fj index form of matrix equation∑
i

KjiUi = (f, ϕj) definition of F∑
i

a(ϕj , ϕi)Ui = (f, ϕj) definition of K

a(ϕj , ũ) = (f, ϕj) linearity of a() and definition of ũ

a(ũ, ϕj) = (f, ϕj) a is symmetric

1A basis is a set of elements in a vector space V that are linearly independent and span the vector space.
That means every element v ∈ V can be written uniquely in terms of sum v =

∑
i aiϕi where ai are in the

field, and ϕi are basis elements. Linear independence means there is no non-zero combination of coefficients
{ai} such that

∑
i aiϕi = 0.

4



This is satisfied for all j and because both sides are linear, for any v ∈ S. Hence ũ = uS is
a solution of equation 14.

We find that solving equation 14 for uS ∈ S is equivalent to solving for a vector U that
satisfies

KU = F. (17)

Note that we did not require an inner product on the finite dimensional vector space S
though we did require a basis for this finite dimensional vector space. In the above example
we have been careful to specify when we have a function and when we have something that
we can write as a vector or matrix. While F (x) =

∑
i Fiϕi(x) is a function, the function

F (x) is not equal to f(x).
Key to the finite element approach is that functions are approximated by vectors in a

finite dimensional vector space2. Thus solving a PDE is equivalent to solving a linear matrix
equation. The matrix is likely to be sparse and so the number of required computations
is not necessarily large. Hence finite element methods are potentially both accurate and
computationally efficient.

Theorem 1.1. The solution to equation 14, if it exists, is unique.

Proof. Suppose u1, u2 ∈ S are solutions to equation 14. We define vectors U1,U2 using
the basis functions {ϕi}. These vectors must satisfy KU1 = KU2 = F. Hence there is a
nonzero vector W = U1 −U2 that satisfies KW = 0. Let w =

∑
iWiϕi.∑

j

KijWj = 0 index form of matrix equation KW = 0

∑
j

a(ϕi, ϕj)Wj = 0 definition of K

a(ϕi,
∑
j

Wjϕj) = 0 linearity of a

a(ϕi, w) = 0 definition of w∑
i

Wia(ϕi, w) = 0 multiply by Wi and sum

a(w,w) = 0 via linearity of a and definition of w∫ 1

0
[w′(x)]2dx = 0 via definition of a.

This implies that w(x) is a constant. However the zero boundary condition at x = 0 implies
that the constant must be zero and this contradicts our assumption that W ̸= 0. Hence if
a solution to equation 14 exists, it is unique.

2A vector space over a field F is a space that contains elements that are in the form v =
∑

i aivi where
coefficient ai ∈ F are in the field and vi are in a particular set.
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Note that going from a(w,w) = 0 to w(x) = 0 (the first implies the other) requires
constraints on the nature of V w.r.t. Lebesgue integration. Our definition of V should
rule out pathological functions like Cantor sets. The space V should be restricted to be a
Sobolev space3, as we will discuss later.

Theorem 1.2. The function a(u, v) for u, v ∈ S gives an inner product on S.

Proof. An inner product should satisfy the following:
An inner product (on a vector space over the real numbers) must be symmetric. Based

on its definition a(u, v) = a(v, u) and is symmetric. So a satisfies this condition.
An inner product should be linear in the first argument. Based on its definition a also

satisfies this condition.
An inner product should be positive definite. In other words, We require that

a(v, v) ≥ 0 with a(v, v) = 0 only if v = 0. We compute

a(v, v) =

∫ 1

0
dx[v′(x)]2 ≥ 0 (18)

which must be positive. It’s only zero if w is constant. For non-zero w this possibility is
ruled out because of the boundary condition at x = 0. Hence a() is positive definite and
also satisfies this condition.

These three conditions (that are required for an inner product), are met by a so a(u, v)
is an inner product on the vector space S.

As a consequence the matrix K is both symmetric and positive definite. This means
that it is invertible. We can multiply KU = F by K−1 to find U = K−1F. As long as
F ̸= 0, the matrix equation must have a non-zero solution. Hence a solution both exists
and is unique.

1.3 An example of a polynomial basis on the unit interval

We illustrate an example finite subspace S ⊂ V and a basis for it. We take

0 = x0 < x1 < x2 < . . . < xn = 1

to be a set of n + 1 points in the unit interval. The ordered set of positions {xi} can be
called a partition of the unit interval.

We can define the subspace S ⊂ V to be the set of functions v

(i) v ∈ C0[0, 1], the space of continuous functions on the unit interval.

(ii) In each interval [xi−1, xi] with i ∈ {1, . . . , n}, the function v(x) is a linear polynomial.
In other words, it is a line segment as a line segment can be written in the form of a
linear polynomial; a+ bx with appropriately chosen coefficients a, b.

3Lebesque integrals of a specific derivative is are finite
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(iii) v(0) = 0, so that S is consistent with our Dirichlet boundary condition at x = 0.

The set of points {xi} are called nodes. One of the basis functions is shown in Figure
1.

Figure 1: An example of the basis function ϕj is shown with the black line. The vertical
height of the peak is 1. The green dots show the nodes {x0, x1, . . . , xn} on the unit interval.

We give a basis {ϕ1, . . . , ϕn}. Let ϕi(x) be a piece wise linear function that satisfies

ϕi(xj) = δij (19)

This condition implies that ϕi(x) is zero at all nodes except one where ϕi(xi) = 1.
The set of basis functions {ϕi} is linearly independent. A function v ∈ S can be

written as v =
∑

i ciϕi. Each coefficient is uniquely set by the value of v(xi) at node xi.
The condition

∑
ciϕi(xj) = 0 implies that cj = 0. Since there is no way to write any

particular ϕi in terms of the basis functions ϕj , j ̸= i, the basis is linearly independent.
An example of a function in S is shown in Figure 2.
Note that even though the set {ϕi} form a basis for S, they are not orthogonal when

integrated: ∫ 1

0
ϕiϕi+1dx ̸= 0 and

∫ 1

0
ϕiϕjdx ̸= δij . (20)

The setting is different than when conventionally solving a boundary value PDE prob-
lem where you might be expanding in terms of a set of orthogonal functions, which are
orthogonal when integrated across the domain.

1.4 The interpolant

Definition Consider v ∈ C0([0, 1]) and v ̸⊂ S. The interpolant of v is the function
vI ∈ S

vI(x) =

n∑
i=1

v(xi)ϕi(x) (21)
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Figure 2: An example of a function v ∈ C0[0, 1] is shown with a black line. The interpolant
vI ∈ S of v is shown with the thicker red line.

The indexing starts at 1 so that vI(0) = 0 and obeys the Dirichlet boundary condition.
See Figure 2 for an illustration of a function v ∈ C0([0, 1]) and its interpolant vI . It

should be clear from the figure that vI is comprised of linear segments. Functions in S
look like the red line shown in Figure 2.

Furthermore v ∈ S implies that v = vI .
The interpolant is a map from functions in C0([1, 0]) to functions in S. If we call this

map I, for v ∈ C0([1, 0]), I(v) = vI with vI equal to the interpolant of v. The map I is a
projection as I(I(v)) = I(v) = vI ∀v.

Suppose we have a function in S, that we call vI . What functions v ∈ V have vI as their
interpolant? There are many functions in V or in C0([1, 0]) that have the same interpolant
vI . The space v ∈ V such that I(v) = vI is the space of functions that have the same
values of vI at all the points in the nodal set {xi}. Moreover none of these functions are
all that far away from vI .

1.4.1 The Cauchy-Schwartz inequality

The Cauchy-Schwartz inequality states that states that for all vectors u,v of an inner
product space

|⟨u,v⟩| ≤
√

⟨u,u⟩
√
⟨v,v⟩. (22)

On the left is an absolute value. Equivalently with norm ∥u∥ =
√
⟨u,u⟩,

|⟨u,v⟩| ≤ ∥u∥∥v∥. (23)

An example! Consider the vector dot product on the real plane (which is an inner
product). We compute the dot product of two vectors u,v

u · v = |u||v| cos θ (24)
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where θ is the angle between the two vectors. Because | cos θ| ≤ 1

|u · v| ≤ |u||v| (25)

which is equivalent to the Cauchy-Schwartz inequality.

1.5 Error estimates

We use two different norms4 to quantitatively estimate distances between functions. For
v ∈ V , the L2(0, 1) norm

∥v∥ =
√

(v, v) ≡

√∫ 1

0
dx|v(x)|2. (26)

Because a(v, v) is an inner product (theorem 1.2) we also have the energy norm

∥v∥E ≡
√

a(v, v). (27)

A relationship between an inner-product and two norms is Schwarz’ inequality:

|a(v, w)| ≤ ∥v∥E ∥w∥E ∀v, w ∈ V. (28)

We compare two solutions u, uS ,

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V

uS ∈ S such that a(uS , w) = (f, w) ∀w ∈ S (29)

Since S ⊂ V , we can subtract these two equations to find that

a(u− uS , w) = 0 ∀w ∈ S. (30)

This implies that the true solution u is pretty close to the approximate solution uS found
in the discrete subspace S.

Theorem 1.3. For u ∈ V a solution to a(u,w′) = f(u,w′) ∀w′ ∈ V and uS ∈ S a solution
to a(uS , w) = f(u,w) ∀w ∈ S

∥u− uS∥E = min{∥u− v∥E : v ∈ S}. (31)

4A norm (denoted |.| in this definition) is a function on a vector space giving a real number → R that
is positive definite (|u| ≥ 0, and only equal to 0 if u = 0), obeys the triangle inequality (|u+ v| ≥ |u|+ |v|),
and obeys |su| = |s||u| for scalars s.
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Proof.

∥u− uS∥2E = a(u− uS , u− uS)

= a(u− uS , u− uS + v − v) ∀v ∈ S

= a(u− uS , u− v) + a(u− uS , v − uS) by linearity of a()

= a(u− uS , u− v) right term vanishes due to equation 30

≤ ∥u− uS∥E ∥u− v∥E Schwarz inequality

Ignoring the boring possibility that u = uS , this means that

∥u− uS∥E ≤ ∥u− v∥E ∀v ∈ S (32)

Since uS ∈ S, the minimum value of the expression on the right must equal to that on the
left. Hence

∥u− uS∥E = min
v∈S

∥u− v∥E . (33)

If u = uS , then there is a v = uS ∈ S that is the solution and the inequality is still satisfied.

We now attempt to place a constraint on ∥u − uS∥ using the L2 norm instead of the
norm ∥∥E generated with a().

Theorem 1.4. There is a small ϵ

∥u− uS∥ ≤ ϵ∥u− uS∥E ≤ ϵ2∥u′′∥ = ϵ2∥f∥. (34)

We notice that ∥u− uS∥E is of order ϵ whereas ∥u− uS∥ is even smaller, of order ϵ2.

Proof. We define w ∈ V such that −w′′ = u − uS . We require that w′(1) = 0 (satisfying
the right boundary condition of our problem 3). If w ∈ V it must satisfy w(0) = 0.

∥u− uS∥2 =
∫ 1

0
dx|u− uS |2 = (u− uS , u− uS)

= (u− uS ,−w′′) definition of w′′

=

∫ 1

0
(u− uS)(−w′′)dx =

∫ 1

0
(u′ − u′S)w

′dx integrate by parts

and use boundary conditions for w

= a(u− uS , w) via definition of a()

= a(u− uS , w − v) using equation 30 and ∀v ∈ S

≤ ∥u− uS∥E ∥w − v∥E Schwartz inequality
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∥u− uS∥ ≤ ∥u− uS∥E ∥w − v∥E
1

∥u− uS∥

≤ ∥u− uS∥E ∥w − v∥E
1

∥w′′∥
∀v ∈ S. (35)

Taking the infimum5 of the set on the right hand side of equation 35, equation 35 can
be written as

∥u− uS∥ ≤ ∥u− uS∥E inf
v∈S

∥w − v∥E
1

∥w′′∥
. (36)

We assume that there will be a v ∈ S that is close to w, letting infv∈S∥w − v∥E/∥w′′∥ be
small. We make an assumption that there is a small ϵ giving

inf
v∈S

∥w − v∥E ≤ ϵ∥w′′∥ assumption. (37)

Inserting this assumption into equation 36 gives

∥u− uS∥ ≤ ϵ∥u− uS∥E . (38)

If we can approximate w with a v ∈ S then we can probably also approximate u with
another function in S. Hence our assumption of equation 37 also gives

inf
v∈S

∥u− v∥E ≤ ϵ∥u′′∥ assumption. (39)

Using theorem 1.3 equation 38 becomes

∥u− uS∥ ≤ ϵmin
v∈S

∥u− v∥E

≤ ϵ2∥u′′∥ using equation 39 (40)

Putting together equations 38 and 40

∥u− uS∥E ≤ ϵ∥u− uS∥E ≤ ϵ2∥u′′∥ (41)

which is what we wanted to show.

This proof relied on the our ability to find functions in the finite dimensional space
S that could well approximate functions in V . Looking again at Figure 2 we see that
the interpolant uI ∈ S of a function u is a good approximation for the function u. We
now work on showing that using the basis that we constructed in section 1.3 and with
sufficient numbers of finite elements we can improve the approximation to an arbitrary
level of precision (and show that our assumptions of equations 37 and 39 can be true).

5Infimum of x over a set S is the greatest element less than or equal to x in the set S.
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1.6 Galerkin approximation

Galerkin methods are those that convert a continuous operator problem, such as a differ-
ential equation, commonly in a weak formulation, to a discrete problem by applying linear
operators that are constructed from finite sets of basis functions.

Suppose we solve the problem on a finite element space and we have an approximate
solution which is in a discrete subspace S. How far away could the solution be from the
actual solution? We first ask the question: how far away can any function v ∈ V be from
its interpolant vI ∈ S. The idea being that when we find a solution in the subspace S we
may have actually found the interpolant of the actual solution. (Recall that many functions
can have the same interpolant!).

Theorem 1.5. Let h = max1≤i≤n |xi − xi−1| (the maximum distance between the nodal
points). Then

∥u− uI∥E ≤ Ch∥u′′∥ (42)

for all u ∈ V , where constant C is independent of h and u.

This gives a limit on how far any function can be from its interpolant. Notice that
the distance depends on the maximum element size. This makes sense as if you subdivide
the elements in your finite element space, you expect a more accurate solution. If we set
ϵ = Ch, equation 42 implies that the assumptions we made in equations 37 and 39 are
valid.

Proof. Recall the definition of the norm from equation 27 and setting an error function
e(x) = u(x)−uI(x) for any u ∈ V and uI its interpolant. The definition of the interpolant
implies that the error e(xi) = 0 at all nodes, where the set of nodes is {xi}.

∥u− uI∥2E = a(e, e) =

∫ 1

0
dx e′(x)2.

We can consider each interval [xi, xi+1] separately. Inside the interval u
′
I is linear, so u

′′
I = 0.

Consequently e′′ = u′′ within each interval.

e′(x) =

∫ x

xi

dx e′′(x) =

∫ x

xi

dx u′′(x) for x ∈ [xi, xi+1]. (43)
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The right hand side can be written as a product of two functions∫ x

xi

dx u′′(x) =

∫ x

xi

dx 1× u′′(x)

= (1, u′′) L2 inner product over interval [xi, x]∣∣∣∣∫ x

xi

dx u′′(x)

∣∣∣∣ ≤
√∫ x

xi

dx

√∫ x

xi

dx [u′′(x)]2 Schwarz inequality

≤ h1/2

√∫ x

xi

dx [u′′(x)]2 for x ∈ [xi, xi+1].

Using equation 43

|e′(x)|2 ≤ h

∫ x

xi

dx [u′′(x)]2 for x ∈ [xi, xi+1]

≤ h

∫ xi+1

xi

dx [u′′(x)]2 for x ∈ [xi, xi+1]. (44)

Integrate both sides over the entire interval. Integrating the right side is like a sum of each
piece multiplied by its interval width.∫

[e′(x)]2dx ≤ h2∥u′′∥2. (45)

This is super rough (and might not be 100% correct), but is approximately consistent with
what we wanted to show with coefficient C ≈ 1.

1.7 Connection to a finite differencing numerical approach

Many numerical integrations for PDEs work on an evenly spaced grid. What does the
operator a(ϕi, ϕj) look like if we use the first order polynomial basis (shown in Figure 1)
on an evenly spaced grid?

We take h to be the grid spacing.
For basis function ϕi, the function is equal to 1 at xi and is linear and increasing

between xi−1 and xi and linear and decreasing between xi and xi+1. The distance between
the grid points is h, so

ϕi(x) =


0 for x < xi − h

1 + x−xi
h for xi − h < x < xi

1− x−xi
h for xi < x < xi + h

0 for x > xi = h

. (46)
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We compute ϕ′
i(x)

ϕ′
i(x) =


0 for x < xi − h
1
h for xi − h < x < xi

− 1
h for xi < x < xi + h

0 for x > xi = h

. (47)

We compute

a(ϕi, ϕi) =

∫ 1

0
dx [ϕ′

i(x)]
2

=

∫ xi+h

xi−h
dx

1

h2
=

2

h
. (48)

a(ϕi, ϕi+1) =

∫ xi+h

xi

dx

(
−1

h
× 1

h

)
= −1

h
(49)

a(ϕi, ϕi−1) =

∫ xi

xi−h
dx

(
−1

h
× 1

h

)
= −1

h
(50)

As long as i, j are not near the end points, the matrix

Kij = a(ϕi, ϕj) =
2

h
δij −

1

h
(δi,j+1 + δi,j−1) (51)

contains the factor 2/h on the diagonal and −1/h on the off diagonals (that are right next
to the diagonal).

Fj = (f, ϕj) =

∫ 1

0
dx f(x)ϕj(x)

=

∫ xj

xj−h
dx f(x)

(
1 +

x− xj
h

)
+

∫ xj+h

xj

dx f(x)

(
1− x− xj

h

)
(52)

We use a Taylor expansion for f(x) near f(xj)

f(x) = f(xj) + f ′(xj)(x− xj) +
1

2
f ′′(xj)(x− xj)

2 + . . . (53)

Fj =

∫ xj

xj−1

dx
(
f(xj) + f ′(xj)(x− xj) + f ′′(xj)(x− xj)

2
)(

1 +
x− xj

h

)
+

∫ xj+1

xj

dx
(
f(xj) + f ′(xj)(x− xj) + f ′′(xj)(x− xj)

2
)(

1− x− xj
h

)
(54)
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Let y = x− xj

Fj = hf(xj) +

∫ 0

−h
dy f ′(xj)

y2

h
−
∫ h

0
dy f ′(xj)

y2

h
+ . . .

= hf(xj) +O(h2). (55)

The equation KU = F becomes

−Uj+1 + 2Uj − Uj−1

h2
= Fj (56)

which can be recognized as −u′′ = f .
We now show this! We expand u in a Taylor series at positions xj ,

u(x) = u(xj) + u′(xj)(x− xj) +
1

2
u′′(xj)(x− xj)

2 +O(h3). (57)

Using the Taylor series,

u(xj + h) = u(xj+1) = Uj+1 = u(xj) + u′(xj)h+ u′′(xj)
h2

2
+O(h3)

u(xj − h) = u(xj−1) = Uj−1 = u(xj)− u′(xj)h+ u′′(xj)
h2

2
+O(h3). (58)

Add these together

Uj+1 + Uj−1 − 2Uj = u′′(xj)h
2 +O(h3) (59)

Hence

u′′(xj) ∼
Uj+1 + Uj−1 − 2Uj

h2
+O(h). (60)

2 Schemes for updating time dependent problems

2.1 An explicit Euler method

Consider a first order ordinary differential equation which we can write in terms of operator
L,

∂tu+ L(u) = 0 (61)

We approximate the time derivative to first order in time-step ∆t,

un+1 − un

∆t
+ L(un) = 0. (62)

Here un is the value of u at the n-th time-step. We want to find the value of u at the next
or n+1 time-step. Notice that the operator is applied to un. When the operator is applied
at the current time, the scheme is explicit. We now solve for un+1;

un+1 = (I +∆tL)un. (63)

This is a simple and straightforward scheme. For the advection equation, it is unstable.
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2.2 An implicit Euler method

We modify equation 62 so that the operator is applied to un+1 not un.

un+1 − un

∆t
+ L(un+1) = 0. (64)

We solve for un+1

(I +∆tL)un+1 = un (65)

un+1 = (I +∆tL)−1un. (66)

Here I is the identity operator. Since we need the inverse of an operator or a matrix, this
technique is more difficult to apply but it tends to be more stable.

Suppose instead of updating the field u each time-step, we only want to add a small
quantity to the current field. We start again with equation 65 and subtract (I +∆tL)un

from both sides

(I +∆tL)un+1 = un

I +∆tL)(un+1 − un) = un − (I +∆tL)un = −∆tLun

un+1 − un = (I +∆tL)−1(−∆tLun). (67)

2.3 The Crank-Nicolson method

We modify equation 62 so that the operator is applied to an average of un+1 and un.

un+1 − un

∆t
+

1

2
L(un+1 + un) = 0. (68)

We solve for un+1(
I +

1

2
∆tL

)
un+1 =

(
I − 1

2
∆tL

)
un (69)

un+1 =

(
I +

1

2
∆tL

)−1(
I − 1

2
∆tL

)
un. (70)

For diffusive problems, this scheme is unconditionally stable.

2.4 An implicit Euler method in finite element methods

If the system is a finite element system, in place of the identity we have the mass operator.

M(u, v) =

∫
Ω
dx uv (71)
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where u, v are test and trial functions. Equation 66 becomes

un+1 = (M +∆tL)−1un (72)

and equation 67 becomes

un+1 − un = (M +∆tL)−1(−∆tLun) (73)

We define

M∗ = M +∆tL (74)

and the difference δu = un+1 − un. The difference in equation 73 can be written as

δu = M−1
∗ (−∆tLun). (75)

2.5 IMEX which stands for semi-implicit Euler method or IMplicit Ex-
plicit methods

A semi-implicit method uses the n+ 1 timestep in some of the operators (which is like an
implicit method), the n time-step in other operators (which is like an explicity method).

The time derivative ∂tu is approximated as un+1−un

∆t which is first order in time.

3 The finite element

Definition A finite element has

(i) A closed subset K ⊂ Rn with nonempty interior and a piecewise smooth connected
boundary.

(ii) A finite dimensional space P of functions of K called shape functions.

(iii) A basis N = {N1,N∈....} for P ′ which is the set of nodal variables.

{K,P,N} is called a finite element.

This is Ciarlet’s definition of a finite element (Ciarlet 1978).

17


	Quick introduction to the ideas of finite element methods!
	Boundary conditions
	Ritz-Galerkin Approximation
	An example of a polynomial basis on the unit interval
	The interpolant
	The Cauchy-Schwartz inequality

	Error estimates
	Galerkin approximation
	Connection to a finite differencing numerical approach

	Schemes for updating time dependent problems
	An explicit Euler method
	An implicit Euler method
	The Crank-Nicolson method
	An implicit Euler method in finite element methods

	The finite element

