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1 What is active matter?

Active matter consists of some kind of distributed stuff, like particles, cells, birds, bacteria
or fish, that consume energy. The locally expended energy is converted into something like
motion or forces or shape changes and not all the locally consumed energy is recovered
by the distributed matter. The systems are described as being out of equilibrium. Non-
equilibrium active systems usually lack a simple free energy integral or an equation of state
or conventional global conserved quantities.

As energy is locally consumed, active matter systems differ from systems where energy
is injected into the system from a particular location, for example, a heat source, an electric
field or a flapping boundary.

Active systems can display self-organized behavior that is not present in equilibrium
settings. Examples include flocking, synchronization, metachronal waves (like those in
systems of cilia), jammed or circulating states, vortices, and spontaneous flow or turbulence
in active neumatic gels. Active matter includes organization and growth of cells in tissue
or for structures within cells.

2 Self-propelled particles

Self-propelled particles are a type of dry active matter. The ambient medium through
which the particles move is often neglected.
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Two related models are the Boid model (Reynolds 87)1 https://dl.acm.org/doi/

pdf/10.1145/37401.37406 and the Vicsek model (Vicsek+95)2 https://arxiv.org/

abs/cond-mat/0611743. In both models each particle strives to move at a fixed speed, v0.
We take ri(t) to be the i-th particle’s position at time t.
The original paper by Reynolds is more descriptive rather than specific, referring to

updates of the velocity vector in terms of steering. But we could also describe variations
in a velocity vector as an acceleration that is derived from forces. In the Boid model each
particle (or boid) feels forces that cause it to accelerate

mir̈i = Fi,propel + Fi,steer + Fi,attract + Fi,repel. (1)

The index i is an integer that labels a specific boid which we can think of as a moving
point particle. The forces are labelled by i to make it clear that the forces are different
for each boid. Each boid has a mass and boid i has mass mi. In the above equation the
acceleration vector is r̈ = d2r

dt2
. The velocity vector is v = dr

dt = ṙ. The velocity vector
of particle i is the vector vi. The positions, velocities and accelerations of each boid are
functions of time. Equation 1 is a set of coupled ordinary differential equation which are
also the equations of motion.

The propel force strives to keep the boid moving at the same speed

Fi,propel ∝ −(vi − v0v̂i) (2)

where vi is the i-th boid’s velocity and v̂i = vi/|vi| is a unit vector with the same direction
as the velocity. The boid speeds up if it is moving slower than v0 and it slows down if its
speed is faster than v0. As the propel force depends upon velocity, it is not a conservative
force and total energy is not conserved! An equal an opposite force is neglected. Some
kind of interaction with the background substrate must take place otherwise momentum
would not be globally conserved. However, this interaction is not specified in the model.

The steer force depends on the average of the headings (directions of motion) of nearby
boids. The boid adjusts its heading direction to be closer to that of its neighbors. Reynolds
referred to the steer force as velocity matching.

Boids repel each other if they get too close to each other but they also could exhibit some
cohesion and as they could actively steer towards groups of other boids. Reynolds referred
to these forces as collision avoidance and flock centering. The repel and attract force
could be implemented with conservative forces that are derived from a position dependent
potential energy function. That means the force between two particles would depend upon

1Reynolds, Craig (1987). Flocks, herds and schools: A distributed behavioral model. Proceedings of
the 14th annual conference on Computer graphics and interactive techniques. Association for Computing
Machinery. pp. 25-34.

2Vicsek, Tamás; Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer (1995-08-07). Novel
Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters. 75 (6): 1226-1229.
arXiv:cond-mat/0611743

3

https://dl.acm.org/doi/pdf/10.1145/37401.37406
https://dl.acm.org/doi/pdf/10.1145/37401.37406
https://arxiv.org/abs/cond-mat/0611743
https://arxiv.org/abs/cond-mat/0611743


the distance between them and would be equal and opposite on each particle in the pair.
This type of interaction is conventional in physics. Other types of interactions could also
be adopted in a model!

Each boid has a velocity vi(t). To numerically integrate a boid model, boid positions
and velocities are typically updated on a time-step ∆t using a low order integration scheme
(often first order Eulerian or slightly more complicated second order scheme). For boid
i, we write its position as ri. At each time step, each boid position is updated using its
current velocity vector

rn+1
i = rni +∆tvn

i . (3)

Here the upper index n refers to a discrete value of time, in intervals of the time-step. the
above equation is consistent with

vn
i ∼ drni

dt
∼

rn+1
i − rni

∆t
. (4)

which is a first order (in time) approximation to the velocity.
The forces are computed from the positions and velocities of nearby boids. The velocity

is updated by applying an acceleration

vn+1
i = vn

i +
∆t

mi
(Fi,attract + Fi,repel + Fi,steer + Fi,propel) (5)

The forces are computed from the particle velocities and positions at timestep n and I have
neglected the super script for time on the right hand side of the equation in the description
of the forces. The boid steer force can be something like

Fi,steer ∝ ⟨v̂⟩nn,i − v̂i (6)

where ⟨v̂⟩nn,i is the average heading of nearest neighbors to boid i. The steer force steers
the boid to match the headings of its neighbors. The attraction and repel forces can be
similar to that of a conventional N-body or molecular dynamics model

Fi,attract/repel ∝
∑
j ̸=i

−dU(rij)

drij
r̂ij (7)

where rij is the vector between particle i and particle j, and U(rij) is a pairwise potential
that is a function of distance between a pair of particles. The sign of U determines whether
two boids attract or repel each other. Boids could attract if they are distant and repel if
they get too close together so that they avoid collision. In models of flocking birds, the
angular dependence of a bird’s vision can be taken into account as well as other quantities
(status of each bird, time to react, etc ...).
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The Vicsek model is similar to the Boid model except the particle velocity is maintained
a particular speed, only particle position and heading are adjusted each time-step and the
velocity can be randomly perturbed. Each time-step the heading (direction of motion) of
each boid is set to the average value of its neighbors with the addition of noise;

v̂n+1
i = ⟨v̂⟩nn,i + noise. (8)

The noise can be drawn from a probability distribution that has a mean of zero and a
desired variance.

In the original Vicsek model, particles do not attract or repel. A characteristic number
density of particles is used to describe the system. Confinement can cause behavior similar
to that of attraction (e.g., 3). Noise tends to cause gas-like rather than fluid-like or solid-
like or jammed behavior. Because the boids can’t rest (birds fall out of the air if they stop
flying) self-organized states involve motion. A school of fish can swim in a circle forming
a coherent structure called a vortex. A flock can move together in one direction, breaking
rotational symmetry. Notably these types of organized states would spontaneously arise
even if the initial condition had all boids stationary or moving in random directions.

N-body models are often chaotic. A system of boids that evolves without the addition
of noise can act as if it is noisy. After a series of pair-wise encounters, memory of the
initial conditions is lost. The dynamical system can be chaotic. By adding noise to a boid
model of ordinary differential equations one could control the level of ergodic behavior.
If the self-propelled particle system contains a noise term, it can be called Brownian or
stochastic.

Figure 1: A series of simulations showing gas like behavior on the left and crystalline
behavior on the right with more fluid-like circulating behavior in the middle. Here con-
finement of the flock by a flexible loop gives behavior similar to attraction. The series
of particle based simulations from has similar parameters except the extent of the align-
ment force is increased on the right compared to simulations on the left. From Quillen+20
https://arxiv.org/abs/2002.00536

What phenomena are exhibited by self-propelled particles? Phase transitions (gas like,
jammed, flowing and circulating). Clumping. Density waves. Vortices. Concentrations
can form at boundaries or be repelled by boundaries.

In the boid model, particle acceleration is equal to a sum of forces. When are equa-
tions used that depend on acceleration (the second time derivative of position)

3Quillen, Smucker, Peshkov, 2020, Boids in a loop: Self-propelled particles within a flexible boundary,
Phys Rev E 101, 052618, https://arxiv.org/abs/2002.00536
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and when are equations used that only depend on velocity (the first time deriva-
tive of position)? Consider a damped harmonic oscillator

mẍ+mγẋ+ kx2 = 0. (9)

Here γ describes a velocity dependent damping term. If the damping term exceeds the
acceleration then the system is strongly damped and the equation of motion can be ap-
proximated with

ẋ ∼ −kx
2

mγ
. (10)

3 Other forms of particle based and dry active matter

Consider a particle swarm. Each particle can contain degrees of freedom other than position
and velocity that affect their interaction and their motion. Self-propelled particles (boids)
are considered polar because in addition to a position and velocity each particle is also
described with a specific direction or angle. This direction determines interactions between
it and neighboring particles. The direction could be the same as its current velocity or
heading or it could refer to a particle body orientation and this direction could differ
from its current velocity. The particle could be elongated and its shape could affect its
interactions with neighboring particles. If particles interact in a way that is sensitive to
their body orientation they can be called neumatic.

3.1 Interacting Oscillators

A particle could contain an internal oscillator, which case it would also be described by
a phase of oscillation. Neighboring particles could influence each other’s oscillations. For
example, some species of fire-flies synchronize their flashing. Synchronization of neurons
firing or muscle cells contracting occurs in heart muscle and in the brain.

Consider a collection of phases or angles θi where index i lets us refer to one of them.
Here the angle θi ∈ [0, 2π) and is periodic. Equivalently each phase can be described as
being on the unit circle or as being on the real line but modulo 2π.

The i-th oscillator could advance in phase with a characteristic frequency ωi

θ̇i = ωi. (11)

A famous model of interacting oscillators which can synchronize is the Kuramoto
model4 where

θ̇i = ωi +
∑
j

Kij sin(θj − θi). (12)

4Kuramoto, Yoshiki (1975). H. Araki (ed.). Lecture Notes in Physics, International Symposium on
Mathematical Problems in Theoretical Physics. Vol. 39. Springer-Verlag, New York. p. 420.
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The interaction term is important when the two phases are not similar. So if θi ∼ θj
then the ith oscillator does not speed up. But if θj > θi (and both are small), then for
positive Kij θ̇j > 0. This tends to push θi to be closer to θj leading to synchronization.
The coefficients Kij are a set of interaction coefficients. Whether or not the ensemble
synchronizes Depends upon initial conditions, the distributions of intrinsic frequencies and
interaction strengths. A noise term can be added to equation 12.

We found that a chain of noisy and similar oscillators with lopsided interactions was
more likely to enter a wave like state, called a metachronal wave, where each oscillator
lagged in phase compared to its neighbor 5

3.2 Swarmallators

Particles that both both move and oscillate are called swarmalators 6 https://arxiv.

org/abs/1701.05670. An organism that undulates to move (a snake or nematode) can be
described with a phase of oscillation. In general, many types of locomotion can described
with a series of motions that are repeated periodically (walking, galloping, swimming, fly-
ing). Groups of organisms can synchronize their gait. Cilia on the surface of a Paramecium
can synchronize to form waves that allow them to propel themselves.

Consider a collection of self-propelled oscillators. Each particle i has position xi and
velocity vi = ẋi and a phase θi ∈ [0, 2π) which is an angle. In the absence of any inter-
actions, a particle’s phase would advance at a constant rate, given by phase velocity ωi.
Neighboring particles attract and repel each other, but these interactions could depend
upon the particles relative phases. Neighboring particles also influence each others’s phase
velocity. In that sense the oscillators interact. The positions and phases can be described
with the Viscek model, along with an extra degree of freedom. To equation 1 for the
self-propelled particle model, we add an additional force

Fphase =
∑
j

f(xi − xj , θi, θj). (13)

We also need to update phases of each particle,

θ̇i = ωi +
∑
j

g(xi − xj , θi, θj). (14)

Here functions f , g describe the interactions and the sums are over neighboring particles j
that are within a particular distance of particle i. A popular model for would be one that
has strength dependent on |xi − xj | which is the distance, between particles i and j is in

the direction aligned with the vector between the two particles x̂ij =
xi−xj

|xi−xj | and is also a

sinusoidal function of the phase difference θi − θj .
With the addition of noise, swarmalator models can be Brownian.

5Quillen, A. 2023, Physical Review E, Volume 107, Issue 3, article id.034401. https://ui.adsabs.

harvard.edu/abs/2023PhRvE.107c4401Q/abstract.
6O’Keeffe, Hong and Strogatz, Oscillators that Sync and Swarm, Nature Communications, 8, 1504 (2017)
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4 Lagrangian and Eulerian views

Fluid simulations are often characterized by whether they are particle based or continuum
based. Often particle based simulations are called Lagrangian.

An example of a particle based fluid simulation technique is called smooth particle
hydrodynamics (SPH). The fluid is modeled with a collection of particles. Pressure is com-
puted by locally averaging over the properties (number, mass and velocity) of the particle
distribution and then a force from its gradient applied when updating the positions and
velocities of each particle. SPH simulations are commonly used in cosmological simulations.

An alternative to a particle based approach is to model a large collection particles
by locally estimating its locally averaged properties. For example mass density can be
computed from an average in a particular region by computing the total mass of particles
in that region and dividing by the area or volume of that region. Velocity can be computed
as the average velocity of particles in a particular region. Pressure could be computed
using an equation of state and the locally averaged mass density.

For a particle based methods, we keep track of a list of particles. For example particles
can be indexed by an integer i. Particle properties such as position ri(t) are functions of
time and updated during the simulation. The equations we integrate are a list of coupled
ordinary differential equations that contain first order and optionally second order time
derivatives.

In contrast we could consider the evolution of continuum properties such as density
ρ(x, t) and velocity v(x, t) which are functions of both position and time. The equations
that we would integrate are partial differential equations (PDEs).

Between particle and continuum approaches are those that model evolution of a distri-
bution function. For example we can consider a distribution f(x,v, t that gives the numbers
of particles in a region in space and in a region in velocity space. Distribution functions can
be useful to model transport properties, such as thermal conduction, or examine whether
the particle distribution contains or develops a high velocity tail.

5 The simplest continuum models (PDEs)

5.1 Advection

We start with a field ψ(x, t) ∈ R with x, t ∈ R (in 1 dimension) and we assume that
dynamics can be described with a single time derivative

∂tψ = −a∂xψ. (15)

Here we use short hand ∂t = ∂
∂t . This partial differential equation is advective. Waves

travel in one direction at a speed a. For example ψ(x, t) = f(x− at) is a solution because
∂tψ = −af ′ and ∂xψ = f ′.

Often advection terms in a PDE are called convective terms.
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Why is equation 15 advective? Consider a quantity ψ(y) but let position y(t) as if ψ
is being carried along by a particle that happens to have position y(t). The instantaneous
velocity of the particle is dy

dt . We compute

dψ

dt
=
dψ

dy

dy

dt
. (16)

This is in the same form as equation 15 but we associate dy
dt with the speed of the particles

that are carrying ψ.
In more than one dimension (x ∈ Rd for dimension d with ψ(x, t))

∂tψ = −a · ∇ψ. (17)

has solution ψ(x, t) = f(x−at). This follows as ∂tψ = −(ax∂xf +ay∂yf +az∂zf) and this
is equal to −a · ∇ψ.

To model a wave equation where waves can travel in both directions, you can use two
fields instead of one; ∂tu = a∂xv, ∂tv = −a∂xu giving ∂ttu = −a2∂xxu which is the wave
equation. Solutions include f(x± at).

An advective term in a PDE looks like

(v ·∇)(Q) (18)

where v is the velocity of the medium and Q is the quantity that is pushed around.
If the field itself is advecting the flow then in 1d we would get Burger’s equation

∂tu+ u∂xu = 0 (19)

The field is u and it is acting like a velocity that advects itself. However, this is a non-linear
equation.

In three dimensions, if the field is to act like a velocity it must be three dimensional.
That means a velocity vector u should have the same dimensions as the domain points x.
Burger’s equation becomes

∂tu+ u · ∇u = 0. (20)

The Euler equation and Navier-Stokes equations for hydrodynamics have these advective
terms in them.

5.2 Diffusion

Suppose u is a temperature that depends on x, t. The gradient of temperature is du
dx . We

assume that heat flux goes in the direction opposite to the gradient F ∝ −du
dx . If there is a

constant heat flux then the temperature does not change. But if there is a gradient in the
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heat flux at some location then heat will either be dumped into that location or removed
from it. The temperature will locally increase or decrease. This gives ∂u

∂t ∝ dF
dx ∝ d2u

dx2 .
The diffusion (or heat) equation in 1 dimension is

∂tu = D∂xxu (21)

for u(x, t) and diffusion coefficient D which has units of x2/t. A solution is

u(x, t) =
1√
4πDt

e−
x2

4Dt . (22)

Notice that the solution spreads out but its integral over space is conserved
∫∞
−∞ u(x, t)dx =

1.
In Rd, the diffusion equation is

∂tu = D∆u (23)

where the Laplacian operator ∆ = ∇·∇ is the divergence of the gradient. In 3D Cartesian
coordinates

∆ = ∂xx + ∂yy + ∂zz. (24)

If the diffusion coefficient D < 0 the model is unstable! For a negative D, we rescale
space or/and time to get rid of the diffusion coefficient, giving ∂tu = −∂xxu. Sup-
pose we start with an initial condition near zero, and with a very small perturbation
u(x, t) = ϵeσt+ikx which is exponential in time and wave-like in space. We plug this into
the differential equation, finding σ = k2. The parameter σ > 0 for all k ̸= 0. This im-
plies that the amplitude of the perturbation would exponentially grow with growth rate σ.
Sometimes active materials can give diffusive terms that cause instability, and to stabilize
the system you would need to take into account additional derivatives or/and non-linear
terms.

5.3 Conservation laws

A conservation law for a quantity, say density ρ(x, t) looks like

∂tρ = −∇ · F (25)

where F(x, t) is the mass flux. If I choose a small area element, A, and a normal to this
small area element n̂, I can construct a vector dA = An̂. The amount of mass passing
through this area element per unit time is Ṁ = F · dA.

Consider a blob with volume V which has a surface S. The amount of mass that is
leaving that volume is

dM

dt
= Ṁ =

∫
S
F · dA (26)
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where we integrate over the surface of volume V . To conserve mass∫
V
∂tρ dV = −

∫
S
F · dA (27)

We apply Gaus’ law ∫
S
F · dA =

∫
V
∇ · F dV (28)

The previous two equations together give equation 25.
Question: Can the diffusion equation be written as a conservation law?
Answer: Yes. This follows because the Laplacian operator is the divergence of a gradient

operator. The heat equation can be described as energy transport. Heat flux depends on
the gradient of temperature and the diffusion coefficient is proportional to the thermal
conductivity and inversely proportional to the density and specific heat.

Mass flux in a fluid is F = ρv giving mass conservation

∂tρ = −∇ · (ρv). (29)

If ∇ · v = 0 and the system is said to be incompressible.
Why is ∇ ·v equivalent to incompressibility? We expand the mass continuity equation

29

∂tρ = −ρ∇ · v − (v · ∇)ρ (30)

If ∇ · v = 0 then equation 30 is an advective equation. The density is just carried around
by the velocity field, which means that the density of any particular fluid parcel remains
constant while that parcel moves around.

An incompressible fluid is usually assumed to have nearly constant density.

6 Continuum models for active matter

Suppose instead of describing a self-propelled particle system with particle positions and
headings, we describe the system with fields, the number density of particles ρ(x, t) (the
number of particles per unit area or volume) and a velocity field v(x, t).

If the system behaves as if it were incompressible we can ignore ρ, though in some
regimes some models predict large fluctuations in density and so are definitely not incom-
pressible.

How do we relate a particle system to a system described with fields? A field can be
constructed from a sum of delta functions, where each delta function is contributed by a
single particle. Alternatively, we can compute the average of a quantity such as velocity of
a population of self-propelled particles in a small volume element. This is like smoothing
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over the sum of delta functions within a volume element. The density is the number of
particles per volume element.

What size volume element (or smoothing length) is used? The length scale should be
larger than the typical distance between particles. The length should be large enough that
the fluctuations due to different numbers of particles within each volume element are not
significant.

Kinetic theory involves describing a particle system with a distribution function f(x,v, t)
that is a function of position and velocity (and possibly other quantities such as ionization
state). The pressure in a fluid arises from the distribution of velocities in a particular
volume element. In the limit of large particle number, the equations for hydrodynamics
can be derived from the Boltzmann equation (often used in plasma physics) which can look
something like this

Df

Dt
= ∂tf +∇f · v −∇vf · ∇U =

df

dt collisions
. (31)

6.1 Toner and Tu’s continuum model for self-propelled particles

Toner and Tu7 proposed a continuum model for self-propelled particles. The model de-
scribes density ρ(x, t) and velocity v(x, t) which are as a function of position and time,
and gives PDEs that contain a large number of terms

∂tρ+∇ · (ρv) = 0 (32)

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇v2 = (α− βv2)v −∇P/ρ+ noise

+D0∇2v +D1∇(∇ · v) +D2(v · ∇)2v.
(33)

Toner and Tu motivated the collection of terms using symmetry arguments.
The noise, averaged over a particular volume element, could be a Wiener process https:

//en.wikipedia.org/wiki/Wiener_process. With the addition of noise, the coupled
PDEs are stochastic equations.

The λ1 > 0 term is the velocity v advecting itself. If λ1 < 1 then the advection is not
very strong. This is when there is a drag or friction force with an external medium?

The parameter D0 > 0 is like a shear viscosity.
The parameter D1 is like a bulk viscosity that dissipates energy if compression or

expansion takes place.
The α, β > 0 term gives a self-propel force which strives to maintain a constant speed

v0 =
√
α/β.

7Toner, John; Tu, Yuhai (1995). Long-Range Order in a Two-Dimensional Dynamical XY Model: How
Birds Fly Together. Physical Review Letters. 75 (23): 4326–4329.
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The pressure can be related to density via an equation of state. If an incompressible
system is desired, a very stiff equation of state can be chosen. By stiff, we mean it has a
large gradient near a particular density value.

If the system behaves as if it were incompressible, we can neglect the λ2, λ3, D1 terms.
If λ2 < 0, particles speed up where the flow is divergent.
If λ3 > 0, particles are pushed to regions where the velocity is lower.
I don’t have a nice intuitive feel for the D2 term! It seems advective of the advection.
The terms that are non-linear are those with λ1, λ2, λ3, β and D2. This is relevant

when implementing a numerical model.
There are no fourth order derivatives in the Toner and Tu model, which facilitates

numerical models.

6.2 Wet vs Dry

Active materials consume energy. By definition energy is not conserved. If they conserve
momentum (which implies interactions by equal and opposite forces) then they are usually
called ‘dry’. If many but not all of the forces in a particle based model are applied in an
equal and opposite manner then the active material can still be described as dry. Steer
forces for boids don’t necessarily conserve momentum, but self-propelled particle systems
are usually described as dry. Note a particle based model could still experience a strong
drag force (and would not conserve momentum) and it still would be described as dry.

Particle based simulations are usually dry.
Wet models are usually modeled with PDEs because the particles are embedded in a

fluid which is described with a velocity field.
In the continuum model, if you see the density as a field that evolves, then the system

is dry.
In continuum wet systems, the particle density is usually neglected. Instead the order

parameter is advected by a fluid which is described with only a velocity. I think the models
described as active gels by Marcetti+12 are just wet continuum models.

6.3 Polarization as an order parameter

The Toner and Tu model describes two fields density ρ and velocity, v, which are functions
of position and time x, t. How do we relate a system of moving point particles to these
fields? As mentioned above the density is the number of particles per unit volume and
the velocity can be the average particle velocity in a volume element. Neither of these
quantities describe how ordered the system is. For example, the average velocity could be
much lower than the individual velocities of each particle within a volume element.

An order parameter describes how ordered the system is locally. If all the particles are
moving in the same direction, then the order parameter is high. If the particles are moving
randomly, then the order parameter should be low.
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Order parameters are often used in the context of phase transitions. The transition
between ordered and disordered states or between states with different types of order can
be temperature dependent. For example, consider a collection of spins that can take one
of two values, up or down. This is also called the Ising model. At high temperature the
spins are essentially random and the average spin (also called the magnetization in this
context) is zero. Below a particular temperature interactions cause all the spins to align.
In this case the order parameter is a binary digit that is a function of position.

In liquid crystals, elongated molecules are not arranged in a crystalline lattice so are
not ordered in position, but they can be ordered in terms of their orientation. In this case
an order parameter would describe statistics of alignment.

One way to create an order parameter for a self-propelled particle system is to define
a polarization vector from the velocities. However, instead of simply taking the average
velocity we take an average of the particle heading directions. We take v̂i to be a unit
vector of particle i such that its velocity vi = |v|iv̂i. A polarization vector can be defined
as the average value of v̂ computed within a volume element;

p = ⟨v̂j⟩. (34)

If all particles are moving at the same velocity but in different directions, then the sum
of their velocity headings (the unit vector v̂) would be low. The polarization would be low.
If all the particles are moving in the same direction, then the polarization is equal to 1 and
has the same direction as their velocity An order parameter is a measure of the degree of
order.

Look again at the term (α − βv2)v in the equation 33. This term can also be written

in terms of a potential gradient ∇vU(v) where ∇v =
(

∂
∂vx

, ∂
∂vy

)
in 2d

U(v) = −α
2
v2 +

β

4
v4 (35)

−∇vU(v) = αv − βv2v. (36)

If we only consider the time dependent term and the potential term then,

∂tv ∼ −∇vU(v). (37)

Assuming that α, β > 0, a steady state is reached at the potential minimum which is where
|v| =

√
α/β. The potential minimum has a direction. If we interpret the velocity field as

the average of particle velocities in a particular region the non-zero static state implies that
there is order in the system. Most particles in a particular region are moving together. For
example, microorganisms could exhibit head-tail asymmetries and associated interactions
that favor alignment. The self-propel force and the alignment forces in the boid model are
mimicked by the (α− βv2)v term in equation 33.

The boid/Vicsek/Toner-Tu model is said to describe polar particles as each particle
has a particular direction for its motion.

14



Figure 2: Polar particles move in a particular direction. Polar particles with polar order
align their direction of motion with their neighbors, as shown on the left. Repulsive and
attractive interactions between particles only depend on particle position, not particle
orientation. The Vicsek/Toner-Tu/Boid model of self-propelled particles is in this class. A
particle could also have an ellipse or rod shape. Nearby particles could orient their shapes
so that their long axes are parallel to each other. In this case, the particles are said to
have neumatic order, as shown in in the middle and right panels. Repulsive and attractive
interactions depend upon particle orientation. The middle panel shows self-propelled rods
and the right panel shows an apolar active rod. The apolar particle can move in both
directions along its long axis.

6.4 Free energy

According to the second law of thermodynamics, conventional systems are likely to mini-
mize a function called the free energy. Thermodynamic equilibrium is equivalent to mini-
mization of free energy. The phenomenological Landau theory of phase transitions involves:
(1) find an order parameter; (2) expand the free energy in the vicinity of the transition with
respect to the (assumed small) order parameter; and (3) find the minima of the free energy
at each temperature, pressure, and other variables, as functions of the order parameter.

Even though they are out of equilibrium, sometimes active matter systems are de-
scribed, in part, using a free energy functional that might be used to describe a related
non-active statistical system. Many of the terms in the PDEs describing the dynamics of
the active system are computed using a functional derivative of a free energy functional
that depends on an order parameter.

Following the review by Marchetti+128, PDEs describing a system of active polar

8M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, Madan Rao, and R. Aditi
Simha, Hydrodynamics of soft active matter, , Reviews of Modern Physics, vol. 85, Issue 3, pp. 1143-1189,
https://arxiv.org/abs/1207.2929
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particles depends on density ρ and polarization vector p

∂tρ+∇ · (ρp) = 0 (38)

∂tp+ λ1(p · ∇)p = −δFp

δp
+ noise (39)

are written in terms of the free energy functional

Fp[p] =

∫
dV
(
− α

2
p2 +

β

4
p4

+
K

2

∑
jk

(∂jpk)(∂jpk)− v1∇ · pρ− ρ0
ρ0

+
λ

2
p2∇ · p

)
. (40)

In Equation 39 The derivative
δFp

δp is a functional derivative (see https://en.wikipedia.
org/wiki/Functional_derivative).

With coefficients for the terms 40 that depend upon temperature and setting
δFp

δp = 0,
we could describe a conventional material that would display phase transitions.

As we will show below, this model generates a PDE that looks similar to the Toner-Tu
model, but describing evolution of the polarization vector p instead of the average particle
velocity. In this continuum model p simultaneously plays the role of the orientational order
parameter of the system and the particle velocity field.

An approach to describing a system with a free energy is to expand a function in a
Taylor series of powers of the fields of interest (density, order parameter, phase if you
have oscillating active matter, field in active field theories) and also in terms of different
gradients. If there is a symmetry (such as neumatic symmetry) then you would only
consider terms that obey the symmetry. The Toner-Tu approach is to consider a lot of
terms in the free energy. Alternatively one could search for the simplest model that you
can explore that seems to have nice phenomenology or is motivated by a real system.

6.5 A quick note on functional derivatives

Consider the function q(x) and the integral

L[q] =

∫ b

a
L(x, q(x), q′(x))dx (41)

where L is a function of x and the function q(x) and its derivative q′ = dq
dx at x. We vary

the function q by taking q → q + δq.

δL[q] =

∫ b

a
L
(
x, q + δq,

d

dx
(q + δq)

)
dx− L[q]

=

∫ b

a

∂L
∂q
δq dx+

∫ b

a

∂L
∂q′

d

dx
δq dx. (42)
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We integrate the right hand term by parts and assume that everything vanishes on the
boundary

δL[q] =

∫ b

a

(
∂L
∂q

− d

dx

∂L
∂q′

)
δq dx. (43)

We associate

δL[q]

δq(x)
=
∂L
∂q

− d

dx

∂L
∂q′

(44)

where the derivatives on the right hand side are evaluated at x. If δL[q]
δq(x) = 0 then the free

energy is minimized.
Armed with this quick introduction, we attempt to compute the functional derivative of

the free energy function of equation 40. Equation 40 is an equation that would be obeyed
if the kinetic energy subtracted by the free energy (the Lagrangian) is a minimum. The
difference is used so that total energy is a conserved quantity.

First we compute some derivatives. With

L(p,∇p) = −α
2
p2 +

β

4
p4 +

K

2

∑
jk

(∂jpk)(∂jpk)− v1∇ · pρ− ρ0
ρ0

+
λ

2
p2∇ · p (45)

we compute

∂L
∂pk

= −αpk + βp2pk + λpk∇ · p (46)

∂L
∂(∂jpk)

= K∂jpk − v1
(ρ− ρ0)

ρ0
δjk +

λ

2
p2δjk (47)

d

dxj

∂L
∂(∂jpk)

= K∂jjpk − (∂jρ)
v1
ρ0
δjk +

λ

2
∂jp

2δjk (48)

δFd

δp
= (−α+ βp2)p−K∇2p+ v1

∇ρ
ρ0

− λ

2
∇p2 + λp∇ · p (49)

Inserting this into equation 39 we find

∂tp+ λ1(p · ∇)p = (α− βp2)p+K∇2p+ v1
∇ρ
ρ0

+
λ

2
∇p2 − λp∇ · p (50)

Except for some constants that can be absorbed into units, this is essentially consistent
with equation 5 by Marchetti+12 and contains terms similar to those in the Toner+Tu
model.
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Is there any advantage to writing the equations of motion in terms of a free energy
functional? Sometimes it helps to think about the equations of motion in terms of energy
and minimizing energy. For example, the quadratic function −αp2 + βp4 looks like the
potential energy function we discussed in the previous section.

In using the free energy to compute functional derivatives, we dropped boundary terms,
as is conventionally done with the assumption that most things go to zero at infinity. If
our focus is confined systems, then we are striving to pay attention to the boundary terms
and we don’t necessarily want to discard them!

6.6 Terms in the free energy that are important on the boundary

Suppose that the free energy of a 1d system contains a term that can be written as a
derivative of some function

LB = ∂xf. (51)

The contribution of this term to free energy is the integral of this term over the domain,
and in 1dimension

L[q]B =

∫ b

a
dx LB = f(b)− f(a). (52)

This is only sensitive to the function f on the boundary. In 2 or 3 dimensions if

LB = ∇ · f (53)

then we can use Stokes theorem to write the contribution in terms of an integral over the
boundary. In three dimensions

L[q]B =

∫
Ω
∇ · f dv =

∫
∂Ω

f · dA. (54)

In two dimensions

L[q]B =

∫
Ω
∇ · f dA =

∫
∂Ω

f · ds. (55)

In summary, terms that are important on boundaries tend to involve a divergence.

6.7 More complicated polar systems

Polar materials can have extra terms in the free energy

Fp[p] =

∫
dV

(
K1

2
(∇ · p)2 + K2

2
(p · (∇× p))2 +

K3

2
(p× (∇× p))2

+
K4

2
∇ · [(p · ∇)p− p(∇ · p)] + v∇ · p+

h∥

2
(p2 − 1)

)
. (56)
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The K1 term is the free energy of splay deformation (think of a fan).
The K2 term is the free energy of twist deformation (only in 3d).
The K3 term is the free energy of bend deformation.
The K4 term is a divergence, known as ‘saddle-splay’ (?) and is associated with the

surface.
The h∥ term is a Lagrange multiplier and there to ensure that the polarization vector

remains at or near length 1. I have made the term look like a Lagrange multiplier, though
in equation 32 by Marcetti+12, the term was h∥p

2/2. When you take the functional
derivative, the constant term drops out so maybe it does not matter which way you write
it.

TheK coefficients are called Frank constants https://en.wikipedia.org/wiki/Distortion_
free_energy_density

Sometimes people set the K1,K2,K3 Frank constants to be identical and lump them
together in one term, as in the free energy of equation 40. In this case the sum of the three
terms simplifies to

K

2
[(∇ · p)2 + (∇× p)2]. (57)

So far the free energy terms only have a single gradient operator of the order parameter
(with the exception of the K4 term which is a divergence). When taking the functional
derivative, this gives PDEs with a Laplacian or second order spatial derivatives in them.
The coupled fields can have diffusive terms and non-linear potential terms so we could
imagine similarities to reaction diffusion equations. We would have to expand the free
energy to higher order derivatives to pick up fourth order derivatives, such as appear in
the Swift-Hohenberg pattern formation model. If the diffusive terms cause instability, (a
negative viscosity), then terms with higher order derivatives are needed to stabilize the
model.

Figure 3: Relevant for the Frank constants for neumatic materials.

7 Active neumatics

An active neumatic system can resemble a liquid crystal but can exhibit behavior such as
spontaneously generated directed flow or/and turbulence that is not seen in an equilibrium
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system.

7.1 Bipolar particles

A neumatic particle exhibits a 180◦ symmetry. If you take origin the center of the particle
and flip the particle x → −x, the equations of motion should not change. This type of
particle is also called bipolar. A neumatic particle can be described with an orientation
angle or a unit vector that specifics the orientation of the particle’s long axis, n̂, known as
the director. Equations of motion should obey a symmetry n → −n.

Active bipolar particles are assumed to move along the particle’s orientation direction,
(velocity v ∝ n) but they are equally likely to move in the +n direction as in the −n
direction. In a particle based model, the particle is equally likely to move in either direction
along its long axis. One way to simulate an particle based active neumatic, is to randomly
chose a direction of motion for each particle on a particular timescale. Equivalently the
direction of motion (along the particle’s long axis) is occasionally reversed. For example, a
coin can be flipped every once in a while to randomly choose the direction of motion (for
example, Henke+179 did this in their paper on dry active neumatics on a sphere).

7.2 The neumatic order parameter

A neumatic system is not polar, so instead of choosing an order parameter that is a vector,
the order parameter is a symmetric tensor (with two indices), similar to a quadrupole
moment or a moment of inertia tensor.

The neumatic order parameter Q depends on the local orientation vector which is
described with a unit vector n̂(x, t) that is a function of position and time. The order
parameter is a two index, traceless and symmetric tensor

Q = s(nn− 1

d
I)

Qij = s(ninj −
1

d
δij) (58)

where d = 2 in two dimensions and d = 3 in three dimensions (so that trQ =
∑

j Qjj = 0).
In the above equation I is the identity matrix. The definition for Q has the

n → −n

nematic symmetry built-in.
The parameter s, called the scalar order parameter, describes the degree of alignment

and depends on an average of the orientations of particles in a local volume element. We

9Dynamical patterns in active nematics on a sphere, Silke Henkes, M. Cristina Marchetti and Rastko
Sknepnek, 2017, Phys. Rev. E 97, 042605, https://arxiv.org/abs/1705.05166
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take z aligned with the director n̂ and take θ to be a co-latitude. The scalar order parameter

s = ⟨1
2
(3 cos2 θ − 1)⟩, (59)

where the average is over the particle angles and it is integrated over solid angle. The
function is designed so that an isotropic distribution f(θ, ϕ) = 1

4π gives s = 0. The scalar
order parameter s ∈ [−1/2, 1] in 3D with the value of -1/2 for θ = π/2 and when particles
are perpendicular to n̂.

7.3 Free energy

For a generic uniaxial neumatic material (uniaxial means the order parameter only depends
on n̂ and not on an additional direction) the free energy typically contains terms like

Fp[Q] = constant +
A

2

∑
ij

QijQij +
B

3

∑
ijk

QijQjkQki +
C

4

∑
ijkl

QijQjkQklQli + ...

+KQ

∑
ijk

∂iQij∂kQkj +K ′
Q

∑
ijk

∂iQjk∂iQjk +K ′′
Q

∑
ijk

∂iQjk∂kQji + ....

+BQ

∑
ij

(∂iQijQji + ∂iQjjQji + ∂iQiiQjj ....)? (60)

where coefficients depend upon temperature or/and density.
The term with coefficient A is sometimes written Q : Q = tr Q2.
The term with coefficient B could be written as tr Q3.
The terms with coefficients K might be written confusingly as (∇Q)2.
A model lacking the gradient terms can be used to model the nematic to isotropic phase

transition.

∂Fp[Q]

∂(∂aQbc)
= KQδiaδbiδcjδkQkj + .....

= 2KQδab
∑
k

∂kQkc + 2K ′
Q∂aQbc + 2K ′′

Q∂cQba (61)

These terms might be related to the terms previously discussed in terms of polarization.
The K coefficients of equation 56 describe all possible low order derivative terms that

obey the n → −n neumatic symmetry. Terms with a single gradient don’t obey this
symmetry and so are absent. This probably means that it is possible to equivalently write
the gradient terms in terms of the Q order parameter.
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7.4 Dry active nematics

Models are often classified as a dry active neumatic or as an active neumatic gel, depending
upon the role of the background fluid.

A continuum model can be constructed for the free energy containing terms with both
polarization and neumatic order tensor (Q).

∂tQ = −Γ
δFp(Q, ρ)

δQ
+ noise (62)

If coupled to the density the model can exhibit particle fluctuations and propagation of
defects. This equation along with one describing evolution of the density is described as a
dry model.

I found this useful to discuss both models and numerics https://journals.aps.org/
prl/abstract/10.1103/PhysRevLett.129.258001#supplemental

7.5 Active neumatic gels

These are in the category of wet models.
The thing called an active neumatic gel is I think just two equations, one for the velocity

and consistent with a fluid and the second advecting the order parameter, Q and the other
for the evolution of the order parameter.

Dv

dt
= ∇σ(Q)

DQ

dt
= − δF

δQ
(63)

Here D
dt represents a Lagrangian derivative which allows you to advect quantities. The

stress tensor could be sensitive to the order parameter allowing the neumatic to push the
fluid around. The free energy could allow the neumatic particles to interact.

Active gels can exhibit spontaneous flow and generate turbulence (and there is a real
system based on actin filaments that actually does this!).

8 Active fluid systems

The setting is suspensions of active rodlike or elongated objects (e.g. swimming organ-
isms, cytoskeleton, or tissues) embedded in a momentum-conserving solvent that generate
stresses on the fluid.

In a wet system, we use the equations for hydrodynamics (conservation of mass and mo-
mentum) which depend on density ρ and velocity v. Many models adopt a incompressible
fluid so there only an equation for the velocity, with the constraint that ∇ · v = 0.
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To conservation of momentum for the fluid we add a term in the stress tensor that
depends on the active particles. The active particles push the fluid.

We add a third equation for the evolution of an order parameter describing the orien-
tation of the active particles. The order parameter is advected by the fluid. Its equation
of motion takes into account interactions between active particles.

Firstly the fluid equations, in general

Du

dt
= ∂t + (v · ∇)u = −∇p

ρ
+∇σ (64)

Here the stress tensor depends upon velocity u and the order paremeter of the active
material Q,

σ(u,Q).

An example is called an active neumatic gel at low Reynold’s number. Starting with
Stokes flow

∇p = ∇ · σ + noise (65)

we add an equation for evolution of an order parameter Q

(∂t + v · ∇)Q = S(∇v)− δFp

δQ
(66)

where S is a function that depends on the gradient of the velocity, possibly including the
vorticity.

8.1 Advecting a tensor via fluid rotation

Ordinarily in a fluid, one does not keep track of the vorticity when advecting a quantity.
However, if that quantity has orientation, the vorticity (related to fluid circulation) causes
the advected quantity to rotate. If Q is the neumatic order parameter (a tensor) then when
advected by the fluid

DQ

Dt
= ∂tQ+ (v · ∇)Q+Ω ·Q−Q ·Ω (67)

where

Ω ≡ 1

2
(∇v −∇vT ). (68)

The derivative in equation 67 is sometimes called the co-moving co-rotational derivative of
the Q-tensor. Let’s be specific about the indexing.

Ωij =
1

2
(∂ivj − ∂jvi) (69)

Ω ·Q =
∑
ij

ΩijQij . (70)
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8.2 Oscillating polar materials

We follow the spirit of the paper by Brato Chakrabarti and collaborators https://ui.

adsabs.harvard.edu/abs/2023PhRvL.130l8202C/abstract https://arxiv.org/pdf/2206.

04035 10 exploring active oscillating neumatic materials.
We can describe a population of swarmalators with a polarization p, which sets the

direction of motion and a density ρ. We could modify the Toner and Tu model to include
a

We describe the density distribution for our oscillating particles with a function of
position, time, and phase; ρ(x, t, ϕ). Conservation of particle number would be

∂tρ+ (v · ∇)∂xρ+ ϕ̇∂ϕρ = D∆ρ (71)

where on the right hand side I added a diffusion coefficient. On the left we essentially
differentiate ρ w.r.t. to all its dependent variables.

We need an equation for the oscillator phase velocity

ϕ̇ = Ω0 + ξ(ϕ)Q :: (∇v + (∇v)T )− g∇ϕρ (72)

Here the particle alignment influences the phase velocity and so does the particle density.
Finally for the fluid itself in the Stoke’s limit

µ∆v = ∇p/ρ+∇σ(Q) (73)

where σ is stress generated on the fluid by the active particles.
There are (I think) other possible choices for what you choose to evolve for continuum

models of active oscillating systems.

8.3 A possible model

How about the following. We let the particle orientation oscillate? The particle orientation
is the velocity. A vector perpendicular to velocity would be ∇× v̂.

∂tv = f(θ̇)(∇× v̂) (74)

9 Active scalar model

We consider a density ρ for a material that has an order parameter describing its orientation
Q or p, depending upon whether you want it to be polar or neumatic and a phase that
oscillates.

The active scalar model advects an active scalar quantity ρ.
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9.1 A compendium of models

10 Conserved quantities and Lyapunov functions

Consider an integrated function over the domain Ω

T =

∫
Ω
dxf(x, t,v,Q.....),

where the function f depends on the fields present in the active or pattern formation
system. Suppose in addition that you can show that

dT

dt
< 0.

Then a fixed point of the system is a minimum of T . Such a function T is known as a
Lyapunov function. Once the system reaches a minimum value for T then it must stay
at that value. This can mean that the attractors, or long lived asymptotic states of the
system would not exhibit temporal behavior. The system would converge to a fixed state.
For some pattern formation models, there exists a Lyapunov function (e.g., versions of the
Swift-Hohenburg model).

10.1 A Lyapunov function for the Swift-Hohenberg pattern formation
model

For example, the Swift-Hohenberg pattern formation model

∂tu = ru− (1 +∇)2u+ u3 (75)

has a potential function

V =

∫
dxdy

(
−1

2
ru2 +

1

4
u2 +

1

2
[(∇2 + 1)u]2

)
(76)

that satisfies

dV

dt
= −

∫
dxdy(∂tu)

2 (77)

which is always less than or equal to zero. (See Cross’s book page 180).

10Chakrabarti, Shelley, Fürthauer (2023), Collective Motion and Pattern Formation in Phase-
Synchronizing Active Fluids, Physical Review Letters, Volume 130, Issue 12, article id.128202
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10.2 The winding number for systems of coupled oscillators

Suppose
dT

dt
= 0.

Then T is a conserved quantity. Even if an energy like functional is not conserved, other
quantities could be conserved. For example, in 1d coupled oscillating systems with periodic
boundaries, the winding number which is the integral of dϕ/dx is conserved. The winding
number can be considered a topological quantity making it an interesting parameter to
think about.

For example consider a 1d periodic space x ∈ [0, 2π) with a phase function ϕ(x, t) that
satisfies

∂tϕ = F (ϕ, ∂xϕ, ∂xxϕ, ..) (78)

for some continuous function F . This describes Kuramoto-like oscillators, all in a linear
chain, in the continuum limit.

We define a winding number

w =
1

2π

∫ 2π

0

dϕ

dx
dx (79)

The winding number must be an integer if ϕ is continuous.

dw

dt
=

d

dt

1

2π

∫ 2π

0

dϕ

dx
dx

=
1

2π

∫ 2π

0
∂xϕ̇dx

=
1

2π

∫ 2π

0
∂xFdx

=
1

2π

∣∣∣2π
0
F

= 0. (80)

The winding number is a conserved quantity and so is set by initial conditions.

11 Problems

• Examples of making your own mesh with points and a Delaunay triangulation and
importing into skfem: https://github.com/kinnala/scikit-fem/discussions/

705 Make your own 2D mesh and solve a pattern formation model on it. Explore
how boundary shape affects the patterns.
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• See if we can solve the heat equation with FEM and an interesting static boundary.
(in skfem?) If this works, try reaction diffusion equations on a triangular mesh with
interesting static boundary shapes and different boundary conditions (Neumann and
Dirichlet).

• Classify all behavior caused by different shapes/boundaries for a pattern formation
or active matter system. Predict behavior and test predictions via numerical studies.

• Examine/explore the dynamics of defects near boundaries.

• Explore static boundary related behavior in the biharmonic Swift-Hohenberg equa-
tion.

• Explore oscillating active mater PDEs.

• Explore ways to let boundaries move.

• Try to make a 1d loop, in 2d space that exhibits waves in FEM. Try connecting it to
a 2d continuous system and letting the two systems interact.

• Try moving a boundary that is coupled to a PDE on a mesh.

• Try FEM models for some active matter systems on a mesh.

• Add or adjust noise an explore related behavior.

• Try FEM models for some active matter systems with interesting boundaries.

• Try creating a 2d mesh with holes in it. Can posts be used to control an active
medium? There is a body of experimental work with posts causing clumps/solid
transitions in self-propelled particle systems.

• Explore evolution of defects on boundary for 3D meshes. Topological surface prop-
erties? Skyrmions?

• Find and numerically implement a system that exhibits temporal behavior. Explore
time dependent models and patterns near boundaries.

• Effect of boundaries on effective parameters.

• Pattern formation/active matter models on curved surfaces with boundaries.

• Design an abstract model for a controllable muscle (think of reagent parameters as
free parameters? Couple motion to orientation?).

• Design an abstract model for a controllable active matter powered pump.
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• Explore defects in active oscillating mater (probably not much done).

• Explore pattern formation with local point sources adding reagents or setting field
or gradient values.

• Generalize models to work on curved surfaces.

Post workshop comments:
We succeeded in integrating PDEs of pattern formation models using finite element

methods on meshes of 2d triangles that cover different shapes (hexagon, circle, triangle).
We succeeded in simulating reaction diffusion equations such as the Brusselator and

Gray Scott pattern formation models (with two coupled fields) and the complex Ginzburg-
Landau model (with one complex field).

We think that meshes that contain corner triangles that have two facets on the boundary
could cause difficulties with non-invertible matrices. There is a work-around.

The boundary in the Brusselator models seems to strongly influence the forming pat-
terns across a few wavelengths of grown patterns. With a zero Neumann boundary condi-
tion and square or triangular domain, we saw periodic patterns, resembling crystals, that
were not formed on a similar sized circular domain. With Dirichlet or non-zero Neumann
boundary conditions patterns tended to be aligned with the boundary.

In contrast, the Gray Scott model, which is quite similar to the Brusselator model, is
insensitive to the nearby boundary. No crystalization and the boundary influenced the
pattern across a distance less than a pattern wavelength.

12 Some numerical notes

12.1 On mesh generation

We can use pygmsh https://pypi.org/project/pygmsh/ for mesh generation as it seems
to work and popular using for fenics and skfem applications. Ngsolve https://docu.

ngsolve.org/latest/index.html has similar mesh generating routines that are available
as part of its netgen package.

12.2 Check the Peclet number

Advective problems may be sensitive to the Peclet number which is the ratio of the rate
of advective flux to diffusive transport flux. If ν is a kinematic viscosity, V a transport
velocity and L a length scale, the Peclet number is

Pe ≡ V L

ν
. (81)

In a numerical method, a relevant Peclet number would have L equal to the grid spacing.
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Depending upon the numerical method, with Pe > 1 you could have numerical insta-
bility. In this case, check the Peclet number and try increasing the viscosity to lower the
Peclet number.
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Figure 4: From Shaebani et al. 2020, Computational models for active matter, Nature
Reviews Physics, 2, pages 181-199 (2020), https://arxiv.org/abs/1910.02528
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