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Iterates of the logistic map
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The logistic function is not invertible

A xn+1 — ,ux”(l _xn)

given x", there are two
J(x) = px(1 — x) possible values of x"!

larger 4 1 bit of information
loss per iteration

After iterating, little
iIs Known about the

small
mdtier ¢ initial conditions
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I’rerafors Xoa1 =f(xn) discrete time dynamical system

n

Classical world Quantum world

e Unitary transformations
(preserve probability of a
quantum state)

e Invertible

e Act like rotations when iterated

e Number of operations needed
to construct any desired
unitary operator from a set of

e Dynamics can be dissipative.
Attracting fixed points or
cycles

e Information about initial
conditions is lost

e Possibility of Ergodicity/chaos

® Functions need not be

invertible . :
e Optimization can be done via quantum gates is low (universal
e gate sets/Kitaev Thm)

Hybrids:
e Algorithms involving both classical and
quantum portions
e Open quantum systems/quantum channels
e Quantum error correction



Reset/Initialization on a quantum computer

Put a specific quantum subsystem info a particular pure state
Needed for initialization in quantum computing

ly) - | wo) initialize a state

& u?) = W) (wp|  Reset quantum channel p density

Quantum state initialization can be accurate and efficient
Information is lost

We look at operations that can be constructed from unitary
operators and reset operators.

In the realm of hybrid quantum/classical algorithms



Quantum oracle

A function f(x) where x, f(x) € {0,1,...,N} (Zy)
Complexity of a black box algorithm is the number of

queries of the oracle function required fo learn
something about the oracle function

To implement a non-invertible function via a unitary operation

register |z) because information for

of qubits the input quantum
register is available in
anofher the output,
register with |0) the operator can be
same number inverted

of qubits



Quantum oracle

| f(x)) is in the output
register, only if the input
of the lower register is the

|0) state

To iterate f(x), we need to reset the lower register
and swap registers

On notation for quantum circuits:

left to right is increasing in time

horizontal lines represent registers of qubits

X, ¥ label pure states (here natural numbers) in a particular basis
it is assumed that you could input a superposition state



Creating an iterator from a quantum oracle

For output | f(X))
the top register is

initialized to |0)

x,y, f(x) € Zy

Ur+ 1204 %B = [20)4 LfC) +y)p E’Jg&fr ;,))Pera’ror

1
SWAP = |4V B(Y 4 (x1g swap operator (unitary)

x,y=0
t ch t unit
& osetl(Pap) = 10)4(0 ], ® trypys reset channel (not unitary)

wemen’r breaking



The iterator

Composed of unitary and non-unitary components

t tat d %}
Input a pure stafe an |
iterate j times ) ) xezy



An interesting function that can be iterated
Truncated logistic map g(y) = uy(l —y)

g() a function of real numbers on the unit interval to itself

[ < X > ] ; N = 2"
f(x)="floor |[g| — ]2 for x € {0,1,...,2"—1}
on _ .
n = number of qubits
N = number of states
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A quantum channel that converges to fixed states or cycles



Iterates of the truncated logistic map
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Iterate to compute the greatest
common divisor of integers a,b

Euclidean algorithm*c.3008¢

b)
la mod b)

leaves
remainder

An ingredient of the Shor factoring algorithm that
could be done in place on a quantum computer

Iterate for 5 times the number of digits base 10 (O In N) and
you are guaranteed to have the desired result (Lameé's Theorem)

(@.b) (b,amod b)if b > 1
a, = .
Sged (a.,0) it b =0


https://en.wikipedia.org/wiki/Lam%C3%A9%E2%80%99s_Theorem

What does the oracle channel do to a

mixed state? Er

Both quantum
registers have
the same
dimension

/

PB

The channel is dephasing

If you input a|x,) + b|x,) the result is

| f(x,)) with probability aa™ and | f(x;)) with probability bb*
Superposition is lost (decoherence)

Result is described by classical probabilities
Information loss is associated with classical behavior



control operator

arks stotes A more general class of

according to which < quantum channels

set they belong to SD;f registers
have
different
dimensions

/
PB 0n

Partition the set of basis states into disjoint sets

Each element in set has a unique function that can be inverted
Do resets on the register labeling the disjoint sets

Amount of information loss per iteration depends on
the number of disjoint sets

Superposition for states constructed from members
of a single disjoint set is not lost!



Classification spree
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Error correction schemes are examples of channels
constructed from functions on discrete sets

b —————————————
X5 Error ).’O\OOD \110)0 ‘
| !
| é | €7 |
X, Error 1 ©]010) |101)®© |
v v
X, Error  \_@]100) [011)®@
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= Ry

Disjoint sets gives subspaces. Subspaces retain their
coherence and are not dephased.




PB

What if register B is a continuous Hilbert space?

(not relevant for quantum computing but perhaps
relevant for modeling an open quantum system)



A channel in the continuum limit (the logistic map)

14

1

0

Quantum system is the product space of a
single qubit and a Hilbert space on the unit

interval half intervals are the disjoint sets

Control op 1
Vi, = (00(01+ (1) ® | delptel,
HIO(1 I D01 & | dxlytel,
B> Two invertible functions 2
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The channel is
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Kraus ops
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How much information is removed via the logistic map?
Answer: 1 bit per iteration



Summary

e We constructed a class of quantum iterators that are
not unitary and can display phenomena of classical
iterators like cycles and period doubling

eEven when generated from a function on a discrete sef,
quantum channels can display combinatorial complexity

@ 253 js a large number of states, so the number of
possible hybrid iterators is large.

e Information loss induces complexity but also decoheres
a quantum system or a quantum subspace. Coherence
can be maintained in a subspace while some information
is removed.

® Quantum computing algorithms live in a hybrid classical/
quantum world. Opportunity for exploring classification
of computational complexity in hybrids.
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Chaos induced by periodic perturbation

2
H(¢,p, D)py = Hy(p,p) + H\(p, 7) (I —cosp) ~ % for small P

Hy(¢p,p) = a (1 — cosp) — e cos(¢)
Hy(¢,7) = — pcos(p —7) — ' cos(¢h + 7)

The perturbed Harper model is similar to the sinusoidally perturbed
pendulum model, (e.g. Chirikov)

a) , 251.50,6=0.50,14=0.00,u'~0.00a=1.50,£= /'=0.05,

Resembles kinetic energy

Classically
integrated orbits.
Plotting a point
every
perturbation
period. These are
surfaces of
section. Each orbit
is in a specific
color.

regular pel:iurbeg > ®  Chaos at the
hybrid phase space! separatrix



Estimating the width of the chaotic zone

OH, (¢, p,. 1) Classical estimate for width of
d chaotic region formed at
separatrix (e.g. Chirikov 79)

AH%J
ot

Integrate the perturbation along the separatrix orbit ¢(¢), p,(¢)

For the perturbed pendulum, the result is the Melnikov-Arnold
intfegral

o\

Melnikovs method

unstable
manifolds

What is the quantum equivalent?

Can we predict the width of an ergodic region in our
quantum system?



Notions of chaos

Classical world Quantum world

e Sensitivity to initial e Statistics of eigenvalues are
conditions, Exponential described by a random matrix
divergence of nearby orbits model e
(Lyapunov) ® Anderson localization

e In the classical limit, for
almost all eigenstates, the
expectation values of
observables converges to their
phase-space average
(Shnirelman) (most eigenstates
are spread out in phase space)

T
quantization

Bohigas-Giannoni-Schmit and Berry-Tabor Conjectures

® Recurrence, mixing, infinite
number of periodic orbits,
orbits fill phase space

® Behaves like a stochastic
process



Quantization of a classical model giving
tunable and predictable chaotic region

phase space . n -
0 ] quantization operators ¢, p
on a forus Bohr-Sommerfeld related via discrete
or via Weyl operator  Fourier transform
Why work on a torus? When quantized, the quantum space is
finite dimensional (easier to work with
and relevant for quantum computing)
Classical Perturbed Quantum perturbed
Harper Model Harper model
H(,p. Dor = Ho(dh.p) + Hy(, ) ke = o2 GRS
Ho(,p) = a (1—cosp) —ecos(g) ~ Mo@P)=a(l—cosp)=ecosg

H\(,7) = — pcos(dh — ) — ' cos(p +7) M, 7)== pcos(p —7) — ' cos(p +7)
periodically perturbed == Floquet  {J.. = F ¢~ lo M0



In phase space
Classical orbits Eigenstates (Husimi distributions) N=100
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Ordering the eigenstates of the Floquet propagator

Hino = <Wj | ilo | Wj>]
expectation value of
unperfurbed energy

-2 0

2 ¢

Husimi functions for the
eigenstates in order of y;
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A measure of ergodicifyl Eneraies

Classical orbits
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Expectation value and dispersion of
unperturbed Hamiltonian operator for
Floquet eigenstates is similar to those
computed from classical orbits. The
dispersion gives a measure of ergodicity



Another view of quantum ergodicity

N=200, a=1.5, £=0.5, u=u'=0.05
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transition
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localized
information
becomes mixed
across the
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akin to
thermalization



Another notion of quantum ergodicity

N=16 N=32 N=64 N=128 N=256

Shnirelman theorem (for certain maps) refers to the
asymptotic properties of eigenfunctions of the
Schrodinger operator in case of a classically chaotic
system. For almost all eigenvalues the probability of
finding the system in a vicinity of a given classical state
becomes uniformly distributed along the surface of
constant energy in phase space.



Chaotic zone width estimates

Classical Quantum counterpart
¢, p, describe separatrix Eigenstate of unperturbed
orbit of unperturbed system with energy nearest

system in phase space that of the separatrix is | v,)

*® oH(¢p.,p.,t 2
AH%[ 1(¢Sps )dt 1 d i3 oA i7
_ ot AH ~ Z (v, | —[ dt en"'h (He " | v,)
oo \ T 0
k#s
Integrate perturbation Average over perturbation
on separatrix orbit and sum over eigenstates

near the separatrix energy

How accurate are these estimates?
Answer: Great to order of magnitude.




Summary

® Harper model on the forus is a compact system for
exploring resonant quantum/classical connections. Via
perturbation we have hybrid chaotic/regular behavior
in related classical and quantum systems

® Husimi functions look great! Classical orbits in phase
space resemble quantum eigenstates!

® We have a measure of ergodicity in both classical/
quantum systems

® We derived a quantum counterpart to a predictive and
widely applied classical formula for estimating the
width of a chaotic region



Notions of adiabatic drift H(?)

Classical world Quantum world
e Conservation of an action > A. system ini’riali.zed. in an
variable that encloses a eigenstate remains in one

constant volume in phase space. ° Landau-Zener model for 2-
level systems

Probably of a diabatic transition

What happens if phase AE2
space is divided by an Piiobasic = € L IS S
orbit with an infinite
period? If I' > 1 then the system
remains in the same eigenstate
?ear the SePargr”Eix adiabatic diabatic
ynamics cannot be R R
adiabatic 5 \/ > \/
Q Q
= /\> = /\>

time time



Information loss via adiabatic drift H(?)

Classical world Quantum world
® Theory of resonance capture

) 10) — al|0)+p]|1)
/@ 1), )

superposition

7

Energy

Phase when approaching
separatrix orbit determines
the outcome |

-
~

>

time
Sensitivity to phase is o . B
replaced with a probability Transition inford e AR
of resonance capture state with a sensitive relative

phase



Statistics of quasi-energy spacings
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of a random matrix model).
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adiabatic computing
algorithms
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For a slowly drifting chaotic system,
transition probabilities are randomly

distributed and independent of drift rate

50 N=49,a=£=2.5,u=u'=0.00-2.00,b=0.00-0.02
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Notions of adiabatic drift H(?)

Classical world Quantum world

0.1 0.2 0.3 0.4 0.5

® Theory of resonance capture E R ~
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If the time to drift across ST
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libration period then
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Shifting the Classical Harper operator
H(p,¢) = acos(p — b))+ ecos ¢

a) a=1¢=0.5.=0.0 b) a=1¢=0.5.b=1.0
vis i

Iacos(l— .

libration

momentum p
momentum p

libration

- angle ¢ T T angle ¢



Vary
Spectrum of the Harper model  resonance
strength

h(a, b, €) = acos(p — b) COS ¢ No drift!
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Spectrum of the Harper model
lAz(a, b,e) = acos(p @) + € cos 45
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Vary
resonance
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How to account for
the lattice:

For a free rotor a p
perturbation gives first
order variations in
energy levels

For a harmonic oscillator

a p perturbation does
not strongly affect the
distance between
eigenvalues

log distance
to nearest
eigenvalue



Resonance capture

The libration region increases in size

resonance strength ¢
0.1 0.2 0.3 0.4
15 | 1 1 |
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Gap sizes

Gaps between nearly degenerate eigenstates range over
many orders of magnitude!

C) 0 - libration —0.3 libration
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Transition amplitudes beftween initial and final
eigenstates with b varying h(a, b(?), €)

propagator transition amplitude:
~ —L (" h(t)dt A= ‘ w: | Uty tg+ T) | v, ‘
O(t,1) = Te T 1= B DT |
final initial
eigenstate eigenstate
a) N=49,a=1,6=0.5,b=0—3107/N
27 /h=100 # 1T /h=500 # T /h=5000 T’ /h=50000
0.6 i Baq=0.10 # 3,=0.02 & Bog=2.0e-03 | & Boy=2.0e-04|
i i ¥ X9 - -
3 X :
2
3 0.3
3

0.0 index | N

sepd

transitions to
superposition

states Increasingly adiabatic

Transitions between eigenstates take place over a wide
range of drift rates (here a factor of a few thousand) !



Reaching the adiabatic limit is essentially impossible
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o 2 5 . - | & rates
g~ 07 & - o E:
5 . . A long way to go
S _8- - - before all transitions
bk - 5 would be suppressed

0 20 40

index 7



Summary

® Quantum systems that are related to resonant classical
systems may exhibit a wide range in the spacing
between nearby eigenvalues

e It is hard to estimate gap sizes

® Transitions to superposition states would be induced in
the Harper model and in the quantized pendulum over
an extremely wide range of possible drift rates

® It seems impossible to suppress all possible transitions

® Drifting systems provide way to control loss of quantum
information via causing transitions into superposition
states

® Drifting systems are a possible way to simulate
thermalization



What next? Quantum sampling

Goal: Use controllable chaotic systems to generate random
unitary operators with desirable probability distributions
Quantum Supremacy claim in 2019 based on quantum sampling

increasing perturbation strength — /
=u=025 ___ 0 //t=‘//t=31

.
TS 5
b

e

Q=€=

Most efficient chaos with
perturbation frequency near the
libration frequency

Less prone to resonant islands if
perturbation is somewhat slower
than libration frequency



Approximate 2-designs

Afproxima’ring a distribution
of random unitaries

E[[tr(UVT)|Y]

E[tr (UVT)[?]
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1.2 4

1.0 1

Within 1 Floquet period but
parameters are

chosen with a uniform
distribution

[y
o
1

e
o0

e
o

po=3.0 Ap=2.7Ab=2m

probability

o
o

e
o

I I
4 6 8 10
|tr(UVT)[?

o
[\]



Thank-youl!
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