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Iterates of the logistic map 

xn+1 = μxn(1 − xn)

μ

After iterating, orbits converge 

onto a fixed point or onto a 

periodic cycle, or are chaotic

period doubling 
route to chaos

x ∈ [0,1]

x
attracting 
fixed point

2-cycle
4-cycle

chaos

control parameter 



The logistic function is not invertible

f(x) = μx(1 − x)
larger μ

smaller μ

x0 11/2
|

given , there are two 
possible values of 

xn

xn−1

xn+1 = μxn(1 − xn)

1 bit of information 
loss per iteration 

After iterating, little 
is known about the 
initial conditions 



Iterators
Classical world Quantum world
• Dynamics can be dissipative. 
Attracting fixed points or 
cycles


• Information about initial 
conditions is lost 


• Possibility of Ergodicity/chaos

• Functions need not be 
invertible


• Optimization can be done via 
iteration

• Unitary transformations 
(preserve probability of a 
quantum state)


• Invertible

• Act like rotations when iterated

• Number of operations needed 
to construct any desired 
unitary operator from a set of 
quantum gates is low (universal 
gate sets/Kitaev Thm) 

• Algorithms involving both classical and 
quantum portions


• Open quantum systems/quantum channels

• Quantum error correction


xn+1 = f(xn)

Hybrids:

discrete time dynamical system



ℰreset(ρ) = |ψ0⟩⟨ψ0 | Reset quantum channel

Put a specific quantum subsystem into a particular pure state 
Needed for initialization in quantum computing

Reset/Initialization on a quantum computer

Quantum state initialization can be accurate and efficient


We look at operations that can be constructed from unitary 
operators and reset operators.  

In the realm of hybrid quantum/classical algorithms

density 
matrixρ

|ψ⟩ ⟶
ℰ

|ψ0⟩ initialize a state

Information is lost



Quantum oracle

To implement a non-invertible function via a unitary operation 

A function  where   ( )f(x) x, f(x) ∈ {0,1,…, N} ℤN

Complexity of a black box algorithm is the number of 
queries of the oracle function required to learn 
something about the oracle function

because information for 
the input quantum 
register is available in 
the output, 

the operator can be 
inverted

register 
of qubits
another 

register with 
same number 

of qubits



Quantum oracle

 is in the output 
register,  only if the input 
of the lower register is the 

 state

| f(x)⟩

|0⟩
To iterate ,  we need to reset the lower register 
and swap registers

f(x)

On notation for quantum circuits:
left to right is increasing in time 

horizontal lines represent registers of qubits 

x, y label pure states (here natural numbers) in a particular basis

it is assumed that you could input a superposition state



ℰreset(ρAB) = |0⟩A⟨0 |A ⊗ trAρAB

sw
ap

Creating an iterator from a quantum oracle

Uf : |x⟩A |y⟩B → |x⟩A | f(x) + y⟩B
oracle operator 
(unitary)

SWAP =
N−1

∑
x,y=0

|x⟩A |y⟩B⟨y |A ⟨x |B swap operator (unitary)

reset channel (not unitary)

For output  
the top register is  
initialized to 

| f(x)⟩

|0⟩

entanglement breaking

x, y, f(x) ∈ ℤN



Input a pure state and 
iterate j times |x⟩ ⟶ | f j(x)⟩

ℰj
f

x ∈ ℤN

sw
ap

The iterator

Composed of unitary and non-unitary components



An interesting function that can be iterated

f(x) = floor [g ( x
2n ) 2n] for x ∈ {0,1,...,2n−1}

 a function of real numbers on the unit interval to itself g()
N = 2n

g(y) = μy(1 − y)Truncated logistic map
ite

ra
te

s 
of

 f
()

μcontrol parameter

n=6,N=2n=64

       

ite
ra

te
s 

of
 f

()

μ
n=12,N=2n=4096

       

n = number of qubits

N = number of states

A quantum channel that converges to fixed states or cycles



interest in 
creating a 
digital random 
number 
generator

(Ulam/von 
Neumann)

attracting 
cycle

fixed 
point

Iterates of the truncated logistic map

Color based on left/right side 
of the unit interval

fixed points are present in the 
truncated map even though they are a 
set of measure zero in the actual map 



swaps

Iterate to compute the greatest 
common divisor of integers a,b

An ingredient of the Shor factoring algorithm that 
could be done in place on a quantum computer

Euclidean algorithm*c.300BC

Iterate for 5 times the number of digits base 10 ( ) and 
you are guaranteed to have the desired result (Lamé's Theorem)

𝒪 ln N

leaves 
remainder

ggcd(a, b) = {(b, a mod b) if b ≥ 1
(a,0) if b = 0

https://en.wikipedia.org/wiki/Lam%C3%A9%E2%80%99s_Theorem


sw
ap

What does the oracle channel do to a 
mixed state?

The channel is dephasing

Both quantum 
registers have 
the same 
dimension

Superposition is lost (decoherence)  

Result is described by classical probabilities

Information loss is associated with classical behavior

If you input  the result is a |xa⟩ + b |xb⟩
 with probability  and  with probability | f(xa)⟩ aa* | f(xb)⟩ bb*



A more general class of 
quantum channels

Partition the set of basis states into disjoint sets 
Each element in set has a unique function that can be inverted

Do resets on the register labeling the disjoint sets

control operator

marks states 
according to which  
set they belong to registers 

have 
different 
dimensions

Amount of information loss per iteration depends on 
the number of disjoint sets
Superposition for states constructed from members 
of a single disjoint set is not lost!



Classification spree

two states!

Three states!

four states



Error correction schemes are examples of channels 
constructed from functions on discrete sets

Disjoint sets gives subspaces.  Subspaces retain their 
coherence and are not dephased. 



What if register B is a continuous Hilbert space?

(not relevant for quantum computing but perhaps 
relevant for modeling an open quantum system) 



How much information is removed via the logistic map?

Answer: 1 bit per iteration

Two invertible functions 

One from the solid line and the other 
from the dashed line

A channel in the continuum limit (the logistic map)

K0 = ∫
1
2

0
dx |g(x)⟩⟨x |

K1 = ∫
1

1
2

dx |g(x)⟩⟨x |

The channel is 
described by two 
Kraus ops

Quantum system is the product space of a 
single qubit and a Hilbert space on the unit 
interval

VSD
= ( |0⟩S⟨0 |S+|1⟩S⟨1 |S ) ⊗ ∫

1
2

0
dx |x⟩B⟨x |B

+( |0⟩S⟨1 |S+|1⟩S⟨0 |S ) ⊗ ∫
1

1
2

dx |x⟩B⟨x |B

Control op

unitary op based on invertible functions

half intervals are the disjoint sets



Summary

•We constructed a class of quantum iterators that are 
not unitary and can display phenomena of classical 
iterators like cycles and period doubling


• Even when generated from a function on a discrete set, 
quantum channels can display combinatorial complexity


•253 is a large number of states, so the number of 
possible hybrid iterators is large.


• Information loss induces complexity but also decoheres 
a quantum system or a quantum subspace.  Coherence 
can be maintained in a subspace while some information 
is removed.


•Quantum computing algorithms live in a hybrid classical/
quantum world.  Opportunity for exploring classification 
of computational complexity in hybrids. 



Separatrix

has infinite 

period

Stable fixed 
point

Libration

near 
constant 
angle

Oscillation

circulating 
angle

..

unstable 
fixed point

The classical pendulum
m
om

en
tu

m

angle

energy level curves
Kinetic + potential energy

p2

2
− ϵ cos ϕ

Base model for 
resonance and 
chaosTrajectories in phase space



(1 − cos p) ∼
p2

2
Resembles kinetic energy  


for small pH(ϕ, p, τ)PH = H0(ϕ, p) + H1(ϕ, τ)
H0(ϕ, p) = a (1 − cos p) − ϵ cos(ϕ)
H1(ϕ, τ) = − μ cos(ϕ − τ) − μ′￼cos(ϕ + τ)

separatrix 

regular perturbed 

chao
tic

Chaos induced by periodic perturbation

hybrid phase space!

Classically 
integrated orbits.

Plotting a point 
every 
perturbation 
period.  These are 
surfaces of 
section. Each orbit 
is in a specific 
color. 

The perturbed Harper model is similar to the sinusoidally perturbed 
pendulum model, (e.g. Chirikov) 


Chaos at the 
separatrix 



ΔH ≈ ∫
∂H1(ϕs, ps, t)

∂t
dt

Classical estimate for width of 
chaotic region formed at 
separatrix (e.g. Chirikov 79)

Integrate the perturbation along the separatrix orbit 

For the perturbed pendulum, the result is the Melnikov-Arnold 
integral

ϕs(t), ps(t)

Estimating the width of the chaotic zone

What is the quantum equivalent?
Can we predict the width of an ergodic region in our 
quantum system?

Melnikov’s method Stable and 
unstable 
manifolds



Notions of chaos
Classical world Quantum world

• Sensitivity to initial 
conditions, Exponential 
divergence of nearby orbits 
(Lyapunov)  


• Recurrence, mixing, infinite 
number of periodic orbits, 
orbits fill phase space


• Behaves like a stochastic 
process

• Statistics of eigenvalues are 
described by a random matrix 
model 


• Anderson localization

• In the classical limit, for 
almost all eigenstates, the 
expectation values of 
observables converges to their 
phase-space average 
(Shnirelman)  (most eigenstates 
are spread out in phase space)

quantization
Bohigas-Giannoni-Schmit and Berry-Tabor Conjectures



Classical Perturbed 
Harper Model
H(ϕ, p, τ)PH = H0(ϕ, p) + H1(ϕ, τ)

H0(ϕ, p) = a (1 − cos p) − ϵ cos(ϕ)
H1(ϕ, τ) = − μ cos(ϕ − τ) − μ′￼cos(ϕ + τ)

ĥ(τ)PH = ĥ0( ̂p, ̂ϕ) + ĥ1( ̂ϕ, τ)

ĥ0( ̂ϕ, ̂p) = a (1 − cos ̂p) − ϵ cos ̂ϕ

ĥ1( ̂ϕ, τ) = − μ cos( ̂ϕ − τ) − μ′￼cos( ̂ϕ + τ)

Quantum perturbed 
Harper model

phase space

 

 on a torus
ϕ, p ∈ [0,2π]

̂ϕ, ̂poperatorsquantization

related via discrete 
Fourier transform

Bohr-Sommerfeld

or via Weyl operator

Why work on a torus?  When quantized, the quantum space is 
finite dimensional (easier to work with 
and relevant for quantum computing)

Quantization of a classical model giving 
tunable and predictable chaotic region 

periodically perturbed == Floquet ÛT = 𝒯e− i
ℏ ∫T

0 ĥ(t)dt



(Husimi distributions) N=100Classical orbits

Each panel shows 
an eigenstate 

(of the 
propagator)

HQ(k, l) = |⟨ψ |k, l⟩ |2

k, l ∈ [0,....,N − 1]

Husimi distribution 
giving probabilities 
in phase pace

generated using 

discrete coherent 
states analogs

Eigenstates 
m
om

en
tu

m

angle

in phase space



Ordering the eigenstates of the Floquet propagator

σj,h0 = ⟨wj | ĥ2
0 |wj⟩ − μ2

j,h0

expectation value of 
unperturbed energy

we also computed the dispersion

Husimi functions for the 
eigenstates in order of μj,h0

μj,h0 = ⟨wj | ĥ0 |wj⟩



Husimi functions

Classical orbits
Energies

Expectation value and dispersion of 
unperturbed Hamiltonian operator for 
Floquet eigenstates is similar to those 
computed from classical orbits. The 
dispersion gives a measure of ergodicity

flattening

m
ea

n
st
an

da
rd

 d
ev

ia
ti
on

A measure of ergodicity



index k   eigenstates of propagator ÛT

in
de

x 
j 

 e
ig

en
st
at

es
 o

f 
ĥ 0

Another view of quantum ergodicity

initially 
localized 
information 
becomes mixed 
across the 
chaotic region


akin to 
thermalization

transition 
probabilities



N=16 N=32 N=64 N=128 N=256

Another notion of quantum ergodicity 

Shnirelman theorem (for certain maps) refers to the 
asymptotic properties of eigenfunctions of the 
Schrodinger operator in case of a classically chaotic 
system. For almost all eigenvalues the probability of 
finding the system in a vicinity of a given classical state 
becomes uniformly distributed along the surface of 
constant energy in phase space.



ΔH ∼ ∑
k≠s

⟨vs |
1
T ∫

T

0
dt e

i
ℏ ĥ0tĥ1(t)e− i

ℏ ĥ0t |vk⟩
2

ΔH ≈ ∫
∞

−∞

∂H1(ϕs, ps, t)
∂t

dt

Classical Quantum counterpart

Integrate perturbation 
on separatrix orbit

Chaotic zone width estimates

Average over perturbation

and sum over eigenstates 
near the separatrix energy

Eigenstate of unperturbed 
system with energy nearest 
that of the separatrix is |vs⟩

How accurate are these estimates?

Answer: Great to order of magnitude. 

 describe separatrix 
orbit of unperturbed 
system in phase space 

ϕs, ps



• Harper model on the torus is a compact system for 
exploring resonant quantum/classical connections. Via 
perturbation we have hybrid chaotic/regular behavior 
in related classical and quantum systems


• Husimi functions look great!  Classical orbits in phase 
space resemble quantum eigenstates!


• We have a measure of ergodicity in both classical/
quantum systems   


• We derived a quantum counterpart to a predictive and 
widely applied classical formula for estimating the 
width of a chaotic region


Summary



Notions of adiabatic drift H(t)
Classical world Quantum world

• Conservation of an action 
variable that encloses a 
constant volume in phase space.

• A system initialized in an 
eigenstate remains in one  


• Landau-Zener model for 2-
level systems


Probably of a diabatic transition

Pdiabatic = e−2πΓ Γ =
ΔE2

ℏ ·E
If  then the system 
remains in the same eigenstate

Γ ≫ 1

time
En

er
gy

time

En
er

gy

diabatic adiabatic 

What happens if phase 
space is divided by an 
orbit with an infinite 
period? 


Near the separatrix 
dynamics cannot be 
adiabatic 



Information loss via adiabatic drift H(t)
Classical world Quantum world
•Theory of resonance capture

Phase when approaching 
separatrix orbit determines 
the outcome 


Sensitivity to phase is 
replaced with a probability 
of resonance capture

|0⟩ ⟶ α |0⟩+β |1⟩

Transition into a superposition 
state with a sensitive relative 
phase

time
En

er
gy

|0⟩

|1⟩

superposition



Statistics of quasi-energy spacings

Regular (non perturbed) 
compared to a chaotic system
Wigner/Dyson statistics (spacings 
of a random matrix model).

time
En

er
gy

adiabatic 

Ansatz:  If energy levels 
repel in chaotic systems, 
then they could aid in 
adiabatic computing 
algorithms 

ground 
state of 
simple 
system

ground 
state of 
another  

system that 
you want to 

find



Drift 
durations

Porter Thomas

For a slowly drifting chaotic system, 
transition probabilities are randomly 

distributed and independent of drift rate

Ansatz 
fails



Notions of adiabatic drift H(t)
Classical world Quantum world

Pc =
V+

V+ − V−

•Theory of resonance capture

probability of 
capture into 
resonance 

Rate of volume change of upper separatrix

Rate of volume change of lower separatrix

    Growth rate of volume inside separatrix 

V+
V−
V+ V−-

Kruskal-Neishtadt-Henrard Theorem

If the time to drift across 
resonance is long compared to 
libration period then

A lattice of resonance 
crossings. Probability of 
entering a different region in 
phase space can be 
estimated from a sum of 
probabilities for each 
crossing (Stadel et al. 2022)

Ei
ge

nv
al

ue
s



H(p, ϕ) = a cos(p − b) + ϵ cos ϕ

Shifting the Classical Harper operator



Spectrum of the Harper model 
ĥ(a, b, ϵ) = a cos( ̂p − b) + ϵ cos ̂ϕ

circulating

Librating

separatrix 

sepa
ratrix

 

Ei
ge

nv
al

ue
s 

resonance strength ϵ

log distance 
to nearest 
eigenvalue

For , eigenvalues 
are in pairs of 
multiplicity 2 
(degenerate!)


ϵ = 0
degenerate

energy levels

separated 

Eigenvalues are well 
separated in the 
librating region, but 
remain nearly 
degenerate in the 
circulating region  

No drift!

Vary 
resonance 
strength



Spectrum of the Harper model
Ei

ge
nv

al
ue

s 

ĥ(a, b, ϵ) = a cos( ̂p − b ) + ϵ cos ̂ϕ

resonance center b

lattice of 
avoided 
crossings

Librating

circulating

separatrix 

separatrix 

For a free rotor a  
perturbation gives first 
order variations in 
energy levels


For a harmonic oscillator 

a  perturbation does 
not strongly affect the 
distance between 
eigenvalues


̂p

̂p

How to account for 
the lattice:

Vary 
resonance 
center

log distance 
to nearest 
eigenvalue



The libration region increases in size

drift in 
both  
and 

b
ϵ

Ei
ge

nv
al

ue
s 

resonance strength ϵ

resonance center b

Wide 
range

of energy 
spacings!

How close 
can they 
be?

Resonance capture 



Gaps between nearly degenerate eigenstates range over 
many orders of magnitude!

lo
g1

0 
en

er
gy

 s
pa

ci
ng

Gap sizes

14 orders of 
magnitude



Transition amplitudes between initial and final 
eigenstates with  varyingb

Û(t, t0) = 𝒯e− i
ℏ ∫t

t0
ĥ(t)dt Aij = ⟨wj | Û(t0, t0 + T ) |vi⟩

Increasingly adiabatic

Transitions between eigenstates take place over a wide 
range of drift rates (here a factor of a few thousand) !

transition amplitude:propagator

ĥ(a, b(t), ϵ)

initial 
eigenstate

final 
eigenstate

separatrix

se
pa

ra
tr

ix

lib
rat

ion

circulation

ad
iab

ati
c

dia
ba
tic

transitions to 
superposition 
states



Giving diabatic 
transition with 
probability of 1/2 
estimated using the 
Landau Zener model 
for the same drift 
rates 

A long way to go 
before all transitions 
would be suppressedlo

g1
0 

En
er

gy
 s

pa
ci
ng

Reaching the adiabatic limit is essentially impossible

slower



• Quantum systems that are related to resonant classical 
systems may exhibit a wide range in the spacing 
between nearby eigenvalues


• It is hard to estimate gap sizes

• Transitions to superposition states would be induced in 

the Harper model and in the quantized pendulum over 
an extremely wide range of possible drift rates


• It seems impossible to suppress all possible transitions

• Drifting systems provide way to control loss of quantum 

information via causing transitions into superposition 
states


• Drifting systems are a possible way to simulate  
thermalization

Summary



= =3μ μ′￼

Most efficient chaos with 
perturbation frequency near the 
libration frequency

Less prone to resonant islands if 
perturbation is somewhat slower 
than libration frequency 

a= =3ϵ
increasing perturbation strength ⟶

N=99

What next?  Quantum sampling
Goal: Use controllable chaotic systems to generate random 
unitary operators with desirable probability distributions

Quantum Supremacy claim in 2019 based on quantum sampling



Approximate 2-designs Within 1 Floquet period but 
parameters are 

chosen with a uniform 
distributionApproximating a distribution 

of random unitaries

pr
ob

ab
ilit

y
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