PROBLEM SET #4 AST243

1. Temperature Jumps at Shocks

The Rankine-Hugoniot conditions can be used to show that for an ideal gas with it
adiabatic index =
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where the subscript 1 refers to upstream and subscript 2 refers to downstream. Here

M = uy/cy is the Mach number of the pre-shock material and velocities are given in

the shock’s reference frame.

(a) Show that for strong (M; > 1) shock waves
L_O=Ur
i (v+1)p

While the density ratio approaches a limiting value with increasing Mach number,
the pressure and temperature ratio can be arbitrarily large.

3)

Hint: use the ideal gas law p = nkT.

(b) Consider a shock passing into the interstellar medium of initial density n; ~ 1 cm™3

and temperature Ty = 10*K. What pre-shock speed (in the shock frame), uj, is
required to account for a post shock temperature of 10’K? You can either do this
to order of magnitude or assume v = 5/3.

Hint: use the temperature ratio to find the pressure ratio and use that to find the
pre-shock Mach number Mj.

(c) Assume that the preshock gas has zero velocity with respect to the observer and
that the shock normal is parallel to the line of sight. What is the post shock velocity
in the observer frame?

Hint: you can find uo using M;. But wus is in the frame moving with the shock.
The difference uo — u1 = vo — v1 where vo, v are in the observer’s frame.

2. Blast wave estimates
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A self-similar blast wave solution relates energy E, ambient density p, radius R, and

time, t, with
B\ 1/5
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FI1GURE 1. A hypothetical blast wave caused by a burst of star formation.

(a) Derive an approximate scaling relation for the blast wave’s velocity V as a function
of time ¢, energy E and ambient density p.
LIS dR
Hint: V ~ %2 ~ R/t.
(b) Assume that the blast wave is made by a constant energy injection rate E rather
than a single explosion of energy E. Derive a scaling relation (like the above one)

for the blast wave’s radius R as a function of time # in terms of E and ambient
density p.

Hint: this can be done with units.

(¢) For the constant E driven blast wave, derive a scaling relation for the blast wave’s
velocity V' in terms of the ambient density p and energy injection rate E and time.

(d) Show that
E ~ pR*V3, (5)
3. A starburst fueled shell

In the center of a nearby elliptical galaxy you detect a spherical shell that has radius
500pc and is expanding at 200 km/s. You estimate the number density of the ambient
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ISM (outside the blast wave) in the galaxy from its X-ray emission as n ~ 10~3cm~3.
The shell is probably too big to be caused by a single supernova. You consider the
possibility that many supernovae have contributed to its energetics.

(a) Assuming a constant E, and the scaling relation derived in the previous problem
(equation 13) relating E,V and p, how much energy per unit time (E) in erg/s is
needed to account for the shell?

(b) Assume that there is an on-going starburst at the center of the galaxy. About 1
per 100 stars born goes supernovae. Each supernovae has 10°! ergs but of this
energy only about 1% might be injected into the galaxy ISM because energy is lost
through radiation and emitting particles like neutrinos. Assume a constant star
formation rate and that the average star has a mass of about 1 M.

Find a coefficient, X, such that

SFR = X Mgoyr ! x < £ ) (6)

erg s—1

where SFR is the star formation rate in solar masses per year.

(c) Approximately, what star formation rate in solar masses per year would be required
to explain the shell in the context of a constant E blast wave model?

(d) Using its velocity and radius, estimate the age of the shell. This would give you
an estimate for the duration of the starburst.

Hint: age t ~ R/V.

4. Components of the velocity gradient tensor

ou;

Consider the velocity gradient tensor Tj; = #* in Cartesian coordinates with u the

velocity.

The tensor T is a 3 x 3 matrix that can be decomposed into the sum of three matrices.
The first matrix in the sum is a diagonal matrix that is proportional to the identity
matrix. The second matrix is symmetric and traceless. The third matrix is anti-
symmetric and traceless.

(a) Construct and draw streamlines for a velocity field such that the trace of T is
non-zero but the antisymmetric and trace-less symmetric parts are zero.

(b) Construct and draw streamlines for a velocity field such that the symmetric com-
ponents of T are zero but the antisymmetric component is not.
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(c) Construct and draw streamlines for a velocity field such that only the traceless
symmetric component of T is non-zero.

Consider the traceless symmetric tensor o;; = % (wij +ujs) — %uk7k(5ij where wuy, j,
is the trace of T.

(d) Compute o,y for fluid flow near a fixed surface with velocity u = (ay,0,0) that
approaches zero near a surface at y = 0.

(e) Compute o, for rotation in a Keplerian disk with u = v (r)(—%, £

GTM. Here the radius r = \/m

5. Are galaxy gas disks accretion disks?

Consider a gas rich spiral disk galaxy. A typical velocity dispersion for turbulent
motions in the HI gas is of order o ~ 10 km/s and a typical radial sizescale for the disk
is of order R ~ 10 kpc. A typical circular rotation velocity would be v, ~ 200 km/s.

(a) Using the velocity dispersion in the HI disk and hydrostatic equilibrium to estimate
the scale height of the atomic gas component in parsec.

Hint: hydrostatic equilibrium gives % ~ u% where h is the scale height at radius r

and o is the velocity dispersion and v, is the circular velocity.

(b) Using the scale height and velocity dispersion in the HI disk, estimate a kinematic
turbulent viscosity at radius r from their product.
Hint: A turbulent viscosity is commonly estimated as v ~ aho with uncertainty
in the value described by dimensionless number c.

(c) Using the disk radius R of the galaxy, estimate an accretion timescale in years, or
a timescale for accretion to take place across this radius.
Hint: The velocity of inflow due to accretion v, ~ r/v. A timescale for accretion

would be t, ~ r/v,.

(d) Compare an accretion timescale to the Hubble time. Is viscous accretion likely to
be important in galactic gas disks?

It may be helpful to know that 1 km/s is approximately 1 pc/Myr is approximately
1 kpc/Gyr.

6. The temperature of a viscously heated accretion disk
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Assume that an accretion disk is heated by viscous energy dissipation giving a heating
rate per unit area (with units of power per unit area) of

9
q= ZEQQV (7)

where Q = /GM/r3 is the angular rotation rate at radius r and about a central mass
M. Here v is the viscosity and X is the disk’s surface mass density. We assume that
the generated heat is radiated from both sides of the disk with a black body spectrum
with temperature 7' so

q=205pT" (8)
where ogp is the Stefan-Boltzmann constant. Assume that the viscosity is that of a
Shakura-Sunyaev disk with

vV = acsh 9)

¢ = ﬁ (10)

with m mass of a gas particle, and kp the Boltzmann constant. The scale height h
satisfies

with sound speed

h§) = ¢ (11)
due to hydrostatic equilibrium. Assume that the disk surface density obeys a power law
Y =Yor " (12)

with exponent 8 > 0.

(a) Assuming that the temperature relevant for the sound speed and the disk surface
temperature are the same, and that radiation from a central source is not a sig-
nificant contributor to the disk temperature, find the radial temperature profile.
(Find T'(r))

(b) If the disk temperature is set by radiation from a central source with luminosity
L, the disk temperature profile (ignoring optical depth) is

1
L 1
T = -
<47r053> "

Which temperature profile drops faster, that due to radiation balance from a central
source or that due to accretion?

=

(13)

7. The width of a shock
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Consider Burger’s equation, including viscosity
Ut + ULy = VU gy (14)

where we have used short hand for the partial derivatives and wu(x,t). This equation
can illustrate phenomena associated with the Navier-Stokes equation in 1 dimension.
Because of the viscous term, solutions should no longer exhibit sharp discontinuities.
However we can consider a solution that approaches a constant value at large distances
from a region where u is rapidly changing.

We consider a solution that has the form f(x — st) of a traveling wave. Moving into
a frame that moves with the traveling solution we have a time independent equation

Ul g = VU g (15)
(a) Show that
cx
= c tanh— 16
u(x) = ¢ tanh (16)
is a solution to the time independent form of Burger’s equation (with viscosity).

For this solution, © — ¢ at large positive x and u — —c at large and negative x so
the velocity jump is Au = 2¢.

(b) Estimate the width of a shock that has a velocity jump of Aw if the viscosity is
v. By width we mean the size of the region where the transition in velocity takes
place.



