PROBLEM SET #2 AST243

1. Validity of continuum or fluid approximation in a hydrostatic planetary at-
mosphere

Consider the Euler equation

ou 1
u-Vu=—--Vp+ 1

with an additional force from g, the gravitational acceleration. In hydrostatic equilib-
rium we can assume that the velocity u = 0 and remains that way.

(a) Assume a planet’s atmosphere is isothermal and has temperature 7' and sound
speed cs;. Show that a solution for the density as a function of height above the
surface z is p < exp(—z/h) and find an expression for the scale height h in terms
of the gas temperature.

(b) The velocity, vk, of an object in circular orbit of radius r around a planet is

G,

r

VK =

where M, is the planet’s mass and G the gravitational constant. Compare this
to the sound speed of the gas. For what sound speed would the atmosphere scale
height be the same order as the planet’s radius, R,? For what scale height (in units
of the planet’s radius) is the mean thermal velocity equal to or below the escape
velocity? When the scale height is of order R, or greater, a constant gravitational
acceleration is a bad assumption.

(c) High above a planet’s surface, the atmosphere becomes more and more rarified.
Assume a density at the planet’s surface of pg, the atmosphere is comprised of
molecules of mass m and a collision cross section for the molecules of o. When the
mean free path is greater than the scale height the fluid approximation fails. When
the fluid approximate fails, equilibrium is no longer maintained by collisions. This
height is called the exobase.

At what height above the planet’s surface does a fluid approximation fail?

This problem is based on one posted by Eugene Chiang.

2. Reynolds number of headwinds on planetesimals
1
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A planetesimal is embedded in the midplane of a circumstellar disk that is composed
mostly of molecular hydrogen. Due to gas pressure in the disk, the gas in the disk
orbits more slowly than the planetesimal and the planetesimal feels a headwind. With
respect to the planetesimal, the speed of the headwind is about uying ~ 20 m/s and
independent of orbital radius. Our goal is to estimate the Reynolds number of the gas
flow about the planetesimal.

A fairly conventional® circumstellar disk model has midplane density at orbital radius

r
_u
p(r) ~107° kg m™3 x (ﬁ) T 2)
The gas number density
p
n o~ m 3)

where m ~ 3.4 x 1072"kg is the mass of a hydrogen molecule. The disk midplane
temperature for the conventional disk has

VI

T(r) ~ 170K (ﬁ)_ . (4)

We note that p,n,T are functions of r.

The mean free path in the gas is
Amfp ~ (na)il (5)

where 0 = 2 x 10712 m? is the collisional cross sectional area of a molecular hydrogen.
The gas kinematic viscosity

V ~ AmfpCs (6)

Cs ~ \/? (7)

and kp is Boltzmann’s constant. Note that Ay, v, ¢s are all functions of 7.

where the sound speed

The Reynolds number of the flow about a planetesimal of diameter D is

Dy
Re = =, (8)
v
The Reynolds number is a dimensionless number that is used to characterize the ratio

of viscous stress to inertial force.

(a) Estimate the Reynold’s number of the flow about the planetesimal for a D = 1 km
diameter planetesimal at »r = 1 AU.

1Sligh‘cly enhanced surface density compared to the minimum mass solar nebula, and with a radial
temperature decay profile that is approximately set by radiation balance with the central star.
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(b) How does the Reynolds number depend on orbital radius?

3. Potential flow
A irrotational flow has zero vorticity, w = V x u = 0 where u is the velocity field.

A potential function ®(x) can be used to model an irrotational flow (one with no
vorticity) with
u=Vo

as the curl of a gradient vanishes; V x (V&) = 0.

An incompressible flow satisfies V - u = 0. Hence an incompressible potential flow
satisfies Laplace’s equation; V - V& = V2 = 0.

A solution of Laplace’s equation can be described as harmonic, which is a powerful
concept that is exploited for analytical models for 2-dimensional flows.

Near a surface, a boundary layer is likely to cause vorticity, so potential flow models
do not describe real flows. However, they can be convenient as they can provide simple
analytical models and they can be used to approximate irrotational flow distant from a
boundary, even in astrophysics, where flows tend to be compressible and rotational.

In spherical coordinates, flow about a sphere of radius R can be modeled with the
potential

O(r,0,¢) = U <7“ + 1R3> cos (9)

2 r2

where U is the velocity of the flow distant from the sphere. Here the origin is taken to
be at the center of the sphere. In Cartesian coordinates the same potential function

O(x,y,2) =Uz <1 + L i ) (10)

2 (22 +y2 +22)2

(a) Show that the normal component of the velocity field vanishes at the surface of the
sphere where r = R.

(b) Show that the velocity field derived from the potential at large distances from the
object approaches lim, ,,,u= Uz

Hints: ones of these problems is easier in Cartesian coordinates and the other easier
in spherical coordinates.
The gradient in spherical coordinates is

0. 109 0 1 094

Ve =5t 50l T im0
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4. Divergence in spherical coordinates
Spherical coordinates (7,0, ¢) in terms of Cartesian coordinates (z,y, z) are

T = rsinf cos ¢
y = rsinfsin ¢

z =rcosf.

Given 27 Cartesian coordinates as a function of 4/ a different set of coordinates, the
components of the metric tensor in the y coordinate system are

ok oxk
= - —— 11
gzg ; 8yz ayg ( )

(a) Compute the metric tensor in spherical coordinates.

(b) Find a set of vectors t, 0, ¢ that are pointed in the direction that their coordinates
increases and are unit vectors.

(c) Using the relation for the covariant divergence

k
vy A 12)

show that the divergence of a vector with components A,, Ag, Ay is

18(702,4,,)4r 1 8(Agsin9)+ 1 04,

A= = )
v r2  or rsin 6 00 rsinf O¢

Here |g| is the determinant of the metric tensor.

5. Thermal equilibrium with a source term

Consider a spherical body of radius R with an internal heat source such as radioactive
decay. We assume spherical symmetry so all equations will only depend on radius r.
The temperature as a function of radius is described by the heat equation with a source
term

pev — — AV2T = pQpeat for 0 < r < R, (14)

ot
where p is density, cy is specific heat, A is thermal conductivity, Qheat is heating rate per
unit mass generated via an internal heat source, and pQpeqr > 0 is the energy heating
rate per unit volume. We neglect any radial dependence of p, A and Qpeqt-
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We assume a steady state giving

“AV2T = pQpeat (15)

In spherical coordinates, and only considering radial variations in T,

10 2aT theat
L2 ) = EEhedt 16
r2 or (r 8r> A (16)
Consider f(r) a radial function that satisfies Laplace’s equation
10 [ ,0f\
" or < a> B an

(a)

(b)

Find a general form for a solution f(r) to equation 17 (Laplace’s equation with
spherical symmetry).

Hint: integrate twice. The result should include two unknown constants.

Find a general form for a solution T'(r) to equation 16 (with a heating source).

Note: If you add f(r) (a solution to Laplace’s equation) to any particular solution
T'(r) to equation 16, you will have another solution to equation 16. The two types
of solutions are called homogeneous and inhomogeneous.

Adopt boundary conditions of zero flux at the origin

dT(r)
dr

=0 (18)
r=0
Find the general solution for 7'(r).

As you have used one boundary condition, the general result should now contain
only 1 undefined constant.

The heat flux

F=-)\VT (19)
and at the surface
oT(r) )
F=-)\—"1~" . 20
or 7"=Rr ( )

Compute the heat flux at the surface.
Ignoring external sources of heat, compute the surface temperature assuming that
the heat flux at the surface is radiated thermally with a black body spectrum.

The energy flux at the surface due to emitted thermal radiation should be ogpT*
where ogp is the Stefan Boltzmann constant.

This condition should give an additional constraint on the solution.
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(f) See if you can update the general solution, which should no longer contain any
unknowns and use it to compute the central temperature (at r = 0).



