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1. Introduction to Ideal Fluid Dynamics

1.1. Variables. We take x to be a Cartesian coordinate in three dimensions t to
be time. A fluid is characterized by a mean velocity field u(x, t) and at least two
integrated or thermodynamic quantities. Often these are the mass density, ρ(x, t)
and pressure p(x, t). The energy density e, or temperature, T , can treated as an
additional variable or can be related to ρ and p.
There can be additional degrees of freedom, such as the molecular or nuclear

composition and the ionization state. There could also be radiation or a magnetic
field.

1.2. Eulerian and Lagrangian views. We view the system from a fixed coordinate
system and describe each variable as a function of (x, t). The partial time derivative

∂

∂t

describes how variables change in time from the point of view of a fixed point in
space attached to a coordinate system or an inertial frame. Equivalently from the
point of view of an external observer who is in a static inertial frame. This is the
Eulerian viewpoint.

We could also describe the system from the view point of particles that are moving
with the fluid. Suppose we have a scalar quantity like T (like temperature). We would
like to predict what would cause a small change δT as our fluid element moves. Over
a small change in time δt and with small changes in coordinates δx, δy, δz.

δT =
∂T

∂t
δt+

∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz

We now divide by δt.

δT

δt
=

∂T

∂t
+

∂T

∂x

δx

δt
+

∂T

∂y

δy

δt
+

∂T

∂z

δz

δt
(1)
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If we chose δx, δy, δt to be an element of the fluid that is moving along with the fluid
then δx

δt
= u and we can write the above as

δT

δt
=

∂T

∂t
+ u ·∇T

Figure 1. A fluid element moving within a larger flow.

If we consider derivatives from the point of view of particles moving with the fluid
then we can describe changes with the Lagrangian time-derivative or

D

Dt
≡ ∂

∂t
+ u ·∇. (2)

Let us write this out in terms of components

D

Dt
=

∂

∂t
+
∑
i

ui
∂

∂xi

as we had done in equation (124).
Another way to think about this is to consider a fluid element at x that has moved

by uδt in a time δt. If we consider T for that fluid element we can write T as

T (x+ uδt, t+ δt)

so the change in T moving with the fluid element

DT

Dt
= lim

δt→0

(
T (x+ uδt, t+ δt)− T (x, t)

δt

)
= lim

δt→0

1

δt

[
T +

∂T

∂x
uxδt+

∂T

∂y
uyδt+

∂T

∂z
uzδt+

∂T

∂z
uzδt− T

]
=

[
∂

∂t
+ u ·∇

]
T. (3)
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If we write equations from the view point of fluid elements that are moving we say
we are using the Lagrangian view point.

Consider traffic flow. We can describe traffic flow in terms of density, ρ, (cars per
unit length) and a velocity, u, the speed of cars on the road. If we describe ρ and
u as a function of position on the road we are using the Eulerian view point. If we
describe ρ and u in terms of those seen by individual drivers we say we are using the
Lagrangian viewpoint.

Numerical methods that use fixed grids work in the Eulerian view point. Numerical
methods that allow particles to move in the simulation and compute forces on these
particles work in the Lagrangian viewpoint. Smooth Particle Hydrodynamics (SPH)
codes use the Lagrangian viewpoint.

1.3. An aside on notation. In three dimensions the Cartesian coordinates are
often denoted x, y, z. Sometimes we use an index instead to denote each coordinate;
x1, x2, x3 or xi, xj, xk with i, j, k ∈ {1, 2, 3} .
Partial derivatives can be written in a variety of ways including

∂u

∂x
u,x ux ∂xu

1.4. Streamlines and flow visualization.

• Streamlines are integrated curves that have local tangent or slope equal to
the instantaneous flow velocity, dx

dt
= u. However these are only equivalent

to particle paths if the flow is steady or stationary.
• Paths are trajectories of particles that move with the fluid.
• Flow can also be visualized by adding die or smoke continuously at particular
fixed locations in the flow. These are called streaks.

Streamlines are the not the same as paths if the flow is unsteady.
Another example is that by Clarke and Carswell. Consider a non-steady state

2-dimensional flow with

u = (1, 0) for t < 0 (4)

= (0, 1) for t > 0 (5)

so that velocities are moving to the right at t < 0 and moving upward for t > 0. At
t < 0 streamlines are moving to the right. At t > 0 streamlines are moving upwards
(see Figure 3).

However particle trajectories start moving to the right and then bend upwards.
Particle trajectories are not streamlines. The location of the bend depends on where
the particle was at t = 0. After t = 0 streaks have a bend and move upwards; see
Figure 4.
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Figure 2. Streamlines, paths and streaks. A streamline is a curve
with tangent aligned with the velocity vector. A path is the path that
a particle moving with the fluid would take. A streak is what would
be seen if die were continuously emitted from a particular fixed loca-
tion.

Figure 3. Streamlines for the two dimensional flow with u = (1, 0)
for t < 0 and u = (0, 1) for t > 0.
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Figure 4. Paths and a streak for the flow described in equation 5.
The paths depend on where the particle was at t = 0. The paths shown
are at some time after t = 0. The bent streak (on right) keeps drifting
upwards after the change in velocity takes place. It is also shown after
the velocity change.
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1.5. Conservation of mass. Consider a flow with density ρ(x, t) and velocity
u(x, t). Let us list units

ρ
mass

distance3

u
distance

time

The mass flux

ρu d
mass

distance3
× distance

time
=

mass

distance2 time

Figure 5. For a flow with density ρ and velocity u the mass flow
through a surface oriented in direction dA and with area |dA| is ρu·dA.

We consider the change in density with an Eulerian view point. If we consider the
mass flux ρu moving through a closed surface S∫

S

ρu · dA =

∫
V

∇ · (ρu) dV

where I have used Gaus’s law to write this as an integral over a volume V enclosed
by the surface S. The mass flux through the surface S must be balanced by change
of density in V or ∫

V

∂ρ

∂t
dV = −

∫
V

∇ · (ρu) dV

Equating the two expressions (locally)

∂ρ

∂t
+∇ · (ρu) = 0 (6)
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This is the general form for a conservation law for a scalar quantity, which in this
case is the mass density ρ.
Why is equation 6 equivalent to conservation of mass? The integral of all the mass

in a particular domain V at a particular time

total mass =

∫
V

ρ(x, t)dV. (7)

The time derivative of this

d

dt
total mass =

∫
V

∂ρ

∂t
dV

=

∫
V

∇ · (ρu)dV

=

∫
S

(ρu) · dA

If the surface S of the domain is impermeable then the flux through this surface
must be zero and the right hand side vanishes. In an infinite domain, often one can
assume that the density drops to zero and that too gives a zero right hand side. If
the right hand side is zero then there is no change in the total integrated mass and
mass is conserved.

We can write a conservation law in the form

∂

∂t
(quantity) +∇ · (flux of quantity) = 0. (8)

Our example for conservation of mass involves the time derivative of a scalar quantity.
However when we discuss momentum we can consider more general vector or tensor
forms for conservation laws.

Some numerical algorithms require putting differential equations in conservation
law form. The above equation does not involve a Lagrangian derivative and so is in
the Eulerian view point.

Consider the form of the conservation of mass using the Lagrangian viewpoint.
The mass flux of a fluid element moving with the fluid is reduced if there is mass
leaving the fluid element boundary. The rate that mass leaves the fluid element
depends on the velocity field and the density in the fluid element. Using Gaus’s law
again and integrating over a closed volume V bounded by surface S

ρ

∫
S

u · dA = ρ

∫
V

∇ · u

Locally the mass leaving the fluid element would be ρ∇ · u. The density variation
in the fluid element is computed with the Lagrangian derivative, so our conservation
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law looks like
Dρ

Dt
= −ρ∇ · u

The above equation is given in the Lagrangian viewpoint.
We can expand the above equation

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0

and we see that this is equivalent to our previous form in the Eulerian viewpoint for
the conservation of mass.

An incompressible fluid is one that does not change density even if moving so
that Dρ

Dt
= 0 and so that ∇ · u = 0.

Now is a good time to look at the movie on Eulerian vs Lagrangian view points
at NCFMF.

1.6. Conservation of momentum. What is the change of momentum for a moving
fluid element? It is

ρ
Du

Dt
= ρ

(
∂u

∂t
+ (u ·∇)u

)
Why, we may ask is the change of momentum for a moving fluid element not
D(ρu)/Dt instead of ρDu/Dt? When the fluid element is accelerated (changes in ve-
locity) it experiences a change in momentum. However when it expands and changes
density it does not experience a change in momentum. Our expression ρDu/Dt
gives us the (rate of change of momentum) per unit volume whereas the expression
D(ρu)/Dt would describe the rate of change of (the momentum per unit volume).
Another way to think about this is to consider the fluid element as a fixed amount of
mass, m. The rate of change of its momentum would be mDu

Dt
where m = ρV and V

is the volume of our small fluid element. We want to equate the force on this mass
to its mass times acceleration.

Consider the total force due to pressure acting on a fluid element. We integrate the
pressure around the surface of the fluid element and transform to a volume integral

−F =

∮
S

pdA =

∫
V

∇pdV.

To see why this is true
∫
V

dp
dx

dx dy dz =
∫
S
pdydz.

The pressure exerts a force of −∇pdV on a fluid element of volume dV and the
minus sign arises as the force is in the direction from high to low pressure, as shown
in Figure 6. Taking into account only the pressure force on the fluid element we can
write

ρ
Du

Dt
= −∇p
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Figure 6. A pressure gradient exerts a force on a fluid element.

in the Lagrangian viewpoint. Expanding the derivative we find

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p (9)

which is known as Euler’s equation and since it lacks a Lagrangian derivative it is in
the Eulerian viewpoint.

On a point mass of mass m, gravity exerts a force −m∇Φ where Φ is the gravi-
tational potential. The force per unit volume exerted by gravity on a fluid element
would be −ρ∇Φ. Our force balance equation including gravity

ρ
Du

Dt
= −∇p− ρ∇Φ. (10)

Euler’s equation including gravity (useful for many astrophysical settings)

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p−∇Φ. (11)

Let’s be clear on what we mean by the above equation by writing out one of the
components, the j-th component

∂uj

∂t
+
∑
i

ui
∂uj

∂xi

= −1

ρ

∂p

∂xj

− ∂Φ

∂xj

or more specifically the z component

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
− ∂Φ

∂z
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1.7. Hydrostatic equilibrium. If the fluid is not moving and is in equilibrium
then ∂u

∂t
= 0 and u = 0. Euler’s equation including gravity (Equation 11) becomes

∇p = −ρ∇Φ

Using an equation of state relating pressure to density this can be solved to find a
density or pressure profile as a function of radius in a star or as a function of height
in a planetary atmosphere.

1.8. When is hydrostatic equilibrium a good approximation? A planetary
atmosphere may be turbulent and so not perfectly static. We can ask when is it
justified to drop the first two terms in Euler’s equation? Let’s do some dimensional
analysis on Euler’s equation. Recall Euler’s equation including gravity,

∂u

∂t
+ u ·∇u = −1

ρ
∇p−∇Φ

The term
∂u

∂t
∼ δu

δt
∼ (δu)2

l
where δu is the velocity of a typical turbulent motion of eddy size l that would last
a time δt ∼ l/δu. The term

u · ∇u ∼ (δu)2

l
is of the same order of magnitude. The pressure term

1

ρ
∇p ∼ c2s

h

where h is the atmosphere scale height and cs the sound speed. The gravity term

|∇Φ| = g

the acceleration due to gravity. We expect we can neglect the velocity terms in
Euler’s equation when they are small compared to the pressure and gravity terms.
We find that hydrostatic equilibrium is a good approximation as long as

(δu)2

l
≪ g.

This is equivalent to saying accelerations in the eddies are smaller than that due
to gravity. The other condition (accelerations in eddies smaller than that due to
pressure) would be

(δu)2

l
≪ c2s

h
which for large eddies is equivalent to saying that eddies are subsonic.
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1.9. Failure of continuum fluid approximation. Above we considered when ve-
locity perturbations make hydrostatic equilibrium a bad approximation. Hydrostatic
equilibrium is based on a continuum fluid approximation. The continuum fluid ap-
proximation is no longer valid on a lengthscale shorter than the mean free path of
a particle or on a timescale shorter than the mean collision timescale. Consider the
gas number density (particles per unit volume),

n =
ρ

µmp

where µ is the mean molecular weight and mp the mass of a proton (we should be
using an atomic mass unit but that is approximately the mass of a proton). If the
gas is molecular then we should correct the above to take into account the mass of
the average molecule. Given a collision cross section σ and a gas number density n,
the mean collision timescale

τcol = (nvσ)−1

where v is a mean velocity usually set by the temperature, and of order v ∼ cs. The
mean free path is

λ ∼ vτcol ∼ (nσ)−1 (12)

Since our fluid approximation fails on length scales shorter than the mean free path,
our hydrostatic equilibrium approximation would fail when the atmospheric scale
height h < λ.
To evaluate collision timescales or the mean free path an estimate for the cross

section is required. For molecules typically

σmolecules ∼ 10−15cm2

(Note the Bohr radius is 5× 10−9 cm.)
In astrophysics we often have an ionized gas, but Coulomb interactions have an

infinite range. However we can define an effective radius, reff , for an encounter with

e2

reff
∼ kBT

were e is the electron charge. Our cross section σ ∼ r2eff . The previous equation and
equation 12 gives us a mean free path

λ ∼ n−1
e e−4(kBT )

2

where ne is the electron density. We can also generate a timescale for collisions τcol
using a thermal velocity

vthermal ∼
√
kBT/me
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giving

τcol ∼ λ/vthermal ∼
m

1/2
e (kBT )

3/2

nee4
∼ 0.9 T 3/2n−1

e second.

Note the interesting temperature dependence. We will see similar temperature de-
pendence in astrophysical settings where collisions are important such as radiative
cooling, ionization and recombination, and conduction.

1.10. Isopotential and isodensity contours in hydrostatic equilibrium. Con-
sider our equation for hydrostatic equilibrium

∇p = −ρ∇Φ. (13)

Take the curl of both sides of the equation

0 = ∇× (ρ∇Φ) = ∇ρ×∇Φ + ρ∇×∇Φ.

As the curve of a gradient is zero, this is equivalent to

∇ρ×∇Φ = 0 (14)

Taking the length of both sides of the equation

|∇ρ||∇Φ| sin θ = 0

where sin θ is the angle between the two gradients. The angle θ must be 0 or π.
This implies that isopotential contours are the same as isodensity contours (even
underwater). Furthermore the equation ∇p = ρ∇Φ implies that isopressure contours
(isobars) are the same as isopotential contours. We could describe any of p, ρ, or Φ
as a function of one of them, for example dP/dΦ = −ρ(Φ).

1.11. Isothermal atmosphere with constant gravitational acceleration. For
a small change in radius the gravitational potential is constant and the pressure at
height z is the weight of the fluid above it

P (z) = g

∫ ∞

z

ρ(z)dz

Assuming we have an idea gas, pressure is related to density and temperature with
the ideal gas law

p =
ρkBT

µmp

Here kB is Boltzmann’s constant, mp the mass of the proton, p pressure, T tempera-
ture, and µ the mean atomic weight. (Here mp loosely used as an atomic mass unit).
If the atmosphere is isothermal then pressure is proportional to density;

p = Aρ
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with constant A. Insert this into our equation for hydrostatic equilibrium (Euler’s
equation neglecting velocity)

1

ρ
∇p = −∇Φ

A

ρ

∂ρ

∂z
= −g

∂

∂z
ln ρ = − g

A

ln ρ = −gz

A
+ constant

and solution

ρ(z) = ρ0e
− g(z−z0)

A

We call h = A/g the exponential scale height of the atmosphere. Checking units: A
is in units of velocity2 and g in units of velocity2/distance so the ratio gives a length.
The constant A is approximately the sound speed in the gas. The scale heights of
the atmospheres for the planets and planetesimals in our solar system can be quickly
estimated from their temperatures and surface gravities.

1.12. One dimensional examples. Recall Euler’s equation without gravity

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p

Let’s write one component out completely, the z component.

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z

Consider a one dimensional problem where quantities only vary in the z direction.
The above equation reduces to

∂uz

∂t
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
(15)

The left hand side is the change of the velocity of a fluid element. The fluid element
slows down or speeds depending upon the pressure gradient it encounters. If the fluid
element encounters an increase in pressure then it slows down and if it encounters a
decrease in pressure then it speeds up.

Consider what the equation looks like if the pressure gradient is zero. In this case

∂uz

∂t
+ uz

∂uz

∂z
= 0
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which we can write short hand

u,t + uu,z = 0

The above equation is a non-linear partial differential equation known as the inviscid
Burger’s equation. Even in the most simplest case (zero pressure gradient and in
one-dimension) we find a non-trivial non-linear equation.

Let’s go back to equation 15 but now assume that the system is steady state or
time independent so ∂u

∂t
= 0. In this case

uu,z = −1

ρ
p,z

which we can write
∂

∂z

(
u2

2

)
= −1

ρ

∂p

∂z

This illustrates that changes in pressure lead to corresponding changes in velocity.
We will discuss this again in the context of Bernoulli’s equation.

Let’s consider our equation for conservation of mass.

∂ρ

∂t
+∇ · u = 0

Now consider the above equation in one dimension

∂ρ

∂t
+

∂

∂z
(ρuz) =

∂ρ

∂t
+

∂ρ

∂z
uz +

∂uz

∂z
ρ = 0 (16)

If we consider a fluid element with density ρ, this implies that only when there is a
velocity gradient does the density of a fluid element increase or decrease. If we take
the above equation and consider the solution in steady state and divide by ρu the
equation takes a useful form

ρ,z
ρ

+
u,z

u
= 0 (17)

or
d

dz
ln ρ+

d

dz
lnu = 0 (18)

We can also write
∂

∂z
(ρu) = 0 (19)

so that a mass flux
Ṁ = ρu (20)

is independent of z. The above two examples show common manipulations of our
fluid equations in one dimension.

Often in astrophysics we will be working in spherical or cylindrical coordinates
and assuming that quantities only depend on radius. In this case our equation for
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conservation of mass contains factors of radius. In spherical coordinates conservation
of mass equation

∂ρ

∂t
+

1

r2
∂

∂r

(
r2ρur

)
= 0 (21)

and I have dropped all terms that depend on ϕ and θ assuming spherical symmetry.
When the system is steady state there is a conserved mass inflow or outflow rate
that is independent of radius

Ṁ = 4πr2ρur (22)

Here Ṁ is the mass loss rate for a spherically symmetric wind (when ur is positive)
or accretion flow (when ur is negative). For example, this relation can be used to
estimate density of the Solar wind as a function of radius from the Sun.

In cylindrical coordinates

∂ρ

∂t
+

1

R

∂

∂R
(RρuR) = 0 (23)

and in steady state a conserved mass inflow or outflow rate that is independent of
radius

Ṁ = 2πRuRρ (24)

Here Ṁ could be the accretion rate, through an accretion disk, for a young stellar
object or active galaxy galaxy.

1.13. Source terms. Consider our law for conservation of mass

∂ρ

∂t
+∇ · (ρu) = 0

Suppose there is some way external mass is added to the system. For example we
can consider a two-dimensional system, such as a sand pile and describe it with a

surface density. Mass can be added to the system by pouring sand at a rate ∂ρ(x,t)e
∂t

.
We would modify our conservation law

∂ρ

∂t
+∇ · (ρu) = ∂ρe

∂t

with the term on the right called the source term.
Another example is the concentration of a radioactive element that is decaying.

In this case we would write

∂ρ

∂t
+∇ · (ρu) = − ρ

tdecay

where tdecay is an exponential timescale for decay. In the absence of any motion

∂ρ

∂t
= − ρ

tdecay
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Figure 7. On the left we show the mass flow rate through an az-
imuthally symmetric disk radius of R. This is an accretion rate through
a disk. The radial flow velocity is uR. If Ṁ is not a function of radius
or time then the flow is steady (time independent). On the right we
show a wind mass loss rate (if the radial flow velocity ur > 0) through
a radius r in a spherically symmetric flow. It could also be an accretion
rate (with ur < 0). Again if Ṁ is not a function of time or radius then
the flow is steady.

with solution

ρ(t) = ρ(0)e
− t

tdecay

as expected for an unstable radioactive nuclide.
In many astrophysical situations source terms are added to conservation laws.

1.14. The stress tensor. Consider the mass per second hitting a surface ŝ that is
oriented in the j direction. The bulk flow through the surface is ρuj. The momentum
flux through the surface per second in the i direction is then ρuiuj. This is the same
thing as the i-th component of the force on the surface.
The stress tensor π is a tensor with two indexes and each index can be one of

three coordinates. The component πij gives the force in direction i on unit surface
with normal in direction j. The force in direction given by n̂

F = π · n or Fi =
∑
j

πijn̂j

where n̂j are the components of the vector n̂.
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The contribution to the stress tensor from bulk motion is ρuiuj and is sometimes
called ram pressure. This is sometimes written

ρu⊗ u with components ρuiuj

Figure 8. The flux of the x component of the momentum density
through the y-oriented surface is equal to ρuxuy. The x-component of
the force per unit area on the y oriented surface is also ρuxuy.

The force on a surface due to pressure is in the direction normal to the surface.
Consequently the contribution of the pressure to the stress tensor is pδij where δij is
the Kronecker delta and equal to 1 if i = j and zero otherwise.
Altogether the stress tensor from ram pressure and pressure

π = pg + ρu⊗ u (25)

with metric tensor g with components δij for a non-relativistic flat space time. The
components of the stress tensor are

πij = pδij + ρuiuj

What is the momentum flux F through a surface oriented in the n̂ direction?

Fi =
∑
j

πijnj = πijnj

in summation notation or
F = π · n̂

And all components individually

Fx = πxxnx + πxyny + πxznz

Fy = πyxnx + πyyny + πyznz

Fz = πzxnx + πzyny + πzznz
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What is the force per unit area F on a surface with normal n̂? Identical to the
above expression.

Consider flow through a pipe with velocity u = u0x̂ in the x direction. The stress
tensor is

π =

 p+ ρu2
0 0 0

0 p 0
0 0 p



Figure 9. Flow through a pipe. The pressure on the sides is p but
the pressure on on end (including ram pressure) is p+ ρu2.

Unlike ram pressure, thermal pressure only acts in the direction perpendicular to a
surface. But any surface will feel a force due to pressure. In contrast, a surface that
is perpendicular to the fluid motion will not feel ram pressure. A surface would only
feel ram pressure if its normal contains a component aligned with the fluid velocity.

As momentum is a vector, each component is conserved, and each component
obeys a conservation law. Remember a conservation law can be written like that for
conservation of mass ∂ρ

∂t
+∇ · (ρu) = 0. Instead of ρ we will consider conservation

of each component of momentum density ρu. The stress tensor also describes the
momentum flux through the surfaces of a fluid element. So the stress tensor will
enter the divergence term.

First let us consider conservation of the x component of momentum per unit
volume ρux. The flux of this momentum component would be F = (πxx, πyx, πzx).
The conservation law for this component can be written

∂ρux

∂t
+

∂πxx

∂x
+

∂πyx

∂y
+

∂πzx

∂z
= 0

We can describe conservation of all three momentum components all together with

∂(ρu)

∂t
+∇ · π = 0

where ∇ ·π has j-th component =
∑

i
∂
∂xi

πij. The above equation is in conservation
law form but the conserved quantity is a vector ρu and the flux of the vector is a
tensor π.
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In your problem set you will show that the above equation is consistent with
Euler’s equation.

In the above equation we have neglected gravity. However the force due to gravity
can be included as a source term

∂(ρu)

∂t
+∇ · π = −ρ∇Φ (26)

Why is gravity a source term? When considering a fluid element, the force due
to pressure is exerted across a boundary. The stress tensor describes changes in
the momentum vector in direct directions. In contrast gravity is a force that is
proportional to the total mass of the volume element.

To make it clear what the notation means in equation 26 we will write out the
j-th component of this equation

∂(ρuj)

∂t
+
∑
i

∂πij

∂xi

= −ρ
∂Φ

∂xj

We use equation 25 for π to evaluate the second term term on the left using sum-
mation notation (so dropping the

∑
i)

∂πij

∂xi

=
∂(pδij)

∂xi

+
∂(ρuiuj)

∂xi

=
∂p

∂xj

+
∂(ρuiuj)

∂xi

More specifically let us write out the z component for equation 26

∂(ρuz)

∂t
+

∂p

∂z
+

∂(ρuxuz)

∂x
+

∂(ρuyuz)

∂y
+

∂(ρu2
z)

∂z
= −ρ

∂Φ

∂z
.

1.15. What is a tensor? We have been discussing the stress tensor π. It’s an
object with two indices πij where each index refers to a specific coordinate. We have
been calling it a tensor. A tensor is a multi-index generalization of a vector. A
vector v can be written as v = viêi (using summation notation) where ê1, ê2....ên is
an orthonormal coordinate basis. If we have a matrix R that transfers to a different
coordinate basis f̂i = Rj

i êj then we can write

v = viêi = vi(R−1)jiR
k
j êk = wif̂i

The vector in the new basis is wif̂i. The components of the vector transform as

wi = (R−1)ijv
j

A tensor is a generalization of this using more than one index. It is important that
the components of the tensor can transform with the coordinate system. A tensor
with n indices on the top and m indices on the bottom

T i1,i2....in
j1,j2....jm

[e]
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transforms as

T i1,i2....in
j1,j2....jm

[f ] = (R−1)i1k1(R
−1)i2k2 ....(R

−1)inknT
k1,k2....kn
l1,l2..,lm

Rl1
j1
Rl2

j2
...Rlm

jm
(27)

The components of the stress tensor we should have written as πij with upper
indices so that we are precise that the tensor can be written as

π = πij êi ⊗ êj

The moment of inertia of a solid body is also an example of a tensor with two
indices.

1.15.1. Comparison of conservation of mass and momentum equations. To review
let us compare the different forms we have for conservation of mass and momentum
(but here neglecting gravity).

Dρ

Dt
= −ρ∇ · u

ρ
Du

Dt
= −∇p

∂ρ

∂t
+∇ · (ρu) = 0

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p

Above on the left using Lagrangian derivatives and on the right expanded in the
Eulerian viewpoint. Below given in conservation law form

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · π = 0

We have a total of 4 equations (one for mass, and one for each component of momen-
tum). However we have 5 free variables, ρ, p,u and we have counted each component
of velocity. Using an equation of state we can relate p(ρ) giving us a complete set
(four variables and four equations). Or we can consider a third equation that takes
into account energy.

With the including of gravity the Lagrangian form of the momentum equation
gains −ρ∇Φ on the right hand side, and the Eulerian form gains −∇Φ on the right
hand side. The conservation law form gains a source term −ρ∇Φ. It is called a
source term because it cannot be lumped into the divergence term.

1.16. An aside on units. The theoretical astrophysics community (including cos-
mologists) tends to work in cgs (centimeters, grams, second). This puts magnetic
fields in Gaus which is convenient for estimating magnetic pressure. Almost ev-
erybody else, including the geophysics community, tend to work in mks (meters,
kilograms, second). In mks pressures are in conveniently in Pa. Particle physicists
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like energy in eV (electron volts). Conversion between unit conventions is harder in
MHD than in other settings.

2. Some math tools

2.1. Summation notation, the Levi-Civita/permutation tensor and some
index gymnastics. We will often be manipulating vectors in this class, so it will be
useful to speed up calculations with summation notation and using a permutation
tensor ϵijk. The tensor ϵijk is known as the Levi-Civita tensor or the permutation
tensor and is

ϵijk ≡

 1
−1
0

for
ijk is an even permutation
ijk is an odd permuation
two or more of ijk are equal

(28)

Each of ijk is a coordinate like xyz. For example ϵxyz = 1 however ϵxzy = −1.
Consider the cross product of two vectors

C = A×B (29)

The iith component of C can be written

Ci = ϵijkAjBk (30)

and we have implicitly summed over all indices that appear twice in the equation.
Here the indices j, k appear twice in the equation and so are summed over all coor-
dinates, xyz. The Levi-Civita tensor is zero unless all indices differ. Each Ci can be
written as a sum of two terms one with positive sign corresponding to the even per-
mutation and the other with a negative sign corresponding to the odd permutation.

Using summation notation

∇ ·A =
∂Ai

∂xi

(31)

and we have implicitly summed over i. Here xx represents x and xy gives y and xz

gives z. Alternatively one can let ijk range from 1-3 and let A1 = Ax, A2 = Ay,
A3 = Az,

∂
∂x1

= ∂
∂x
, ∂

∂x2
= ∂

∂y
, ... etc.

The expression δij is the Kronecker delta which is a discrete version of the delta
function.

δij ≡
{

1
0

for
i = j
i ̸= j

(32)

When there are expressions with the Levi-Civita tensor it is often useful to use the
relation

ϵijkϵilm = δjlδkm − δjmδkl (33)

Once you notice the patterns in the indices it is not hard to remember the relation.
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In computations, it is useful to remember that indices in the Levi-Civita tensor
can be rotated

ϵijk = ϵjki = ϵkij

while maintaining the same sign in the permeation. Any two indices can be flipped

ϵijk = −ϵjik

and reversing the sign.
An example we now derive a vector identity that we will use later on.

Example: Using summation notation, prove the vector identity

(u · ∇)u = ∇
(
u2

2

)
− u× (∇× u). (34)

The i-th component for the expression on the right

uj
∂uj

∂xi

− ϵijkujϵklm
∂um

∂xl

= uj
∂uj

∂xi

− ϵkijϵklmuj
∂um

∂xl

= uj
∂uj

∂xi

− (δilδjm − δjlδim)uj
∂um

∂xl

= uj
∂ui

∂xi

− uj
∂uj

∂xi

+ uj
∂ui

∂xj

= uj
∂ui

∂xj

.

This is the i-th component for the expression on the left (u · ∇)u. We have proved
the identity.

2.2. Coordinate transformations. The goal of this section is to introduce how
conservation laws can be transformed into non-Cartesian coordinate systems, such
as cylindrical or spherical coordinates.

In Cartesian coordinates in three dimensions, x, y, z, unit vectors in the direction
of increasing x, y or z can be written as

x̂ = êx

ŷ = êy

ẑ = êz. (35)

The gradient of a function f(x) at a particular point is ∇f =
(

∂
∂x
, ∂f
∂y
, ∂f
∂y

)
. If we

want to find how much the function f varies in the x direction we compute df = ∂f
∂x
dx.
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We can think of ∂
∂x

as a operator that is related to the direction that the x coordinate
increases. That means we could associate

x̂ =
∂

∂x
. (36)

Let’s change notation so that x = x1, y = x2, z = x3. This gives

x̂i = êi =
∂

∂xi
(37)

for index i ∈ {1, 2, 3}.
In equation 37 we have associated a derivative with respect to a coordinate with

a direction. Using Cartesian coordinates, we can define a vector as an operator

v =
∑
i

vi
∂

∂xi
. (38)

If we have a function f , and operate on it with a vector v, then we obtain the
gradient of the function along the direction given by the vector v. In other words∑

i

vi
∂f

∂xi
= v ·∇f. (39)

We could define the x, y, z components of a vector based on how the vector operators
on the three functions f 1(x) = x, f 2(x) = y, and f 3(x) = z. For example, suppose
v gives a value of 3 if when it operates on the function x you get a value of 3. That
means the x component of the vector vx = 3.

In the context of differential geometry, vectors belong to the tangent space at a
point on a manifold. If you consider a point on a curve across the manifold, the
tangent vector to the curve at that point is a vector in the tangent space of that
point of the manifold. For many astrophysical applications, hydrodynamics need not
be done on curved spaces. However coordinate transformations are useful as it is
common to work in spherical or cylindrical coordinates.

In polar coordinates we can write a vector in the same form as equation 38

v = vθ
∂

∂θ
+ vr

∂

∂r
. (40)

The derivatives ∂
∂θ

and ∂
∂r

are a basis for vectors but they may not be unit vectors.
Basis vectors derived from a new set of coordinates also need not be orthogonal. To
say what we mean by a unit vector or by orthogonal we need a dot product (also
called an inner product).
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With two vectors in Cartesian coordinates (and in two dimensions)

v = vx
∂

∂x
+ vy

∂

∂x

w = wx ∂

∂x
+ wy ∂

∂x
. (41)

the inner product operators on these two vectors

⟨v|w⟩ =
∑
i

viwi = vxwx + vywy. (42)

An inner product gives a notion of distance.
However, suppose we write the two vectors in the basis ∂

∂θ
and ∂

∂r
;

v = vθ
∂

∂θ
+ vr

∂

∂r

w = wθ ∂

∂θ
+ wr ∂

∂r
. (43)

We find that

⟨v|w⟩ = vxwx + vywy

̸= vθwθ + vrwr. (44)

So that the inner product is independent of coordinate system we modify it so
that it depends upon a tensor known as the metric tensor. In any set of coordinates
we define

⟨v|w⟩ =
∑
ij

gijv
iwj (45)

with g, the metric tensor. Here vi and wj are the components of the vector in a
particular coordinate system and gij are the components of the metric tensor in that
same coordinate system. Cartesian coordinates have an inner product consistent
with

gij = δij. (46)

The metric tensor transforms as a tensor which means if we transform to another
coordinate system, its components would also be transformed by the coordinate
transformation (but twice as there are two indices).

Suppse x1, x2, x3 is one coordinate system and y1, y2, y3 is a different coordinate
system. To be a good coordinate transformation the transformation (functions
y1(x1, x2, x3) and similarly for y2, y3) should be invertible almost everywhere. This
would give a transformation from x1, x2, x3 → y1, y2, y3. An example of a coordinate
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transformation that is not invertible everywhere would be polar coordinates in two
dimensions because at the origin, the azimuthal angle is not meaningful.
Example: A coordinate transformation in two dimensions from x, y → r, θ is

r(x, y) = x2 + y2 θ(x, y) = arctan2(y, x) (47)

where arctan2 is the arctangent but with result in [0, 2π] and dependent on the
quadrant of x, y. Also we can specify r = 0 if x = y = 0. The inverse transformation
is

x(r, θ) = r cos θ y(r, θ) = r sin θ. (48)

A vector

v =
∑
j

vj
∂

∂xj
=

∑
j

vj
∂yk

∂xj

∂

∂yk
(49)

via the chain rule. To make it clear which coordinate system we are working in, we
write components of a vector in the y coordinate system with an underline

v =
∑
k

vk
∂

∂yk
. (50)

Using the underline 49 implies that the components of the vector in the y coordinate
system are

vk =
∑
j

vj
∂yk

∂xj
. (51)

We transfer the vectors within a dot product into a different coordinate system.
In a Cartesian coordinate system

⟨v|w⟩ =
∑
j

vkwk (52)

Using a coordinate transformation (x1, x2, x3 → y1, y2, y3)

vk =
∑
j

vj
∂xk

∂yj

wk =
∑
m

wm ∂xk

∂ym
. (53)
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We insert these into equation 52 for the inner product

⟨v|w⟩ =
∑
jmk

vj
∂xk

∂yj
wm ∂xk

∂ym

=
∑
jm

vjwmg
jm

(54)

with

g
jm

=
∑
k

∂xk

∂yj
∂xk

∂ym
. (55)

With this choice of metric tensor the inner product of the two vectors is independent
of coordinate system. This illustrates how the components of the metric tensor
transform with a coordinate transformation where x1, x2, x3 is Cartesian but the
new coordinate system y1, y2, y3 is not.
Example: We compute the metric tensor for 2-dimensional polar coordinates

g
rr
=

(
∂x

∂r

)2

+

(
∂y

∂r

)2

= cos2 θ + sin2 θ = 1

g
rθ

=
∂x

∂r

∂x

∂θ
+

∂y

∂r

∂y

∂θ
= − cos θr sin θ + sin θr cos θ = 0

g
θθ

=

(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

= r2 cos2 θ + r2 sin2 θ = r2 (56)

The metric tensor for 2d polar coordinates can be written as a matrix

g =

(
1 0
0 r2

)
. (57)

Happily this metric tensor is diagonal! That means that the two vectors ∂
∂r

and
∂
∂θ

are orthogonal.

With the metric tensor we can measure the length of the vectors ∂
∂r

and ∂
∂θ
. The

length of a vector

|v| =
√

⟨v|v⟩ (58)

The vector ∂
∂r

has length 1 because g
rr

= 1. The vector ∂
∂θ

has length r because

g
θθ

= r2.
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We construct unit vectors in 2d polar coordinates

θ̂ =
1

r

∂

∂θ

r̂ =
∂

∂θ
. (59)

The factor 1/r = 1/
√
g
θθ

is used to normalize the θ component.

2.3. How to find a gradient and other quantities in non-Cartesian coordi-
nates. How does the gradient of a function transform? In a Cartesian coordinate
system we know that

∇f =
∑
i

∂f

∂xi

∂

∂xi
. (60)

This is a vector so we can compute

⟨w|∇f⟩ (61)

for any vectorw. This inner product should be independent of our coordinate system.
We transform w

w =
∑
j

wj ∂

∂xj
=

∑
j

wj ∂

∂yj
(62)

with

wj =
∑
k

∂yj

∂xk
wk. (63)

⟨w|∇f⟩ =
∑
k

wk ∂f

∂xk
=

∑
jk

wj(∇f)jgjk.

The metric tensor has two factors of the coordinate transformation jacobian in it and
one of them inverts the transformation on w, the other inverts the transformation
on the gradient operator. The result is that the gradient operator does not involve
any factors of the metric tensor

∇f =
∑
j

∂f

∂yj
∂

∂yj
(64)

Example: We compute the gradient of a function in 2d polar coordinates f(r, θ).

∇f =
∂f

∂r

∂

∂r
+

∂f

∂θ

∂

∂θ
=

∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ (65)

where we have used equation 59 for the unit vectors.
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Suppose we want to calculate the advective term in Euler’s equation

(u · ∇)u (66)

but in polar coordinates.
We first need to understand how to compute the gradient of a vector component

∂

∂xj
uk (67)

in such a way to give a coordinate independent tensor. Unfortunately when doing
a coordinate transformation uk gains derivatives of the coordinate functions which
themselves are functions of coordinates. This then causes a problem when taking
the derivative. To fix this problem and gain a derivative that gives a coordinate
independent result, we replace the derivative with a corrected derivative known as
the covariant derivative. The j-th component of the the covariant derivative of
the i-th component of vector v is

∇jv
i ≡ ∂vi

∂xj
+
∑
k

Γi
jkv

k. (68)

Here Γi
jk are connection coefficients (also called Christofel symbols) which involve

derivatives of the metric tensor

Γi
jk =

∑
a

1

2
gia

(
∂gja
∂xk

+
∂gak
∂xj

− ∂gjk
∂xa

)
. (69)

We are not going to derive equation 68 but we will use it to compute the advective
term in polar coordinates.

2.4. The advective term in polar coordinates. We assume that the velocity u
is written in terms of the orthonormal basis in polar coordinates

u = ur ∂

∂r
+

uθ

r

∂

∂θ
. (70)

The gradient operator does not involve any factors of the metric tensor

u ·∇ = urr̂+ uθθ̂ = ur ∂

∂r
+

uθ

r

∂

∂θ
. (71)

Ignoring the terms that contain connection coefficients for the moment, we compute
the two components separately

(u · ∇)ur = ur ∂u
r

∂r
+

uθ

r

∂ur

∂θ
(72)

(u · ∇)

(
uθ

r

)
= −uruθ

r2
+

ur

r

∂uθ

∂r
+

uθ

r

1

r

∂uθ

∂θ
. (73)
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Now we compute connection coefficients. For 2d polar coordinates the metric is
diagonal and only the term gθθ = r2 is not 1 or 0.

Γi
jk =

1

2
gia

(
∂gja
∂xk

+
∂gak
∂xj

− ∂gjk
∂xa

)
=

1

2
gia (2rδj,θδa,θδk,r + 2rδa,θδk,θδj,r − 2rδj,θδk,θδa,r)

Γr
jk = r (δj,θδr,θδk,r + δr,θδk,θδj,r − δj,θδk,θδr,r)

= −rδj,θδk,θ

Γθ
jk =

1

r
(δj,θδθ,θδk,r + δθ,θδk,θδj,r − δj,θδk,θδθ,r)

= +
1

r
(δj,θδk,r + δj,rδk,θ)

We used grr = 1, gθθ = 1
r2
. The only non-zero connection coefficients are

Γr
θθ = −r (74)

Γθ
rθ = Γθ

θr =
1

r
. (75)

To the r component of (u · ∇)u the term arising from connection coefficients is

ur

(
Γr
rru

r + Γr
rθ

uθ

r

)
+

uθ

r

(
Γr
θr

uθ

r
+ Γr

θθ

uθ

r

)
= −u2

θ

r
(76)

To the θ component of (u · ∇)u the term arising from connection coefficients is

ur

(
Γθ
rru

r + Γθ
rθ

uθ

r

)
+

uθ

r

(
Γθ
θru

r ++Γθ
θθ

uθ

r

)
=

2uruθ

r2
(77)

Adding equations 73, 76, 77 together (so that we compute the advective term with

a covariant derivative) and writing the result in terms of the unit vectors r̂ and θ̂;

(u · ∇)u =

(
ur ∂u

r

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r

)
r̂

+

(
ur ∂u

θ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r

)
θ̂. (78)

This is correct! We notice that there are two additional terms.
Key points for working with derivatives in different coordinate systems:

(1) Keep straight the difference between unit vectors and vectors in the basis ∂
∂yi

.

Tensors tend to be written in terms of the ∂
∂yi

(non-orthonormal) basis rather

than a set of orthogonal unit vectors. In contrast the Navier Stokes equation
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involves vectors that are usually written in terms of components with respect
to a orthonormal basis.

(2) In fluid equations, gradients of vector components should be computed with
a covariant derivative. This derivative can be computed with connection
coefficients which are derived from the metric associated with the desired
coordinate system.

(3) Computing the connection coefficients can be tedious (and prone to error)
which is why we wind up frequently looking up the form of the Naviers Stokes
equation in cylindrical coordinates.

(4) Equation 68 for the covariant derivative gives a tensor. To derive it we could
again try to make sure that a dot product (of some sort) gives an number
independent of coordinate system. Equivalently exploit the fact that the
metric itself should not vary ∇igjk = 0.

A note about whether indices are up or down. For many classical non-relativistic
flat space settings we don’t need to keep track of whether indices are up or down.
However, in general relativity a lower index refers to something in the tangent space
and an upper index refers to something in the co-tangent space. The metric lets you
convert a lower index to an upper one and vice versa. Summation notation tends to
involve the sum of an upper index with a lower index.

2.5. The divergence. Conservation laws contain the divergence of a flux vector
∇ · F. In Cartesian coordinates

∇ · F =
∑
i

∂F i

∂xi
. (79)

Equation 68 for the covariant derivative can be summed to compute the divergence
in equation 79 but with covariant derivatives

∇ · F =
∑
i

∇iF
i =

∑
i

∂F i

∂xi
+
∑
ij

Γi
ijF

j. (80)

With some manipulation it is possible to show that equation 80 is equal to

∇ · F =
∑
i

1√
|g|

∂(
√
|g|F i)

∂xi
(81)

where |g| is the determinant of the metric tensor which is also equal to the square of
the volume element.
Example: Find the covariant condition for incompressibility ∇ · u = 0 in polar
coordinates.
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We again write u = ur ∂
∂r

+ uθ ∂
∂θ
. Applying equation 80

∇ · u =
∂ur

∂r
+

1

r

∂uθ

∂θ
+ Γθ

θru
r (82)

=
∂ur

∂r
+

1

r

∂uθ

∂θ
+

ur

r
(83)

which we recognize as the divergence in polar coordinates.
Using equation 81 we first compute the determinant of the metric tensor. Using

equation 57 we find |g| = r2. Using equation 81

∇ · u =
1

r

(
∂(rur)

∂r
+

∂(ruθ/r)

∂θ

)
=

∂ur

∂r
+

ur

r
+

1

r

∂uθ

∂θ

which agrees with our previous expression, as expected.

2.6. The rest. With additional efforts (!) we could create tensor expressions for the
Laplacian, cross products and curls and these cover most hydrodynamic equations
in both Euclidean space and curved space time!

3. Conservation of Energy

3.1. Heat Flux, Adiabatically. The first law of thermodynamics is an expression
of conservation of energy and is

dQ = de+ pdV (84)

where dQ is the quantity of heat absorbed per unit mass of fluid from its surround-
ings, pdV is the work done by the unit mass of fluid if its volume changes by dV and
de is the change in the internal energy content per unit mass of the fluid. This law
neglects viscous, dissipative, and radiative processes. It is equivalent to assuming
that the entropy per unit mass of fluid does not change.

In the absence of non-adiabatic heating and cooling (for example by radiation)
entropy is conserved in a fluid element and we can write

DS

Dt
= 0

where S is the specific entropy or the entropy per unit mass. This condition can be
violated (in for example shocks). However it is satisfied in many situations and so is
often assumed. This condition can be used to relate T, S to p, ρ and so construct an
equation of state. This description is equivalent to saying dQ = 0 for a small parcel
of fluid.
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In terms of thermodynamic quantities

dQ = TdS = de+ pdV = de− p
dρ

ρ2
(85)

where e is the internal energy per unit mass. This means that the quantity ρe is the
internal energy per unit volume. In the above equation I have used V as the volume
per unit mass so that V = 1/ρ and

dV = −dρ/ρ2. (86)

For a fluid element we can modify equation 85 to describe the rate of change of
heat

DQ

Dt
= T

DS

Dt
=

De

Dt
− p

ρ2
Dρ

Dt
. (87)

Recall the ideal gas law

p =
ρ

µmp

kBT (88)

Here kB is Boltzmann’s constant, mp the mass of the proton, p pressure, T tem-
perature, and µ the mean atomic weight. (Here mp loosely used as an atomic mass
unit). The mean molecular weight µ is equal to 1.0 if the gas is composed of neutral
(unionized) atomic hydrogen. Let us consider changes in T, ρ and p.

dp =
dρ

µmp

kBT +
ρ

µmp

kBdT

Solving for dT

dT =
µmp

kB

[
dp

ρ
− pdρ

ρ2

]
(89)

Recall Equation 85

TdS = de− p
dρ

ρ2

Setting dS = 0

de = p
dρ

ρ2

We replace de with cV dT using the specific heat cV , so that

p

ρ2
dρ = de = cV dT.

Now replace dT using the equation 89, giving us

cV
µ

R

[
dp

ρ
− pdρ

ρ2

]
=

pdρ

ρ2
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and I have used R = kB
µmp

. With some manipulation:

dP

dρ
=

p

ρ

(
cV +R

cV

)
=

cP
cV

p

ρ
=

γp

ρ
(90)

where γ = cP/cV is the ratio of specific heats and cP = cV + kB
µmp

. Often you see this

written as
R
µ

= cP − cV

where R is the ideal gas constant and µ the mean molecular mass. I have been
using R ∼ kB/mp (which is not quite correct, I should be using an atomic mass unit
instead of mp) because it allows us to check our units quickly. Another way to write
equation 90 is

γ =

(
∂ ln p

∂ ln ρ

)
S

which we can recognize as appropriate for an ideal gas.
Consider equation 90 again and regrouping

dp

p
= γ

dρ

ρ

d ln p = γ ln ρ

implying a scaling
p ∝ ργ

With some manipulation it is also possible to show the scalings

p ∝ T
γ

γ−1

ρ ∝ T
1

γ−1

3.2. Heat flux with conductivity and heating or cooling. The above equation
(87) gives the heat change for a particular volume element of a given mass (as e and
S are energy and entropy per unit mass). To describe the rate of change per unit
volume we multiple by density. The rate of change of heat (units energy per unit
volume per unit time) is

ρT
DS

Dt
This quantity should be equal to the divergence of the heat flux and the rate of
change of internal energy Q̇ per unit mass.

ρT
DS

Dt
= −∇ · h− ρQ̇cool (91)

where h is the heat flux (units energy per unit area per unit time). Heat flux could
be due to conduction, convection or radiation (optically thick limit). The sign of
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Q̇cool is such that it is a cooling rate. Internal energy loss or gain could be due to
heating (such as radioactive decay) or cooling (in the optically thin limit so that
photons escape).

Heat flux is often described by a conductivity equation

h = −λ∇T (92)

where λ is the thermal conductivity. Conductivity of heat can occur via a variety
of processes such as thermal conduction, turbulence and convection or radiation
transport. In some of these cases the above form for the heat conduction can be
used. If we set

TdS = de = cV dT

depending on the specific heat cV (here we have ignored the energy change due to
work and that is like assuming that density does not change so dρ = 0). In the
absence of cooling, (Q̇cool = 0), equation 91 becomes

ρcV
∂T

∂t
= −∇ · h

and using equation 92 we find

ρcV
∂T

∂t
= λ∇2T (93)

This is a diffusion equation for temperature. This equation can be used to
describe temperature variations in asteroids, planets or frying pans. It is often useful
to consider the units for equation 93

Temperature

time
=

Temperature

distance2
λ

ρcV

giving a diffusion coefficient

D ≡ λ

ρcV
with units

(
distance2

time

)
Cooling timescales for planets or planetesimals, or skin depths on spinning asteroids
can be estimated from the diffusion coefficient, computed from the density, heat
conductivity and specific heat.

Equations for conservation of mass, momentum and thermal energy are sufficient
to describe evolution of a system. Below we will develop a third conservation law
directly describing energy.
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3.3. Pressure with a radiation field. Often important in astrophysical applica-
tions is the important case of an ideal gas together with a radiation field that is a
black body. In this case

p =
kBρT

µmp

+
4σSBT

4

3c
(94)

Here c the speed of light and σSB the Stefan-Boltzmann constant. The second term
in the above equation is due to radiation pressure and is important in high mass
stars, near neutron stars and black holes and in the early universe.

Recall that the energy flux of emission from the surface of a black body only
depends on a single quantity, the temperature T . This energy flux is σSBT

4 so the
total luminosity of a spherical black body of radius R is L = 4πR2σSBT

4. Energy flux
is in units of energy/area/time. Pressure is in units of energy density. Consequently
something that has units of pressure would be the energy flux divided by a velocity,
and since we are considering radiation pressure, the appropriate velocity would be
the speed of light. This account for the term on the right hand side of equation 94
except for the factor of 4/3. I will take a moment to explain why there is a factor of
4/3 in the above equation.

Consider an area element dA with normal n̂. We would like to know the energy
and momentum flux through this element. We chose a coordinate system with angles
θ, ϕ oriented with respect to n̂. The energy of radiation crossing through the area dA
element that has direction within solid angle dΩ of the normal n̂ of the area element
per unit time (or in a time interval dt) and in frequency range dν is

dE = IνdA dt dΩ dν. (95)

Here Iν is the specific intensity or brightness (units ergs s−1 cm−2 ster−1 Hz−1). This
is an energy flux (energy per unit area and time) that is also per unit frequency
range (color) and takes into account the directions (so is also per unit steradian).

The net flux in different direction (not perpendicular to the area element) is re-
duced by cos θ because the radiation field can have rays in all directions. Here θ is
the angle between the normal n̂ and the direction element dΩ. The net flux can be
integrated

Fν =

∫
Iν cos θdΩ (96)

The units of Fν are ergs s−1 cm−2 Hz−1 so this is an energy flux (energy per unit
time and area) that is also per unit frequency range for the photons. This makes
sense as integrating over all 4π should give a net flux of zero if the radiation field is
isotropic.

The momentum flux along a ray at angle θ is dFν/c. To make sure we have the
component of momentum perpendicular to dA we must multiple by another factor
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Figure 10. The energy flux through a surface depends on an integral
of Iν over angle. The i-th component of momentum contributed by a
photon depends on the angle between the photon’s momentum vector
and the i direction.

of cos θ. The momentum flux (component perpendicular to our area element)

pν =
1

c

∫
Iν cos

2 θdΩ =
1

c

∫ 2π

0

dϕ

∫ 1

−1

Iνµ
2dµ

where µ = cos θ. If the radiation field is isotropic then Iν does not depend on θ and

pν =
2π

c

∫ 1

−1

Iνµ
2dµ =

4π

3c
Iν

Now consider the surface of a star that is a black body. Integrating over ν and
over 2π in directions we know that the net flux is

F = σBT
4 =

∫ 1

0

2πIµdµ = πI

where I =
∫
Iνdν. The above equation implies that I = σBT

4/π. We can now
estimate the momentum flux in radiation assuming isotropic black body radiation

pr =
4

3c
σBT

4

This momentum flux is the flux of momentum through an area element with com-
ponent perpendicular to the area element. Consequently it is part of the stress tensor
πii but only contributes to a term that has two indexes the same (on the diagonal).
This is why it can be considered as a pressure.
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3.4. Conservation of energy. Recall that from the first law of thermodynamics
the internal energy per unit mass

De

Dt
=

DW

Dt
+

DQ

DT
(97)

where DW
Dt

is the work done per unit mass and DQ
DT

is the energy/heat gained per unit
mass. We can rewrite the work

DW

Dt
= −p

D(1/ρ)

Dt
=

p

ρ2
Dρ

Dt
(98)

giving us

De

Dt
=

p

ρ2
Dρ

Dt
− Q̇cool

where we have defined Q̇cool as a cooling rate, or the heat lost per unit mass and this
gives us the minus sign in the above equation.

Define a total energy per unit volume E

E ≡ ρ

(
u2

2
+ Φ + e

)
. (99)

Each term is recognizable as the kinetic energy per unit volume, the potential energy
and the internal energy. For a fluid element expanding out the directional derivative

DE

Dt
=

u2

2

Dρ

Dt
+ ρu · Du

Dt
+ ρ

DΦ

Dt
+ ρ

De

Dt
+ (Φ + e)

Dρ

Dt
. (100)

Our heat equation (equation 85) gives

TdS = de− p

ρ2
dρ

If I set TdS equal to a cooling rate Q̇ then we can write our conservation of energy
equation (equation 100) as

DE

Dt
=

[
E

ρ
+

p

ρ

]
Dρ

Dt
− ρQ̇+ ρu · Du

Dt
+ ρ

DΦ

Dt
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Using some Lagrangian derivatives

E

ρ

Dρ

Dt
= −E

ρ
ρ∇ · u continuity/cons. mass

ρu · Du

Dt
= ρu ·

[
∂u

∂t
+ u ·∇u

]
Lagrang deriv.

= u · (−∇p− ρΦ) momentum cons.

ρ
DΦ

Dt
= ρ

∂Φ

∂t
+ ρu ·∇Φ Lagrange deriv.

p

ρ

Dρ

Dt
= −p

ρ
ρ∇ · u = −p∇ · u continuity

By combining the above with our equations for conservation of momentum, con-
servation of mass and our definition for the directional derivative we can write con-
servation of energy in the following form

∂E

∂t
+∇ · [(E + p)u] = −ρQ̇cool + ρ

∂Φ

∂t
(101)

where Q̇cool is the heating cooling function, energy lost or gained per unit mass due
to heating and cooling with Q̇cool > 0 when cooling. The terms in the above relation
should make sense physically. The divergence term involving pu arrises from pdV
work.

Note we have taken care to keep in a term from heating and cooling, commonly
important in astrophysical settings. Here we have not taken into account dissipa-
tive processes such as viscosity that would give a heat term dependent on velocity
gradients. We have also not taken into account heat conductivity.

3.5. A polytropic gas and equations of state. A barytropic fluid is one where we
can form a relation p(ρ). In this case we need not use an additional energy equation
(along with that for momentum and mass) but can determine the dynamics with the
equations for conservation of momentum and mass alone alone with an equation of
state. Baritropic flow is more general than isentropric flow and includes isothermal
flow as well as a polytropic approximation.

A polytropic gas is an ideal gas with constant cP , cV , γ, and µ. The polytropic
index n (not necessarily an integer) is defined by γ = 1 + 1/n and

p ∝ ρ1+1/n (102)

Equipartition of energy with N degrees of freedom gives

e =
kBT

µmp

N

2
= cV T (103)
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and so cV = kB
µmp

N
2
. Using the relations cP = cV + kB/(µmp) and γ = cP/cV we can

show that γ = 1+2/N . A popular value for γ is 5/3 corresponding to N = 3 degrees
of freedom.

We can also show that the specific internal energy of a polytropic gas is

e =
p

(γ − 1)ρ
(104)

If the gas cools rapidly above a particular temperature then an isothermal equation
of state can be adopted. This is often used for global simulations of molecular clouds
or the interstellar medium in galaxies.

p = c2sρ (105)

where cs is the sound speed.
If the gas is polytropic and isentropic then

p = Kργ (106)

with constant K. The isentropic ideal gas has sound speed γP/ρ. Note that an
isothermal fluid is also one with γ → 1.
An incompressible fluid is one where Dρ

Dt
= 0 and so ∇·u = 0. This approximation

can also be considered the limit γ → ∞. A completely incompressible fluid will not
transmit sound waves.

3.6. The Lame-Enden equation. Taking a polytropic equation of state and hy-
drostatic equilibrium, it is possible to solve for the density, potential and gravitational
potential as a function of radius. The polytropic equation of state with index n

p = Kρ1+
1
n

Manipulating derivatives and using a derivative operator D

1

ρ
Dp =

1

ρ
D

(
Kρ1+

1
n

)
= K(n+ 1)D

(
ρ

1
n

)
Hydrostatic equilibrium is

−∂Φ

∂r
=

1

ρ

∂p

∂r

Combing the previous two equations

dρ1/n

dΦ
= − 1

K(n+ 1)

with solution

ρ
1
n = − Φ

K(n+ 1)
+ constant
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or

ρ = ρc

(
ΦT − Φ

ΦT − Φc

)n

(107)

with constants ρc,Φc the density and potential at the core and ρ = 0,ΦT the density
and potential at the surface. We define new variables

θ ≡ ΦT − Φ

ΦT − Φc

ξ =

(
4πGρc
ΦT − Φc

)1/2

r (108)

where θ ranges from 0 at the surface to 1 at the core and ξ = 0 at the core. Poisson’s
equation in spherical coordinates gives

1

r2
d

dr

(
r2
dΦ

dr

)
= 4πGρ (109)

Combining equations 107, 108, 109 gives

1

ξ2
d

dξ

(
x2dθ

dξ

)
= −θn (110)

and this is known as the Lane-Emden equation. A boundary condition is dθ
dξ

= 0

at ξ = 0 corresponding to no gradient in potential energy at the core (no force
at the core). It is possible to solve the Lane-Emden equation analytically only for
n = 0, 1, 5.

4. Microphysical Basis for Continuum Equations

4.1. The particle distribution function. To describe a distribution of particles
we can consider a particle distribution function that depends on position, velocity
and time, f(x,v, t). Here f(x,v, t)dx3du3 represents the number of particles found
in a volume element of volume dx3 and in a velocity bin of size dv3 at time t. The
number density (number of particles per unit volume) at position x and at time t
would be

n(x, t) =

∫ ∞

−∞
f(x,v, t)d3v

where we perform the integral in 3 dimensions. If each particle has mass m then the
density ρ(x, t) = mn(x, t). We can consider the average of any quantity Q as

⟨Q⟩ = n−1

∫
Qf(x,v, t)d3v
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For example the bulk or average velocity would be

u = n−1

∫
vf(x,v, t)d3v

and ∫
vivjf(x,v, t)d

3v = n⟨vivj⟩ for i ̸= j

For a single component we can write∫
v2i f(x,v, t)d

3v = n⟨v2i ⟩

But this is not necessarily the same as nu2
i which depends on the square of the

average velocity. Usually

⟨v2i ⟩ ≠ u2
i ⟨vivj⟩ ≠ uiuj

We can define a total velocity dispersion, σa, averaged over all directions, as

σ2
a ≡ 1

3

(
⟨(vx − ux)

2⟩+ ⟨(vy − uy)
2⟩+ ⟨(vz − uz)

2⟩
)

=
1

3n

∫
|v − u|2fd3v

Evaluating σ2
a

σ2
a =

1

3n

∫
(v2 + u2 − 2u · v)d3v

=
1

3
(⟨v2⟩+ u2)− 2

3n
u ·

∫
vd3v

=
1

3
(⟨v2⟩+ u2)− 2

3
u2

=
1

3
(⟨v2⟩ − u2)

so we can write

n⟨v2⟩ =
∫

v2fd3f = n(u2 + 3σ2
a)

We can think about the velocity vi as a sum of the mean velocity ui plus a random
component. Let

wij ≡ ⟨(vi − ui)(vj − uj)⟩ = ⟨vivj⟩ − uiuj

Here wij is a symmetric dispersion tensor with two indexes where each index can
assume one of three values (x, y, z). When wij contains off diagonal components or
its diagonal components are not equal we say the dispersion tensor is “anisotropic.”
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If the system is “isotropic” then the diagonal components would all be the same and
the off diagonal components would be zero.

We can write the trace of w as wii in summation notation and

σ2
a =

1

3
(⟨v2⟩ − u2) =

wii

3
=

1

3
trace w

If wxx = wyy = wzz then σ2
a = wxx. The dispersion tensor is symmetric. We can

decompose the dispersion tensor, wij, into the sum of a trace component that has
zeros off the diagonal and a symmetric traceless component, yij;

yij =
wij + wji

2
− trace w

δij
3

=
wij + wji

2
− σ2

aδij

Note that yij can contain components on the diagonal but their sum would be zero.
If the system is isotropic then all components of yij would be zero.
We will associate pressure with the trace of wij or σ

2
a.

4.2. The Boltzmann equation. In the absence of collisions the collisionless Boltz-
mann equation describes the evolution of the density distribution.

Df

Dt
=

∂f(x,v, t)

∂t
+

∂f(x,v, t)

∂x
· dx
dt

+
∂f(x,v, t)

∂v
· dv
dt

= 0.

The derivative here is done with respect to all degrees of freedom of the distribution
function. As v = dx/dt and dv/dt = −∇Φ for a force field with potential Φ we can
write

∂f(x,v, t)

∂t
+∇xf(x,u, t) · v −∇vf(x,v, t) ·∇Φ = 0. (111)

We have used gradient operators

∇x =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∇v =

(
∂

∂vx
,
∂

∂vy
,
∂

∂vz

)
Below we often drop the x subscript on the spatial gradient operator. Equation 111
is known as the collisionless Boltzmann equation. It is used to study the kinetic
theory of gases, atomic nuclei and for stellar dynamical systems such as galaxies and
globular clusters. The collisionless Boltzmann equation is sufficiently complex that
it is usually difficult to solve. Equation 111 is sometimes written

Df

Dt
= 0

where the Lagrangian derivative is

D

Dt
=

∂

∂t
+ v ·∇x −∇Φ ·∇v
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Here the Lagrangian derivative describes a small element moving in phase space or
(x,v). Previously we used a Lagrangian derivative for a small element moving only
in Cartesian space.

When collisions are important we can use the full Boltzmann equation by adding
a source term that is due to collisions

Df

Dt
=

(
∂f

∂t

)
C

where the term on the right hand side depends on the cross sections of particles and
their velocity differences. In many situations collisions conserve mass, momentum
and kinetic energy. When these are conserved∫

m

(
∂f

∂t

)
C

d3v = 0∫
mv

(
∂f

∂t

)
C

d3v = 0∫
mv2

(
∂f

∂t

)
C

d3v = 0

4.3. Conservation of mass. The simplest continuum equation can be made by
integrating the Boltzmann equation over all possible velocities. The first term gives
us the time derivative of the particle density as shown in the previous equation.
Integrating the first term in the collisionless Boltzmann equation∫ ∞

−∞

∂f(x,v, t)

∂t
d3v ≈ ∂

∂t
n(x, t)

As derivatives with x and v commute we can integrate the second term in the
following way ∫ ∞

−∞
∇f(x,v, t) · v d3v = ∇ ·

∫
fvd3v = ∇ · (nu)

where we have rewritten the last term in terms of the average velocity u. The last
term in the collisionless Boltzmann equation

−
∫

∇vf(x,v, t) ·∇Φd3v

we can integrate and write in terms of f at infinity and so will be zero. Putting these
together with the integral of the collision term (also zero) we find

∂n

∂t
+∇ · (nu) = 0
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To summarize: the integral over velocity space of the Boltzmann equation gives an
equation that looks just like the equation for conservation of mass for a fluid.

4.4. Conservation of momentum. To derive an equation similar to Euler’s equa-
tion (conservation of momentum) we multiply the Boltzmann equation by v and
then again integrate over velocity space. Taking the i-the component of the velocity
and using summation notation for the other indices∫ (

∂f

∂t
vi +

∂f

∂xj

vjvi −
∂f

∂vj

∂Φ

∂xj

vi

)
d3v =

∫ (
∂f

∂t

)
C

d3v = 0 (112)

Consider the first term∫
∂f

∂t
vid

3v =
∂

∂t

∫
fvid

3v =
∂(nvi)

∂t

Consider the second term of equation 112. This can be written∫
∂f

∂xj

vjvid
3v =

∂

∂xj

[n⟨vjvi⟩]

We can decompose this in terms of the dispersion tensor (w) and then the traceless
component of the dispersion tensor (y) and the average dispersion (σ2

a)

∂

∂xj

[n⟨vjvi⟩] =
∂

∂xj

[n(uiuj + wij)]

=
∂

∂xj

[n(uiuj + σ2
aδij + yij)]

=
∂

∂xj

[n(uiuj + yij) + Pδij]

where we define a pressure in terms of the trace of the dispersion tensor

P ≡ nσ2
a =

nwii

3
.

Altogether the second term in the momentum equation (112) becomes

∂

∂xj

(nuiuj + Pδij + nyij)

We recognize the first two terms inside the derivative, nuiuj +Pδij as resembling the
stress tensor. The last term nyij depends in the traceless component of the dispersion
tensor and is only non-zero when the velocity distribution is anisotropic.
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The third term in the momentum equation (112) requires us to evaluate

∂Φ

∂xj

∫
∂f

∂vj
vi d

3v =
∂Φ

∂xj

δij

∫ ∫
(fvi|∞−∞ −

∫
fdvi)dvkdvl

= −n
∂Φ

∂xj

δij = −n
∂Φ

∂xi

We integrate the integral by parts finding a non-zero term unless i = j. So the third
term in equation 112 becomes

+n
∂Φ

∂xi

Altogether our equation for conservation of momentum becomes

∂

∂t
(nui) +

∂

∂xj

(nuiuj + Pδij + nyij) + n
∂Φ

∂xi

= 0

This is familiar! Except for the term associated with anisotropy this looks just like
our relation for conservation of momentum in conservation law form.

By making use of the equation of continuity we can manipulate this equation so
that it becomes a force equation that resembles Euler’s equation

Du

Dt
= − 1

n
∇P −∇Φ− 1

n
∇ · (ny)

where the last term is a divergence of the traceless component of the dispersion tensor.
If the velocity dispersion is isotropic then y = 0 and we recover Euler’s equation. To
summarize: by multiplying the Boltzmann equation by velocity and integrating over
all velocities we recover an equation that looks remarkably like Euler’s equation.

Here we have integrated over velocity. If one integrates over all space instead
one can derive tensor “virial” equations. Integrating only over velocity and working
in cylindrical or spherical coordinates the equations, and in the setting of stellar
dynamics, the equations are called the Jeans equations.

4.5. Validity of a continuum fluid approximation. When collisions are frequent
we expect the distribution function to become Maxwellian. A crude approximation
known as the BGK approximation for the collision term that approximates this
condition is (

∂f

∂t

)
c

≈ −1

τ
(f − fM) (113)

where fM is a Maxwellian distribution that has the same n, u and velocity dispersion
as f . The timescale τ is known as the relaxation time. We expect τ to be approxi-
mately the mean free flight time. The continuum or fluid approximation is good if
the collision time dominates and so characteristic timescales are longer than τ . An
equivalent way to describe this is to require that the mean free path, λ be smaller
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than the characteristic lengthscale L or λ ≪ L. The mean free flight time and mean
free path are related by λ ∼ στ where σ is the velocity dispersion.
Above we have used a distribution function to show that moments of the dis-

tribution function look similar to equations describing conservation of mass and
momentum for a fluid. When collisions are taken into account in a more detailed
way dissipative or non-conservative processes can be modeled such as viscosity and
transport effects such as heat conduction.

5. Extremely short Introduction to relativistic hydrodynamics

To make sure expressions are relativistically invariant (under Lorenz transforma-
tions or boosted frame of reference) it is desirable to work with 4 vectors. In a
particular reference frame the 4 momentum of a massive particle or photon

P = (E,p) (114)

where E is the energy and p is the momentum (a three dimensional vector).
From here we set the speed of light c = 1. A pseudo metric is

ds2 = −dt2 + dx2 + dy2 + dz2 = gµνdx
µdxν (115)

with

g00 = −1 g11 = g22 = g33 = 1 gij,i̸=j = 0 (116)

The metric gives a Minkowski norm

|P|2 = gµνP
µP ν (117)

The norm |P|2 = −m2 for a massive particle and 0 for a photon.
A particle with mass m, that is moving with velocity v with respect to an observer

has four-momentum (as seen by the observer)

P = (γm, γβm) (118)

where γ = (1 − β2)−1/2 and β = v/c with v the velocity in three dimensions. To
restore units multiply the energy by c2 and the momentum by c. Either the space
or time parts of the metric then gain a factor of c2.
A Lorenz boost transforms four-vectors

Λ(β) =



γ −γβ1 −γβ2 −γβ3

−γβ1 (γ − 1)
β2
1

β2
+ 1 (γ − 1)

β1β2

β2
(γ − 1)

β1β3

β2

−γβ2 (γ − 1)
β2β1

β2
(γ − 1)

β2
2

β2
+ 1 (γ − 1)

β2β3

β2

−γβ3 (γ − 1)
β3β1

β2
(γ − 1)

β3β2

β2
(γ − 1)

β2
3

β2
+ 1


(119)
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from one relativistic coordinate frame to another. Here β = (β1, β2, β3). Lorenz
boosts conserve the Minkowski norm.

A particle or an observer can be described by a 4-velocity u. In the observer’s
frame, he or she is not moving so the 4-velocity u = (1, 0, 0, 0). The norm |u|2 = −1.
In a different frame u = (γ, γβ). The first component of u describes time dilation,
or how time advances in the observer’s frame compared to the reference frame in
which the 4-vector is written. u0 = dt

dτ
relating world time to proper time. For

hydrodynamics a relevant quantity is the velocity of a fluid element. We describe
this with a 4-velocity u.

Baryon conservation can be written with 4-vectors

∇ · (nu) = 0 or (nui),i = 0 (120)

where n is the number of baryons per unit volume. In an observer frame u = (γ, γβ)
which in the non-relativistic limit is u → (1,v) with v the three-vector velocity.
Inserting this into above relation we find

∂n

∂t
+∇ · (nv) = 0 (121)

where the divergence is in three-dimensions. This looks like a normal conservation
law, giving us some confidence that the relativistic version is correct.

The condition for adiabatic motions in terms of the 4-velocity is similar

∇ · (su) = 0 or (sui),i = 0 (122)

where s is the entropy per unit volume.
In the frame moving with the fluid the energy momentum tensor or stress-

energy tensor is

T =


e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (123)

with p the pressure and e the energy density. Ignoring internal degrees of freedom
and photons e = ρc2. The T 00 component gives the energy density, and the other
diagonal components, T xx, T yy, T zz, the momentum flux or the pressure.

In another coordinate system, the stress energy tensor (for an ideal fluid) is more
generally

T = (e+ p)u⊗ u+ pg (124)

with g the metric tensor with g00 = −1, g11 = g22 = g33 = 1 and gij,i̸=j = 0. Recall
that u is the flow four vector of the fluid. Using indices of the four vector u

T ij = (e+ p)uiuj + pgij, (125)
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or if we lower indices with the metric tensor

Tij = (e+ p)uiuj + pgij. (126)

Here components T 0i or T i0 with i > 0 describe energy flux or momentum density.
The components T ij with i, j > 0 describe components of momentum flux, as was
true when we worked with the stress tensor. We can compare the stress-energy tensor
to the stress tensor we previously used in the non-relativistic limit

π = pg + ρu⊗ u (127)

where u is only a 3-vector. The two tensors are similar in form, and that’s comforting.
The stress energy tensor is a tensor with two indices. Each index of a tensor

transfers separately during a coordinate transformation. Here the coordinate trans-
formation is the Lorenz boost.

T̃ ij = T klΛi
kΛ

j
l (128)

Using a Lorenz boost we can transform equation 123 into equation 124.
The 4-momentum is conserved, giving rise to four conservation laws. Conservation

of energy and momentum is equivalent to

T ij
,j = 0 (129)

Writing this out
∂T i0

∂x0

+
∂T i1

∂x1

+
∂T i2

∂x2

+
∂T i3

∂x3

= 0 (130)

or
∂T it

∂t
+

∂T ix

∂x
+

∂T iy

∂y
+

∂T iz

∂z
= 0 (131)

for each index i.
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