
Homework set #6. AST 233, Fall
2024

On resonances and tidal evolution

Due date: Thursday Dec 12 2024, midnight.
Please upload your solutions to blackboard.

1. Tidal outward drift of the Moon

Due to tides excited in the Earth by
the Moon, the semi-major axis a of the
Earth/Moon’s orbit approximately obeys a
draft rate of
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where n =
√

G(M⊕ +Mm)/a3 is the mean
motion, Mm is the mass of the Moon, M⊕ is
the mass of the Earth, and R⊕ is the mean
equatorial radius of the Earth. The coef-
ficients k2⊕, Q⊕ are the Love number and
energy dissipation factor of the Earth.

Lunar laser ranging experiments using the
laser reflectors left by the Apollo and Lu-
nakhod missions find that the Moon is re-
ceding from the Earth at a current rate of
ȧ ≈ +10−9m s−1. (Following Murray and
Dermott’s book!) We can rewrite the semi-
major axis drift rate as
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where a = 60.3R⊕ is the Moon’s current
orbital semi-major axis.

a. Find an expression for a(t).

b. Estimate how long ago the Moon’s orbit
had a semi-major axis of 1 Earth Radius. In
other words, find t such that a(t) = 1R⊕.

This time should be shorter than the age of
the Earth, implying that the tidal drift rate
must have been slower in the past!

c. What is the ratio of the orbital angular
momentum associated with the Moon’s or-
bit and the spin angular momentum of the
Earth?

Hints: The moon’s mass is about 1/100 of
the Earth. The Earth’s spin angular mo-
mentum is about

Ls ≈
2

5
M⊕R

2
⊕Ω

where 2π/Ω = 1 day. (Ignoring it’s internal
density distribution).n The orbital angular
momentum of the moon is about

Lo ≈ Mm

√
GM⊕a = Mmna2

where 2π/n = 1 month. This problem is
quick to do if you use the ratio of 1 month
to 1 day, the ratio of the moon to Earth mass
and the ratio of orbital semi-major axis to
Earth’s radius.

Using the ratio of spin to orbital angu-
lar momentum infer how much faster the
Earth could have been spinning just after
the Earth/Moon system was born.

2. Numerical problem on resonance
capture. This problem illustrates how
you can produce stargrazing comets by
migrating a planet inward. The prob-
lem is posted here and uses rebound:
https://astro.pas.rochester.edu/

~aquillen/ast233/lectures/ps06h.pdf

or https://astro.pas.rochester.edu/

~aquillen/ast233/lectures/ps06.html

3. The Kepler map

Area preserving maps can illustrate remark-
able complexity and can serve as approxi-
mate models for chaos in celestial mechan-
ics.

A generalization of the standard map
(https://en.wikipedia.org/wiki/
Standard_map) is the Kepler map which is
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the following map with γ = 1.5.

pn+1 = pn +K sin θn

θn+1 = θn + sign(pn+1)|pn+1|γ (4)

= θn + sign(pn+K sin θn) |pn +K sin θn|γ

in phase space with θ ∈ [0, 2π] modulo 2π
and p ∈ [−∞,∞]. With γ = 1 the map is
the same as the standard map.

Starting with an initial position θ0, p0 the
map is iterated. Each point, labelled with
θn, pn is used to generate the next point in
the map, θn+1, pn+1, and the subscript de-
notes the number of iterations. A set of it-
erations generated from a single initial con-
dition is called an orbit.

The Kepler map is relevant for the dynam-
ics of comets. In this setting the variable
p represents orbital energy and the angle
represents the angle of the comets orbit
with respect to Jupiter. For a derivation
see https://www.researchgate.net/

publication/221957457_The_Kepler_

map_in_the_three-body_problem

a. Show that the Kepler map is an area
preserving map.

Hint: compute the Jacobian J and show
that its determinant is 1.

J =

(
∂pn+1

∂pn

∂pn+1

∂θn
∂θn+1

∂pn

∂θn+1

∂θn

)
b. Find all the fixed points of the map.
Which fixed points are stable and which
ones are unstable?

Hint: fixed points satisfy pn+1 = pn and
θn+1 = θnmodulo 2π. To figure out whether
a fixed point is stable or unstable, you can
examine Figure 1.

The resonant islands get closer together at
large p. Because the resonant widths are
similar, the resonances increasingly overlap
at larger p causing larger chaotic regions.
Because the chaotic regions are connected,

Figure 1: Different orbits of the Kepler map
(with γ = 1.5) are shown with different color
points.
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a particle can jump across resonances, in-
creasing to very large p.

4. On conserved quantities relevant for a
first order resonance

A first order mean motion resonance with a
planet, restricted to a plane, can be modeled
with the Hamiltonian

H(Λ, λ,Γ, γ) =− 1

2Λ2
(5)

+ϵ(a)µpe(Γ) cos(jλ− (j + 1)λp + γ)

where Poincare momenta

Λ ≡
√
a

Γ ≡
√
a(1−

√
1− e2). (6)

This describes the dynamics of a particle
with semi-major axis a, eccentricity e, and
mean longitude λ. The longitude of pericen-
ter ϖ = −γ. The minus sign ensures that
the momenta and angles are canonical. The
canonical momenta and their associated an-
gles are (in pairs) Λ, λ, and Γ, γ.

The planet has mass ratio (mass divided by
that of the central star) µp and mean longi-
tude λp = npt where np is the planet’s mean
motion and t is time. We have adopted units
with GM∗ = 1. The coefficient ϵ is depen-
dent upon semi-major axis (and so Λ). The
eccentricity is dependent on the Poincare
momentum Γ.

a. Show that if eccentricity is small e < 1,

Γ ≈
√
a
e2

2
(7)

and

e ≈
√

2Γ

Λ
. (8)

in terms of the Poincare momenta.

Hence the Hamiltonian

H(Λ, λ,Γ, γ) =− 1

2Λ2
(9)

+ϵ′(Λ)µpΓ
1
2 cos(jλ− (j + 1)npt+ γ)

and there is a new coefficient ϵ′(Λ) =
ϵ(Λ)

√
2/Λ that depends on semi-major axis.

b. Show that the quantity EJ

EJ =− 1

2Λ2
+ ϵ′(Λ)µpΓ

1
2 cos(jλ− (j+1)npt+γ)

− (j + 1)npΓ (10)

is conserved.

Hints: This is the Jacobi integral. You can
show it is conserved by making a canoni-
cal transformation with generating function
which is a function of old coordinate angles
and new momenta

F2(λ, γ, I, J)=(jλ− (j + 1)npt+ γ)I + λJ.
(11)

The new Hamiltonian K = H + ∂F2

∂t should
be time independent and so conserved.

c. Show that the quantity

J = Λ− jΓ =
√
a− j

√
ae2/2 (12)

is conserved.

This implies that there are coupled oscil-
lations in eccentricity and semi-major axis
near this resonance.

Hint: After doing the canonical transforma-
tion you should find that the new Hamilto-
nian is not dependent on one of the canon-
ical angles and so Hamilton’s equations im-
ply that its associated momentum is con-
served.
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