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1 The Hyperbolic orbit

1.1 Two bodies, velocity changes

The center of mass Xcom

Xcom =

∑
i xi∑
imi

The center of velocity Vcom = Ẋcom is found by taking the time derivative of Xcom

Vcom = Ẋcom =

∑
i ẋi∑
imi

Two bodies, M,m with velocities vm,vM , we define a relative velocity

v = vM − vm

Our goal is to find a relation for the velocities of m and M in terms of the relative
velocity

mvm +MvM = constant = (m+M)Vcom

mvm +MvM −Mvm +Mvm = constant

(m+M)vm +Mv = constant (1)

vm = − M

m+M
v + constant (2)

vM =
m

m+M
v + constant (3)

Velocity changes

∆vm = − M

m+M
∆v (4)

∆vM =
m

m+M
∆v (5)

With these we can relate the change in relative velocity to those experience by each of the
two mass.

1.2 The two body problem

Two bodies M1,M2 with positions r1, r2 and velocities v1,v2. have total energy

E = M1
v21
2

+M2
v22
2

− GM1M2

|r1 − r2|
(6)

2



a sum of kinetic and potential terms. We show that this is equal to

E = (M1 +M2)
V2

com

2
+ µ

v2

2
+

G(M1 +M2)µ

|r|
(7)

The potential terms are equivalent because (M1 +M2)µ = M1M2. The kinetic terms are
equivalent because

(M1 +M2)V
2
com + µv2 =

1

M1 +M2

[
(M1v1 +M2v2)

2 +M1M2(v1 − v2)
2
]

=
1

M1 +M2

(
M2

1 v
2
1 +M2

2 v
2
2 + 2M1M2v1v2 +M1M2(v

2
1 + v22 − 2v1v2

)
=

1

M1 +M2

[
(M1 +M2)

2(v21 + v22)
]
= M1v

2
1 +M2v

2
2.

The first term in equation 7 is a coasting body of total mass M = M1 + M2 with a
constant velocity Vcom corresponding to the velocity of the center of mass. The reduced
mass

µ =
M1M2

M1 +M2

The second two terms in 7 are a Keplerian system of reduced mass µ in orbit about a large
mass M = M1 + M2. For the Keplerian system, the coordinate is the relative position
r = r1 − r2 with relative velocity v = v1 − v2.

1.3 Angular momentum in polar coordinates

A single body at position r with velocity v. Together tho vectors r,v give us a plane for
the orbit. Coordinate

r = rr̂

Velocity

v = vxx̂+ vyŷ (8)

= vrr̂+ vθθ̂ (9)

where we take x, y to be coordinates spanning the plane containing both r and v.

vθ = rθ̇

where θ is an angle on the xy plane.
Angular momentum per unit mass

L = r× v (10)

= rvθẑ

= r2θ̇ẑ (11)

The angular momentum is only sensitive to the tangential velocity component.
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1.4 Conservation of Angular momentum

With a radial force law the force on a particle i associated with a particle j is Fij ∝ ri−rj is
proportional to the vector between the two particles. Let us adopt Fij(ri, rj) = aij(ri−rj)
with aii = 0. The force on particle i is opposite to that on particle j and this implies that
aij is symmetric. The total angular momentum L =

∑
imiri × vi where we are summing

over particles.
The change in angular momentum

L̇ =
∑
i

mi (ṙi × vi + ri × v̇i)

=
∑
i

mi

vi × vi + ri ×
∑
j

Fij/mi


=

∑
i,j

ri × Fij

=
∑
i,j

ri × aij(ri − rj)

=
∑
i,j

−aijri × rj

= 0 (12)

Here aij is symmetric but ri × rj = −rj × ri and is antisymmetric. For every pair i, j the
coefficients aij and aji have the same sign, but the cross product factors have opposite signs
and so the two terms cancel. As a consequence L̇ = 0 making the total angular momentum
L a conserved quantity.

When forces are only applied along vectors connecting particles, angular momentum
conservation is assured. Potentials that are two-body interactions of functions of interpar-
ticle distance fall into this category.

1.5 Keplerian orbit

Radial force with r the vector between two masses

d2r

dt2
= −G(M +m)

r2
r̂ (13)

r̈ − rθ̇2 = −G(M +m)

r2
(14)

Angular momentum per unit mass

h ≡ r2θ̇ = L
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It is useful to work with inverse radius

u ≡ 1

r

u̇ = − ṙ

r2
(15)

We cannot find r(t) but we can find r(θ).

u̇ =
du

dθ
θ̇ (16)

=
du

dθ

h

r2
(17)

where I have used angular momentum per unit mass h which is conserved to get rid of θ̇.
Putting these together

du

dθ

h

r2
= − ṙ

r2

du

dθ
h = −ṙ

du̇

dθ
h = −r̈ (18)

where on the last step I took the time derivative and h is a constant. Now insert equation
17 in to equation 18

−r̈ =
d

dθ

(
du

dθ

h

r2

)
h (19)

r̈ = −d2u

dθ2
h2u2 (20)

Now we go back to equation 14 and start replacing r with u.

rθ̇2 =
h2

r3
= h2u3

G(M +m)

r2
= G(M +m)u2

Inserting these two relations into equation 14 and using equation 20 we find

d2u

dθ2
+ u =

G(M +m)

h2
(21)

This has a solution

u =
1 + e cos(θ −ϖ)

p
or r =

p

1 + e cos(θ −ϖ)
(22)
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with

p ≡ h2

G(M +m)
(23)

Here ϖ is the longitude of pericenter and sets the angle of the minimum radius r, known as
pericenter. The parameter p is called the semi-latus rectum and e is the orbital eccentricity.

The orbits are conic sections.
Ellipses: 0 < e < 1, and p = a(1 − e2). Pericenter radius is q = a(1 − e). Semi-major

axis a > 0. Orbit is bound so E < 0.
Hyperbolas e > 1, and p = |a(e2 − 1)|. Pericenter radius is q = |a(e − 1)|. Sometimes

negative a is used so that energy per unit mass is positive with E = −GM
2a (and that makes

sense as the orbit is not bound and E > 0).
Parabolas have e = 1, and p = 2q where q is pericenter.
In summary

p = |a(1− e2)| for e ̸= 1 (24)

p = 2q for e = 1 (25)

Our orbits are described by 3 parameters (see equation 23), a unitless eccentricity e, an
orientation angle for the angle of pericenter ϖ, and the semi-latus rectum p. The constant
p is the only one that has units and it is in units of length. But note that it involves a ratio
of the square of the angular momentum and G(M +m). We should not be surprised that p
is related to a, e and so can be written in terms of orbital energy and angular momentum.

In terms of a, e, the orbital energy per unit mass

E = −G(M +m)

2a
. (26)

Equations 23, 24 then gives the angular momentum per unit mass

h =
√
G(M +m)|a(1− e2)| (27)

1.6 The true anomaly

The Keplerian orbit has radius r as a function of angle θ

r =
p

1 + e cos(θ −ϖ)
(28)

with eccentricity e and p = a2(1 − e2) with semi-major axis a. We define a new angle
f = θ −ϖ, known as true anomaly in the orbital plane,

r =
p

1 + e cos f
. (29)
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Figure 1: The true anomaly gives the angle of the test mass in the orbital plane with
respect to percenter for a test particle in orbit about a larger mass.

Heliocentric coordinates for a small mass

x = r cos f (30)

y = r sin f (31)

Angles from pericenter are anomalies (see Figure 1), whereas angles from a fixed reference
direction are longitudes.

1.7 Energy and semi-major axis for a hyperbolic encounter

We consider an incoming particle of mass m with velocity V0 approaching an initially fixed
mass M . We define the impact parameter b as shown in Figure 2.

What is the velocity of the center of mass?

Vcom =
m

m+M
V0, (32)

and it is positive.

Initially the energy is only in the form of kinetic energy. The total energy is E =
mV 2

0
2 .

This is equal to the sum of the kinetic energy of the center of mass and the total Keplerian
energy of the two body system which we write in terms of the semi-major axis; −GMm/2a.

The total energy

E =
mV 2

0

2
= (m+M)

V 2
com

2
− GMm

2a
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Figure 2: A gravitational encounter with impact parameter b and relative velocity V0. The
orbit is hyperbolic. The angle ϕ is also the true anomaly. Here the angular momentum per
unit mass h = bV0.

Note G(M +m)µ = GMm. Insert the center of mass velocity (equation 32) and solve for
semi-major axis a

a = −G(M +m)

V 2
0

(33)

Note, no factor of 2 here is correct. Here I am using the convention E = −GMm
2a > 0 and

a < 0 for a hyperbolic (unbound) orbit.

1.8 Angular momentum and eccentricity for a Hyperbolic encounter

We recall that the angular momentum only depends upon the tangential velocity compo-
nent. With impact parameter b, and velocity V0, the angular momentum per unit mass

h = bV0. (34)

We had two ways to write the semi-latus rectum (equations 23, 24)

p =
h2

G(m+M)
= |a(e2 − 1)|

Insert the expression for h (equation 34 and solve for e2

e2 − 1 =
b2V 4

0

G2(M +m)2
(35)
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using the convention e > 1 for a hyperbolic orbit.
Notice that we see G(M+m)/b in the expression. Let us define a gravitational velocity

scale

Vg ≡
√

G(M +m)

b
. (36)

Then

e2 = 1 +
V 4
0

V 4
g

For V0 > Vg the eccentricity is large and the orbit strongly hyperbolic. For V0 small the
orbit approaches e → 1 and the orbit is nearly parabolic.

Figure 3: Gravitational focusing

1.9 Gravitational focusing

For a hyperbolic encounter the semi-major axis

|a| = G(M +m)

V 2
0

(37)

and eccentricity

e2 = 1 +
b2V 4

0

G2(M +m)2
= 1 +A−2 (38)
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with

A =
G(m+M)

bV 2
0

=

(
Vg

V0

)2

, (39)

and where the gravitational velocity scale is defined in equation 36. The pericenter radius
q = |a(e− 1)|. Inserting a, e into the equation for pericenter we find that

q = b
(√

1 +A2 −A
)

(40)

The pericenter is a minimum distance between the masses m, M during the encounter. For
V0 > Vg the encounter has q ∼ b where as for V0 < Vg the pericenter distance q is much
smaller than b.

When V0 > Vg, the parameter A < 1 and pericenter q ∼ b.
When V0 < Vg, the parameter A > 1. In the limit of V0/Vg → 0, pericenter q approaches

0 (becomes smaller and smaller). Approximating this for small A−1,

q

b
=

√
1 +A2 −A = A

(√
A−2 + 1− 1

)
(41)

∼ A
(
1 +A−2/2− 1

)
∼ A−1/2 (42)

or

q ∼ b

2

(
V0

Vg

)2

=
b

2

V 2
0 b

G(M +m)
. (43)

What does the pericenter distance have to do with gravitational focusing? The peri-
center sets the cross section for collisions.

To discuss collisions we consider a mass M passing through a sea of smaller particles
of mass m. I am flipping the picture (M vs m) because nothing we did above depends on
which of the two particles was more massive. It makes more sense to use notation M > m
and have M be the moving particle. The mass M has velocity V0 with respect to the fixed
particles m. We ignore the radius of the m particles assuming that they are small. The
number of density of background particles is n.

A collision happens if M passes within a distance R of a smaller particle m where R
would be the radius of M . A collision happens if the pericenter distance of the encounter
q < R. We have introduced a new scale, R, to the problem. Within a sea of particles, the
collision rate is set by particles with impact parameter b such that pericenter q(b) < R. Let
us define bR to be the critical impact parameter that allows a grazing collision; q(bR) = R.
The radius bR is the largest impact parameter that gives an impact.

If the encounters are slow then bR > R whereas if the encounters are fast then bR = R.
As bR > R in the slow setting, the collision rate is larger than in the fast setting. This
effect is known as gravitational focusing because the encounters themselves pull trajectories
toward M , increasing the collision rate. Gravity focuses in the sense that many more
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trajectories are encounters than estimated using the body’s radius alone to estimate the
cross section.

Given a velocity V0, masses M,m and radius R what is the ratio bR/R?
We solve the equation q(bR) = R for bR. Taking equation 40 we can rewrite it as

q2 + 2Abq = b2

Now let q = R and insert A = G(m+M)
bV 2

0
(equation 39) giving

R2 +
2G(m+M)R

V0

2

= b2R.

We solve for the impact parameter that bR that gives pericenter q = R for an
impact with relative velocity V0 and between two masses m,M , finding

bR = R

(
1 +

2G(M +m)

V 2
0 R

) 1
2

(44)

This expression is valid in both high and low velocity limits.
It may be useful to define a new quantity

VR ≡
√

G(M +m)

R
. (45)

bR
R

=

(
1 +

2V 2
R

V 2
0

) 1
2

. (46)

By introducing a scale R we have also introduced a new velocity scale, VR. If VR > V0

then gravitational focusing is a large effect, otherwise bR ∼ R.
The accretion rate depends on the number density of planetesimals n, their masses m,

and the relative velocity V0,

Ṁ = nmπb2RV0 = nmπV0R
2

(
1 +

2V 2
R

V 2
0

)
(47)

= nmπV0R
2

(
1 +

2G(M +m)

RV 2
0

)
. (48)

This is valid in both high and low velocity limits. Using R ∝ M
1
3 , the accretion rate

Ṁ ∝ M
4
3 low V0

∝ M
2
3 high V0 (49)
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A timescale for increasing mass is

tM =
M

Ṁ

and is very short, ∝ M−1/3 for higher mass objects which can gravitationally focus incoming
objects. As higher mass objects double their mass faster than lower mass objects, accretion
favors growth of a few high mass objects.

1.9.1 The isolation mass

If the largest embryo tends to grow the fastest, the largest embryo would accrete material
until it runs out of disk material. Assume a embryo of mass Mem is embedded in a disk of

mass density Σ at an orbital radius of ao. The embryo’s Hill radius is RH = ao

(
Mem
3M∗

) 1
3
.

The total mass of an annulus of the disk within the Hill radius of the embryo would be

Md = 2πaoΣ2RH = 4πa2oΣ

(
Mem

3M∗

) 1
3

. (50)

If we set the mass of this annulus Md = Mem equal to embryo mass we find an embryo
mass known as the isolation mass

Mem ∼ (4π)
3
2

3
1
2

a3oΣ
3
2M

− 1
2

∗ . (51)

This gives an estimate for the largest object that can grow in a disk.

Figure 4: Deflection angle, θ, in terms of the initial true anomaly, ϕ0, for a hyperbolic
orbit. θ = 2ϕ0 − π.

12



1.10 Deflection angle for the hyperbolic orbit

Looking at Figure 4 the deflection angle

θ = 2ϕ0 − π

where ϕ0 is the angle measured between initial velocity and pericenter. This angle is
equivalent to the initial true anomali. Recall that an angle between the line connecting M
to m and a reference direction aligned with M and m at pericenter is the true anomaly.
Going back to our orbit equation

r =
p

1 + e cos f

When f = 0 we are at pericenter. So we can take f = ϕ0 equal to the initial true anomaly.
The radius goes to infinity at an angle where the denominator vanishes or

1 + e cos f = 1 + e cosϕ0 = 0

or
secϕ0 = −e

Because 1 + tan2ϕ = sec2ϕ we find

e2 = 1 + tan2ϕ0 (52)

and this happens at angles f = ±ϕ0. Using equation 38

e2 = 1 + tan2ϕ0 = 1 +
b2V 4

0

G2(M +m)2
. (53)

We should notice that this implies that

tanϕ0 =
bV 2

0

G(M +m)
(54)

Inspection of Figure 5 helps us relate the changes in the relative velocity components
to the deflection angle.

∆V⊥ = V0 sin θd (55)

∆V∥ = −V0(1− cos θd) (56)

Here parallel is along the initial direction of the m and the perpendicular is perpendicular
to this direction but in the plane containing the two masses and their trajectories. We can
keep the signs straight if we remember that ∆V∥ must slow down the initially moving mass
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and ∆V⊥ is in the direction toward the other mass. With V = Vm −VM , and m the one
initially moving with positive V0 then ∆V∥ is negative and ∆V⊥ is m moving toward M .

Using some trig identities

sin θd = sin(2ϕ0 − π)

= − sin(2ϕ0) = −2 sinϕ0 cosϕ0

= −2 tanϕ0 cos
2 ϕ0

= − 2 tanϕ0

1 + tan2 ϕ0
(57)

1− cos θd = 1 + cos 2ϕ0

= 2 cos2 ϕ0

=
2

1 + tan2 ϕ0
(58)

1.11 Parallel and perpendicular velocity changes

Putting these trig functions (equations 54, 57, 58) together with equation 56 and equation
53, the change in relative velocity components of M caused by an encounter with m (in
the center of mass frame)

∆V⊥ = −V0 sin θd = − 2bV 3
0

G(M +m)
e−2

∆V∥ = V0(1− cos θd) = 2V0e
−2 (59)

with

e2 = 1 + tan2 ϕ0 = 1 +
b2V 4

0

G2(M +m)2
. (60)

The angles are illustrated in Figure 5.
Now we need to transfer out of the center of mass frame using equations 5. So far there

is no dependence on which mass is the one initially moving. Suppose we take M initially
fixed and m the one that is initially moving. If we want to know the change to M ’s velocity
we need to multiply ∆V in equations 59 by m/(m+M) giving

∆VM⊥ =
2mbV 3

0

G(M +m)2
e−2 (61)

∆VM∥ =
2mV0

M +m
e−2. (62)

With ∆VM∥ in the same direction as m’s initial velocity (M is sped up) and ∆VM,⊥ in the
direction toward m at pericenter.
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Figure 5: Components of the velocity change due to the encounter in terms of the deflection
angle θd.
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2 Applications

2.1 The impulse approximation

Figure 6: A gravitational encounter with impact parameter b and relative velocity V .

The impulse approximation gives an estimate for a velocity kick caused by a fast en-
counter. We discussed this in our order of magnitude estimates, but here we show that it is
consistent with our estimates for the change in velocity caused by a hyperbolic encounter.

In the high V0 limit

e2 → b2V 2
0

G2(M +m)2

(via equation 60). We plug this to the expressions for the velocity changes (equations 62)
giving

∆VM,⊥ → 2Gm

bV0

∆VM,∥ →
2mG(M +m)

b2V 3
0

∼ 0. (63)

With the expectation that V0 is large, ∆VM,∥ ∼ 0. We recognize that ∆VM,⊥ is a product
of force at pericenter F ∼ Gm/b2 times the encounter time t ∼ 2b/V0. Thus the changes in
velocity computed with a hyperbolic orbit in the limit of high velocity are consistent with
the impulse approximate (and vice versa!).

2.2 Dynamical friction

The number density of stars with mass m is f . We assume that M is moving at a relative
velocity V0 with respect to a sea of particles with mass m. The rate that a star with
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Figure 7: Illustrating the impact parameter b. Dynamical friction is estimated by integrat-
ing over different impact parameters.

mass m impact parameter b, range of possible impact parameters db and velocity v has a
gravitational encounter with M is

2πb db V0f

as shown in Figure 7.
To find the total rate of change in ∆VM∥ we integrate over all impact parameters

d

dt
∆VM∥ =

∫ ∞

0
db 2πbV0f∆VM∥(b) (64)

=

∫ ∞

0
db 2πbV0f

2mV0

(M +m)

[
1 +

b2V 4
0

G2(M +m)2

]−1

(65)

where I have used equation 62 for VM∥. If the field of stars is uniform then we can neglect
∆V⊥ as it should cancel to zero when we integrate.

We notice that the integral in equation 65 is dominated by encounters at large impact
parameter b. Let us simplify the integral taking this into account, and setting density
ρ = fm, the mass density of our sea of particles with mass m;

d

dt
∆VM∥ ∼

∫ ∞

0
db 2πbV0ρ

2V0

M +m

G2(M +m)2

b2V 4
0

(66)

=

∫ ∞

0
db

4πρG2(M +m)

bV 2
0

(67)

This integral diverges so we can’t let impact parameter b → ∞. We can consider a maxi-
mum impact parameter bmax typical of our system. G(M+m)/V 2

0 is in units of length and

this is the transition regime were the denominator in equation 65 is 1. Let u =
bV 2

0
G(M+m) ,

17



Figure 8: Dynamical Friction. Illustrating how a large mass, moving through a sea of
particles accumulates a wake behind it due to gravitational scattering. The wake slows the
mass down, causing the frictional force known as dynamical friction.

with db = du
V 2
0

G(M+m) .

d

dt
∆VM∥ ∼ 4πρG2(M +m)

V 2
0

∫ bmax

0

db

b

∼ 4πρG2(M +m)

V 2
0

∫ bmaxV 2
0

G(M+m)

1

du

u

=
4πρG2(M +m)

V 2
0

ln

(
bmaxV

2
0

G(M +m)

)
(68)

It is customary to define a Coulomb log

Λ ≡ bmaxV
2
0

G(M +m)
(69)

The change in velocity is in the same direction as M is moving so

V̇M ∼ −4πρG2(M +m) lnΛ

V 3
M

VM (70)

For M > m the change in velocity is proportional to M . As the acceleration is pro-
portional to M the actual force is proportional to M2. The change in velocity depends

18



on the velocity so this is a dissipative force and that is why it is called dynamical friction.
The formula diverges for small VM only because we did not correctly estimate the integral
(because we took the limit of large impact parameter).

A similar formula taking into account the integral over relative velocities was derived
by Chandrasekkar. In this case we would take f(v) a distribution function and integrate
over d3v. The change in velocity depends on the relative velocity so we would integrate
over v − VM .

With an isotropic Maxwellian velocity distribution the integral over all encounter ve-
locities

dVM

dt
= −4π ln Λ G2Mρ

V 3
M

(
erf(X)− 2X√

π
e−X2

)
VM (71)

where σ is the velocity dispersion and X ≡ vM
2σ .

As a mass M (a globular cluster or a black hole) passes through a sea of stars, it leaves
a gravitational wake behind it of focused stars and this wake slowly pulls M backwards
slowing it down, as shown in Figure 8.

2.3 Gravitational stirring and heating

With dynamical friction we primarily took into account the drag force from the component
of the parallel component of the velocity change in a hyperbolic orbit.

We now think about the other components.
Each encounter gives a random change in velocity. So while perpendicular velocity

changes do average to zero, they also cause random motions. The expectation averaged
over all encounters ⟨∆V⊥⟩ = 0. However ⟨∆V 2⟩ is not zero. We can describe the behavior
with a random walk or with diffusive behavior.

The effect is called gravitational stirring or gravitational heating.
Diffusion coefficients come from integrating components of ∆V over a distribution of

encounters that have a distribution of velocities and impact parameters. D[∆w] denotes
the expectation of the change in quantity w per unit time. We consider a mass M that is
moving with velocity vM through a sea of particles with mass m. The number of density of
particles with mass m is n and the density of particles with m ass m is ρ = nm. We assume
that the velocity distribution for the m particles is described with a Maxwell Boltzmann
distribution function giving a dispersion σ. Drift and diffusion coefficients computed by
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integrating over the velocity and impact parameter distributions

D(∆v∥) =
4πG2ρ(M +m) lnΛ

σ2
G(X) (72)

D(∆v2∥) =
4
√
2πG2ρm ln Λ

σ

G(X)

X
(73)

D(∆v2⊥) =
4
√
2πG2ρm ln Λ

σ

(
erf(X)−G(X)

X

)
(74)

G(X) =
1

2X2

[
erf(X)− 2X√

π
e−X2

]
(75)

X ≡ vM
2σ

(76)

Here D(∆v∥) gives a drift, whereas D(∆v2∥), D(∆v2⊥) are diffusive, giving random mo-
tions. Statistics can be described in terms of an advective diffusion equation. A star
moving through the galaxy is primarily heated by the diffusive terms, whereas a globular
cluster moving through a sea of stars would be primarily slowed down by the advective or
drift term. A star is drawn from a distribution of possible randomly chosen trajectories.
The distribution of trajectories widens due to heating and this is described by the diffusive
terms. Gravitational heating is described by the diffusive terms whereas dynamical friction
is described by the drift term. When the two balance we have equipartition.

We define a timescale and a length scale tρ = (Gρ)−1/2 and Rm = Gm
σ2 . Focusing on

units only

D(∆v2⊥) ∼
∆v2⊥
∆t

∼ G2ρm

σ
∼ t−2

ρ

Gm

σ2
σ ∼ t−2

ρ Rmσ (77)

D(∆v2∥) ∼ D(∆v2⊥) ∼ t−2
ρ Rmσ (78)

D(∆v∥) ∼
G2ρ(M +m)

σ
∼ t2ρRm

M +m

m
. (79)

2.4 Equipartition

The kinetic energy of a single particle of mass M

E =
∑
i

Mv2i
2

where i is over x,y,z. Diffusion in energy

D(∆E)

M
= −

∑
i

viD(∆vi) +
1

2

∑
i

D(∆v2i ) (80)

= −vD(∆v∥) +
1

2

(
D(∆v2∥) +D(∆v2⊥)

)
(81)
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where convention is that perpendicular part takes into account both perpendicular com-
ponents (as we work in 3 dimensions).

The parallel part is negative because this is dynamical friction. This is a cooling term.
The other two terms are heating terms.

How does the velocity VM change?
Looking at equation 72, D(∆v∥) ∝ M/σ2 with σ the velocity dispersion of the massesm.

Looking at equation 73, D(∆v2∥) and D(∆v2⊥) ∝ m/σ. Setting a balance with D(∆E)
M = 0.

The two terms in equation 81 are equivalent with

VMM

σ2
∼ m

σ

or when
MVM ∼ mσ.

When two different masses are present the heating and cooling term balance giving what
is called equipartition.

2.5 Eccentricity and Inclination evolution in a circumstellar disk

We consider two populations of planetesimals that are orbiting a central star Mc. Gravi-
tational heating of planetesimals or dust particles of mass m in a circumstellar disk is due
to scattering from masses of mass m∗ and m in the disk;

d⟨e2⟩
dt

=
Ωr2σ∗M

−2
c√

π(⟨e2∗⟩ − ⟨e2⟩)
1
2 (⟨i2∗⟩ − ⟨i2⟩)

1
2

[
BJem∗ + 1.4AHe

(
m∗⟨e2∗⟩ −m⟨e2⟩

⟨e2⟩+ ⟨e2∗⟩

)]
(82)

From Stewart and Ida 2000, Icarus 143, 28. Here Ω is angular rotation rate about Mc, σ∗ is
surface mass density of particles m∗. There are two heating terms and one damping term.
Dynamical friction is negative and let’s you identify which term it is; it is the cooling or
damping term. We could also write a similar equation for the evolution of ⟨e2∗⟩ that is is
sensitive to σ, the mass density of particles with mass m.

Inclination evolution is similar except about one half the size and this is consistent with
isotropy of the velocity distribution (though the coefficients are different). Here coefficients
B, Je, A,He are all terms of order unity. The terms subscripted with e depend on whether
the system is in a dispersion or shear dominated regime. Observed debris disks are not in
the shear dominated regime, whereas cold ring systems might be, but in that case there
would also be cooling due to collisions.

What about encounters from particles with the same mass, m? They are taken into
account but are hidden in the coefficients which depend upon ρ, ρ∗.
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2.6 Relaxation timescale in a star cluster

Consider a star cluster of mass M with N stars so M = Nm where m is the mass of each
star in the cluster. The cluster has a radius R and a typical velocity scale

V =

√
GM

R
=

√
GNm

R
(83)

which is also approximately the velocity dispersion in the cluster.
What time does it take for a star in the cluster to lose memory of its orbit? This is

known as the relaxation time.
A gravitational encounter with impact parameter b gives a velocity kick in the perpen-

dicular direction of order

δv ∼ Gm

bV
.

This is essentially the impulse approximation. Our star undergoes a random walk due to
these velocity kicks. During a crossing time, our star experiences N kicks and the velocity
kicks add in quadrature as they would on average all cancel when added. The number of
stars per unit area is N/R2 but each kick is due to an encounter with a different impact
parameter. The total velocity change after passing through the cluster once (and
having an encounter with every star in the cluster once)

∆v2 ∼
∫ bmax

bmin

2πb db
N

R2
(δv)2

∼
∫ bmax

bmin

2πb db
N

R2

(
Gm

bV

)2

∼ N

R2
2π

G2m2

V 2

∫ bmax

bmin

db

b

∼ N

R2
2π

G2m2

V 2
ln

∣∣∣∣bmax

bmin

∣∣∣∣ (84)

Here bmax, bmin cover the range of possible impact parameters.
Define

Λ ≡ bmax

bmin
(85)

and use equation 83 to remove R

∆v2

V 2
=

2π

N
ln Λ. (86)

Losing memory of the initial velocity happens when ∆v2/V 2 ∼ 1. The number of crossing
times required to lose all memory of initial conditions is the inverse of equation 86

nrelax ∼ N

6 lnΛ
. (87)
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where I replaced 2π with 6.
It makes sense that the maximum impact parameter bmax = R. The minimum impact

parameter we can estimate from a gravitational sizescale bmin ∼ Gm/V 2. Taking the ratio

bmax

bmin
=

RV 2

Gm
∼ M

m
∼ N

and giving

nrelax ∼ N

6 lnN
. (88)

To estimate a relaxation timescale we multiply this number with the crossing time to
find the relaxation time

trelax = nrelaxtcross (89)

with the crossing timescale

tcross ∼
R

V
.

2.7 Stochastic behavior, ergodicity and chaos

When we discuss gravitational heating in terms of diffusion or gravitational relaxation we
assume that gravitational encounters are a stochastic phenomena. Stochastic here means
involving random behavior. This contrasts with a Keplerian system which is analytically
solvable. N-body systems are deterministic in the sense that trajectories are integrated
and they are not chosen from a random distribution in any way. However for N ≥ 3 an
N-body system is likely to be chaotic. Our assumption of stochastic behavior rests in the
way that N-body systems behave ergodically. With the word ergodic here meaning acting
as if we can model the system as if it were random.

3 Problems

I am listing topics that might be interest to think about or/and research.

1. Disk heating mechanisms for both planetesimal and galactic disks.

2. Tidal stream broadening in the Galaxy.

3. Perturbations of planets and comets by nearby stars.

4. How accretion onto planets or planetary embryos is affected by gravitational focusing.

5. Extending the impulse approximation to cover shocks of the stars in a cluster as it
passes through a Galactic disk
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