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1 Differential rotation, Epicyclic motion and the Shearing
sheet

The setting for this section is a disk. The particles in the disk are assumed to be in a single
plane and in orbits that are nearly circular.
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If the disk were rotating as if it were a solid body then the angular rotation rate of a
particle Ω is in dependent of radius. We first consider this case and then discuss a more
generic situation where Ω(r) is a function of radius, giving differential rotation.

1.1 Solid body rotation

What kind of mass distribution could give solid body rotation?
We assume that the mass is mostly invisible (dark matter) and distributed in a spher-

ically symmetric way giving density ρ(r) that is only a function of radius. The disk, we
assume is a collection of low mass or tracer particles.

For a uniform shell of massMs and radiusR at r > R, outside the shell, the gravitational
force per unit mass from this shell is F = GMs

r2
r̂ and is independent of R.

For our spherical mass distribution with density ρ(r) we integrate the mass from each
shell. The total mass within a radius r is

M(r) =

∫ r

0
dr′ 4πr′2ρ(r′). (1)

For a particle in a circular orbit, the tangential velocity vθ = rΩ. We relate the centripetal
acceleration to the mass within radius r to the force from each shell interior to r

v2θ
r

= rΩ2 =
GM(r)

r2
(2)

as Ω is independent of radius we can solve for M(r)

M(r) =
r3Ω2

G
. (3)

We set this equal to equation 1 and take a derivative

r3Ω2

G
=

∫ r

0
dr′ 4πr′2ρ(r′)

3r2Ω2

G
= 4πr2ρ(r)

ρ(r) =
3

4π

Ω2

G
is constant!.

We find that the density is constant!
What is the gravitational potential? To figure this out we could use Poisson’s equation

4πGρ = ∇2Φ. (4)

We assume that Φ(r) and is independent of angles θ, ϕ in spherical coordinates. In spherical
coordinates Poisson’s equation becomes

4πGρ =
1

r2
∂

∂r

(
r2

∂Φ

∂r

)
. (5)
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We use the fact that ρ is independent of radius (for uniform body rotation) and integrate
once

4πGρr2 =
∂

∂r

(
r2

∂Φ

∂r

)
4πGρr3

3
= r2

∂Φ

∂r
+C1

4πGρr

3
=

∂Φ

∂r
+

C1

r2

2πGρr2

3
= Φ +

C ′
1

r3
+ C2 (6)

with constants C ′
1, C2. Equivalently (and more quickly and easily) we could use the fact

that the force is the gradient of the potential and equation 2

rΩ2 =
GM(r)

r2
=

dΦ

dr
(7)

1

2
r2Ω2 = Φ+ constant (8)

which is consistent with equation 6 using our result for ρ in equation 4.

1.2 Differential rotation and the shearing sheet

In most disk settings, galactic and Keplerian, the angular rotation rate Ω is not a constant,
rather it depends on radius. In a Keplerian setting, where the disk mass is low, the angular

rotation rate is set by the central mass M∗ and Ω =
√

GM∗
r3

. In a constant density cluster,

Ω could be flat. But as the density drops at large radius, Ω would start to drop, but less
quickly than in the Keplerian setting.

With Ω(r) dependent upon r, there is differential rotation.
It is sometimes convenient numerically to use periodic boundary conditions to example

dynamics in a small patch of the disk, as shown in Figure 1.

1.3 Epicyclic motion

Spiral density waves involve radial motions for particles that are in a disk. The motions
of the particles are close to circular. We use that fact to estimate the frequency of small
radial oscillations, known as the epicyclic frequency.

We ignore motion out of the disk plane. The energy per unit mass is the sum of kinetic
and potential energy

E =
1

2
v2r +

1

2
v2θ +Φ(r) (9)
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Figure 1: The Shearing Sheet. A central particle remains fixed. Particles with no epicyclic
oscillations (in circular orbits) exhibit shear in their horizontal (x) velocities as a function
of y. Often the shearing sheet is simulated with periodic boundary conditions in both x
and y.

Angular momentum L = rvθ is conserved. We replace vθ with L/r

E =
1

2
v2r +

L2

2r
+Φ(r). (10)

We assume that r = R0 + w and w is small. We expand Φ to second order around R0.

Φ(r) = Φ(R0) +
∂Φ

∂r

∣∣∣∣∣
r=R0

w +
∂2Φ

∂r2

∣∣∣∣∣
r=R0

w2

2
+ ... (11)

A particle in a circular orbit has a constant tangential velocity

v2θ
r

=
∂Φ

∂r
. (12)

Using the fact that Ω = v/r we find that

Ω2 =
1

r

∂Φ

∂r
. (13)

We denote the angular rotation rate at r = R0 as Ω0 with

Ω2
0 =

1

R0

∂Φ

∂r

∣∣∣∣∣
r=R0

. (14)
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Using this expression, equation 11 becomes

Φ(r) = constant +R0Ω
2
0w +

∂2Φ

∂R2

∣∣∣∣∣
r=R0

w2

2
. (15)

We expand the term containing the angular momentum in equation 10

L2

2r2
=

L2

2R2
0

− L2

R3
0

w +
3L2

R4
0

w2

2
+ .. (16)

The angular momentum for a particle in a circular orbit at radius R0 is L0 = R2
0Ω0. This

gives

L2

2r2
= constant−R0Ω

2
0w + 3Ω2

0

w2

2
+ .. (17)

Combining equation 10 with equation 15 and equation 17

E = constant +
v2r
2

−R0Ω
2
0w + 3Ω2

0

w2

2
+R0Ω

2
0w +

∂2Φ

∂R2

∣∣∣∣∣
r=R0

w2

2

= constant +
v2r
2

+
1

2

(
3Ω2

0 +
∂2Φ

∂r2

∣∣∣∣∣
r=R0

)
w2 (18)

We define a frequency κ, known as the epicyclic frequency

κ2 = 3Ω2 +
∂2Φ

∂r2
. (19)

With this frequency the energy becomes

E = constant +
v2r
2

+
κ20w

2

2
(20)

where κ0 is the epicyclic frequency at radius R0. Notice that the energy per unit mass
resembles that of a harmonic oscillator. That implies that κ is the frequency of radial
oscillations about the circular orbit.

Why is this type of motion called epicyclic motion? We can think of the particle as
doing small loops about a circular orbit.

Orbits don’t usually close in a galaxy where they could resemble a rosette as shown in
Figure 2.

1.3.1 Solid body rotation

In this setting 1
r
dΦ
dr = Ω2 is constant. This implies that rΩ2 = dΦ

dr and d2Φ
dr2

= Ω2. Equation
19 gives epicyclic frequency κ = 2Ω.
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1.3.2 Keplerian orbits

For the Keplerian orbit Φ = −GM
r , and dΦ

dr = GM
r2

. The angular rotation rate Ω2 = 1
r
dΦ
dr =

GM
r3

. Furthermore d2Φ
dr2

= −2GM
r3

= −2Ω2. Equation 19 gives epicyclic frequency κ = Ω.
For Keplerian orbits radial epicycles occur at the same frequency as rotation. This means
that nearly circular orbits close and are ellipses.

For an object in orbit outside a planet, the planet’s mass breaks the Keplerian symmetry
and would induce precession on the object.

1.3.3 A flat rotation curve

If the circular velocity vc is constant then rΩ2 = v2c
r = dΦ

dr and −v2c
r2

= d2Φ
dr2

= −Ω2. Equation

19 gives epicyclic frequency κ =
√
2Ω.

Figure 2: A rosette orbit. The orbit can be described in terms of radial oscillations or
epicycles about a circular orbit.
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1.4 Lindblad resonances

The epicyclic frequency is relevant for accounting for collective motions or patterns that
might be stable or long lived in a galactic disk. A pattern that moves in such a way as
to be in phase with two epicyclic periods per rotation would look like a galactic bar. A
pattern that moves in such a way as to be in phase with a single epicyclic period might
give a lopsided or eccentric disk (as in M31). A pattern that moves at a speed that is
proportional to a number of epicyclic periods might give a multi-armed spiral pattern.

We consider a disk with a periodic perturbation at a frequency, Ωp, which we call the
pattern frequency, there can be resonances in the disk.

What is a resonance?
A resonance is a location where a sum of different integers times different frequencies

is zero.
In this problem we have three frequencies Ω, κ,Ωp. A resonance would be a location

where there is set of integers i, j, k (positive or negative or zero) and

iΩ+ jκ+ kΩp = 0. (21)

We have three angles in the problem

θ polar coordinate θ̇ = Ω

ϕ phase of epicycle ϕ̇ = κ

θp phase of pattern θ̇p = Ωp

(22)

We can integrate a condition on frequencies, such as in in equation 21, to find

iθ + jϕ+ kθp = constant (23)

Thus the resonance condition is equivalent to an angle that is constant.
Note we are not discussing yet whether the resonance is actually important or strong

or how near we need to be to it for it to be important.
A Lindblad resonance is at a radius where the condition

κ2 −m2(Ω− Ωp) = 0 (24)

is satisfied, for integer m. This condition is equivalent to

κ = ±m(Ω− Ωp). (25)

We can integrate this condition to find

ϕ±m(θ − θp) = constant (26)

Assume that θp = Ωpt describes the pattern peak. Equivalently θp is the angle at
which a bar or spiral arm is densest or brightest. We transform into the frame rotating
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with the pattern via θ′ = θ − θp = θ − Ωpt. The resonant condition is κ = ±mθ̇′. The
period of radial oscillations is Pr = 2π/κ and the rotation period in the rotating frame
is Pθ′ = 2π/(Ω − Ωp). The resonant condition implies that mPr = Pθ′ . This means that
there are m periods of radial oscillation for each rotation about the origin, as seen in the
rotating frame.

2 Spiral density waves

2.1 A short history

Galactic spiral arms were considered by Lynden-Bell as density waves propagating through
a field of stars.

Doug Lin and Frank Shu proposed that spiral density waves in galaxies were long lived
modes, similar to vibrational models.

Alar Toomre argued that disks were likely to be unstable to amplification of noise
resulting in transient spiral structures.

Peter Goldreich and Scott Tremaine considered how spiral density waves would be
driven at resonances by satellites embedded in a ring system, resulting in the Torque
formula. Despite depending upon many approximations, the torque formula applies in
both particulate and gaseous disks.

The torque formula was used by Doug Lin and Jim Papaloizou to derive a gap opening
criterion in ring and exoplanet systems and by Bill Ward used it to estimated regimes for
planet or satellite migration within disks.

There is a lack of consensus on the pattern speed of the Milky Way’s bar. There is
also a lack of consensus on the possible pattern speed of local galactic spiral arms. One
possibility is that spiral structures are transient.

Galactic disks have Toomre Q close enough to 1 that the disk supports spiral density
waves. Gas facilitates spiral arm formation as it aids in maintaining a thin disk. Some
planetesimal disks exhibit spiral structure however they may not be massive enough to
have Q near 1. In planetesimal disks coupling between gas and pebbles give a different
instability, known as the streaming instability (proposed by Andrew Youdin, with many
initial simulations by Anders Johansen), and this could trigger planetesimal formation.

2.2 Tour of images

For a tour of spiral galaxies see
https://www.flickr.com/photos/nasahubble/albums/

For a circumstellar disk with spiral structure
https://webdisks.jpl.nasa.gov/show.php?id=10 which is AB Aur

For circumstellar disks with rings see this:
https://webdisks.jpl.nasa.gov/reference.php?id=1812
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Saturn’s ring systems
https://photojournal.jpl.nasa.gov/figures/PIA08389_fig1.jpg

Newly discovered systems Quaoar, Chariklo, Haumea, Chiron (also shows Uranus and
Neptune)

https://en.wikipedia.org/wiki/Ring_system

Figure 3: Illustrating how gaps in phase space could be related to overlaps of different
pattern. Ellipses are shown with different mean radii but shifted in orientation. There is
a jump in rotation angle at an intermediate radius.

2.3 The Lin-Shu hypothesis

The Lin-Shu hypothesis is that galactic spiral arms are caused by epicyclic perturbations
of populations of stars that are locally in phase. Variations in density and epicycle are
coupled and a wave like structure passes through the disk of a galaxy.

2.4 Perturbations in a rotating self-gravitating disk

Many instabilities are studied using perturbations near a steady state to derive a set of
linear equations. A sinusoidal solution is used to find a relation between frequency and
wave number, known as the dispersion relation. The WKB approximation can be used
to simplify the equations. The dispersion relation describes either traveling waves or the
growth rate of perturbations that can grow.

We assume that the disk is thin and can be approximated in a continuum approxima-
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tion. In a fluid, conservation of momentum gives Euler’s equation

dv

dt
+ v · ∇v = −∇p

ρ
−∇Φ (27)

where v is velocity, ρ is density, p is pressure, and Φ is the gravitational potential. We use
cylindrical coordinates r, ϕ, radial velocity component u and tangential velocity component
v. We also integrate vertically so that Σ is the disk density per unit area.

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂ϕ
− v2

r
= −∂Φ

∂r
− 1

Σ

∂p

∂r

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂ϕ
+

uv

r
= −1

r

∂Φ

∂ϕ
− 1

rΣ

∂p

∂ϕ
(28)

We assume that the disk is near a steady state with circular rotation and no radial
motions. The angular rotation rate satisfies Ω2 = 1

r
∂Φ
∂r . The associated tangential velocity

v0 = rΩ. The steady state solution is also called the zero-th order solution as it contains no
small perturbations. It is also useful to use the frequency κ which is the epicyclic frequency.
Zeroth order quantities can be written with a 0 subscript and perturbative quantities with
a subscript 1.

We assume that there are small perturbations in u, v,Σ,Φ and all perturbations ∝
ei(mϕ−ωt). We insert the perturbative expressions into Euler’s equation (equation 28) and
drop all second order terms

u1 = − i

D

[
(mΩ− ω)

∂

∂r
(Φ1 + h1)−

2mΩ

r
(Φ1 + h1)

]
v1 = − i

D

[
−2B

∂

∂r
(Φ1 + h1) +

m(m− Ω)

r
(Φ1 + h1)

]
(29)

where

D = κ2 − (mΩ− ω)2 (30)

describes the distance to Lindblad resonances and

B =
κ2

4Ω
(31)

is an Oort constant. The enthalpy h is a convenient function that satisfies

∇h =
∇P

Σ
. (32)

With sound speed c2s =
dP
dΣ ,

h1 = c2s
Σ1

Σ0
. (33)
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We use the WKB approximation. We assume the perturbations are ∝ eikr or eiα ln r

where k is a radial wave vector and α describes a winding angle. We assume that kr > 1
or α > 1 so that terms with radial derivatives that don’t involve k or α are dropped.

We use Poisson’s equation

∇2Φ = 4πGρ (34)

and a thin disk approximation to relate the potential perturbation to the density perturba-
tion. We assume that the density is zero above the plane. That means ∇2Φ = 0 everywhere
but in the plane. This means that

Φ1 ∝ eikr−k|z|. (35)

With the WKB approximation, slow radial perturbations are ignored in both Σ and Φ.
A Gaussian pillbox, centered on the galactic plane, with base area A and height z gives∫

V
4πGρdV =

∫
V
∇2ΦdV =

∫
S
∇Φ · dA

4πGΣA ∼ 2
∂Φ

∂z
A. (36)

With the potential perturbation in the form of equation 35

Φ1 =
2πGΣ1

|k|
. (37)

Conservation of mass is

∂ρ

∂t
ρ+∇ · (vρ) = 0. (38)

In cylindrical coordinates and integrating vertically

∂Σ

∂t
+

1

r

∂

∂r
(urΣ) +

1

r

∂

∂ϕ
(vΣ) = 0. (39)

To first order in perturbations

i(mΩ− ω)Σ1 +
1

r

∂

∂r
(rΣ0u1) +

imΣ0

r
v1 = 0. (40)

Using the WKB approximation, we ignore the last term giving

(mΩ− ω)Σ1 + kΣ0u1 = 0. (41)

Applying the WKB approximation to equations 29,

u1 ∼
(mΩ− ω)k(Φ1 + h1)

D

v1 ∼ −2Bik(Φ1 + h1)

D
. (42)
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2.5 Dispersion relation

Combining equations 42, 41, 37 and 33 gives a relation between frequency ω and wave
number k known as a dispersion relation.

(mΩ− ω)2 = κ2 − 2πGΣ|k|+ c2sk
2. (43)

At large k (short wavelength) we have sound waves. Small k, giving very open waves, are
found near Lindblad resonances invaliding the WKB approximation. Waves can reflect off
or be absorbed at boundaries or at resonances such as the Lindblad resonances. Waves can
be driven at Lindblad resonances. Waves carry angular momentum. Angular momentum
is a second order quantity in perturbation strength and so is more difficult to estimate,
and here we have used a linear and first order approximation!

2.6 Toomre Q and instability

We set m = 0, describing an axisymmetric perturbation, and the dispersion relation be-
comes

ω2 = κ2 − 2πGΣ0|k|+ c2sk
2. (44)

This gives a function ω2(k). The right hand side is a quadratic equation. It looks like a
parabola except shifted upward by κ2 and shifted horizontally by the middle term. The
frequency ω2 > 0 when the right hand side is positive. We can find the location of the
minimum value for ω2, find ω2 at this minimum value and set it to zero to find critical
values of κ, cs,Σ0 ensuring that ω2 > 0. The square ω2 > 0 is satisfied at all k only if

Q ≡ csκ

πGΣ0
> 1. (45)

This parameter is known as the Toomre Q parameter. If Q < 1 then ω2 < 0 and that
means we could have a perturbation that grows exponentially quickly rather than travels
as a wave.

For Q ≲ 1, a galaxy or protoplanetary disk is unstable and would spontaenously form
clumps, spiral arms or a bar.

The Toomre Q parameter is estimated for axisymmetric disturbances but it turns out
to be relevant for non-axisymmetric disturbances too.

For a stellar or non-collisional disk, sound waves do not propagate, but short wavelength
waves are damped via Landau damping, in direct analogy to the same mechanism in plasma
physics. The Q parameter is approximately the same in a particular disk as for a gaseous
disk but with sound speed replaced by the velocity dispersion.

In most settings, disk thickness h is related to the velocity dispersion σ or sound speed
cs, setting

h ∼ csΩ or h ∼ σΩ (46)
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where Ω is the angular rotation of a particle in a circular orbit. This can be derived
assuming hydrostatic equilibrium or one of Jean’s equations.

For a circumstellar disk Q ∼ M∗
Md

h
r where Md is the mass of the disk, M∗ the mass of

the star and h/r is the ratio of disk thickness to radius. Estimates of circumstellar disk
masses and thickness imply that Q > 1, though a very thin layer of solids in the midplane
could be gravitationally unstable.

Charles Gammie extended the theory of stability to spiral density waves to include
cooling, and found that optical thick disks should not clump unless their cooling time is
shorter than Ω−1 where Ω is the angular rotation rate. Hence if you see a simulation of a
disk that forms many small clumps, probably it is able to cool off rapidly. Often assumed
is an isothermal gas, with a constant temperature which acts as if it cools infinitely quickly
as it stays the same temperature!

3 Torque Formula

Planets embedded within a disk or a moon embedded in a ring system drive density waves.
An example is shown in Figure 4 which is from https://photojournal.jpl.nasa.gov/

catalog/PIA21627.
Example equations 29 again. The term D becomes large near a Lindblad resonance.

Instead of taking the gravitational potential from self-gravity, assume that it is driven by
a planet. Decompose the planet’s gravitational perturbation in a Fourier series

Φp(r, θ, t) =
∑
m

Wm(r)(mθ − Ωpt)

Wm(r) = −GMp

rp
bm1
2

(rp
r

)
(47)

where bjs() is a Laplace coefficient, Mp, rp are the mass and orbital radius of the planet.
Here we assume the planet is in a circular orbit with mean motion Ωp.

The angular momentum flux at the m-th Lindblad resonance is

Tm = −
mπ2Σ|ΨGT,m|

r dD
dr

(48)

ΨGT,m = r
dWm

dr
+

2Ω

Ω− Ωp
Wm (49)

D = κ2 −m2(Ω− Ωp). (50)

Waves are only driven at resonances. Otherwise perturbations don’t add in phase with
motions of the disk.

Waves become more open and stronger the closer to resonance.
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Figure 4: This is PIA21627 (PIA stands for planetary imaging atlas). Cassini spacecraft
shows a wave structure in Saturn’s B-ring ring known as the Janus 2:1 spiral density wave.
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Waves are rapidly damped away from resonance.
High m Lindblad resonances are found close to the planet’s orbital radius. As m can

go to infinity, this would imply an infinitely large torque. However, because of pressure in
the disk, the locations of the resonances are slightly further away than predicted directly
from Keplerian motion. There is a cutoff known as the torque cutoff. Resonances with
m > h/r are ineffective at driving spiral density waves.

3.1 Gap opening

Spiral density waves driven by a planet carry angular momentum, pushing the disk away
from the planet’s orbital radius. If a gap is in a disk, viscosity in the disk would slowly fill
in the gap. We can estimate a condition for gap opening based on an estimate for when
the torque from spiral density waves overcomes viscous torque.

Viscous torque in an accretion disk depends on viscosity ν

Tν = 3πνΣr2Ω. (51)

We define q as the ratio of planet mass to stellar mass

q ≡ Mp

M∗
. (52)

We use equation 48 to estimate the torque from a spiral density wave driven at a
Lindblad resonance with index m. Near the planet the term in the planet’s potential (from
equation 47)

Wm ∼ qr2pΩ
2 lnxm (53)

where rp is the radius of the planet’s orbit and xm is the distance from the planet’s orbital
radius to the m resonance. We have used an asymptotic limit for the Laplace coefficient.
This gives (from equation 49)

ΨGT,m ∼
r3pΩ

2q

x
. (54)

Since the torque Tm ∝
m|ΨGT,m|2

dD dr (equation 48 and the distance to resonance D ∝ x, and
resonance index m ∝ 1/x, the torque

Tm ∼ q2Σr4pΩ
2
(rp
x

)4
. (55)

Summing all resonances to a distance ∆ we find a total torque of

T ∼ Σr4pΩ
2q2
( r

∆

)3
. (56)
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Set ∆ = RH ∼ q
1
3 rp the planet’s Roche radius to find

T ∼ Σr4pΩ
2q. (57)

We set equation 57 equal to the torque from viscosity (equation 51) so we can determine
whether the planet can overcome viscous infill by driving density waves that push away
the disk. We solve for the mass ratio giving a planet that can open a gap

q ≳ 40Re−1 (58)

where Reynolds number

Re =
r2pΩ

ν
. (59)

This set of arguments is following works by Lin & Papaloizou, Geof Bryden, and Aurelien
Crida.

3.2 Planet migration

Planet migration is divided into two regimes, depending upon whether a gap is opened in
the disk or not.

3.2.1 Type I migration

The setting is a planet that does not open a gap. The drift rate is set by the torque on the
planet’s orbit that is generated by driving spiral density waves into the disk. The planet’s
orbit has angular momentum

Lp = Mp

√
GM∗r

1
2
p . (60)

If the planet’s orbit drifts then the torque

dLp

dt
= Mp

√
GM∗r

− 1
2

p
drp
dt

=
1

2
MprpΩp

drp
dt

. (61)

To estimate the migration rate, we need to estimate the the difference between torque
from driven by waves in one direction and that driven by waves going in the other direction.
The result (modifying equation 57) gives a drift rate

drp
dt

∼ rpΩp

(
Mp

M∗

)(
r2pΣ

M∗

)(
h

r

)−2

. (62)

Note that the drift rate depends on the planet mass, so large planets drift more quickly.
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3.2.2 Type II migration

In this setting the planet opens a gap and the planet drifts at a rate set by the viscous
drift in the disk

drp
dt

∼ ν

r
(63)

The drift rate is independent of everything but disk viscosity.
Many gaps in Saturn’s rings don’t have a large single central body responsible for their

opening. Recent observations of circumstellar disk have revealed gaps, but they are not
necessarily opened by planets. Planetary migration seems inevitable and is an ingredient
of many explorations for planetary system formation. Likewise Saturn’s rings are likely
dynamic in the sense that its structure has changed over the millennia (or billions of years)
that they have been present. The exact age of Saturn’s rings has long been debated, with
spreading timescales suggesting youth, and potential sources of material suggesting age.
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