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1 Eulerian and Lagrangian views

We view the system from a fixed coordinate system and describe each variable as a function
of (x, t). The partial time derivative

∂

∂t
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describes how variables change in time from the point of view of a fixed point in space
attached to a coordinate system or an inertial frame. This is the Eulerian viewpoint.

We could also describe the system from the view point of particles moving with the
fluid. Suppose we have a scalar quantity like T . We would like to predict what would cause
a small change δT as our fluid element moves. Over a small change in time δt and with
small changes in coordinates δx, δy, δz.

δT =
∂T

∂t
δt+

∂T

∂x
δx+

∂T

∂y
δy +

∂T

∂z
δz

We now divide by δt.
δT

δt
=

∂T

∂t
+

∂T

∂x

δx

δt
+

∂T

∂y

δy

δt
+

∂T

∂z

δz

δt
(1)

If we chose δx, δy, δt to be an element of the fluid that is moving along with the fluid then
δx
δt = u and we can write the above as

δT

δt
=

∂T

∂t
+ u ·∇T

Figure 1: A fluid element moving within a larger flow.

If we consider derivatives from the point of view of particles moving with the fluid then
we can describe changes with the Lagrangian time-derivative or

D

Dt
=

∂

∂t
+ u ·∇

Let us write this out in terms of components

D

Dt
=

∂

∂t
+
∑
i

ui
∂

∂xi
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as we had done in equation (1). With summation notation it is understood that any
repeated index is summed. With summation notation we would write

D

Dt
=

∂

∂t
+ ui

∂

∂xi
.

The index i = 1 gives x, i = 2 gives y and i = 3 gives the z coordinate.
Another way to think about this is to consider a fluid element at x that has moved by

uδt in a time δt. If we consider T for that fluid element we can write T as

T (x+ uδt, t+ δt)

so the change in T moving with the fluid element

DT

Dt
= lim

δt→0

(
T (x+ uδt, t+ δt)− T (x, t)

δt

)
=

[
∂

∂t
+ u ·∇

]
T

If we write equations from the view point of fluid elements that are moving we say we are
using the Lagrangian view point.

Consider traffic flow. We can describe traffic flow in terms of density, ρ, (cars per unit
length) and a velocity, u, the speed of cars on the road. If we describe ρ and u as a function
of position on the road we are using the Eulerian view point. If we describe ρ and u in
terms of those seen by individual drivers we say we are using the Lagrangian viewpoint.

Numerical methods that use fixed grids work in the Eulerian view point. Numerical
methods that allow particles to move in the simulation and compute forces on these particles
work in the Lagrangian viewpoint. Smooth Particle Hydrodynamics (SPH) codes use the
Lagrangian viewpoint.

2 The collisionless Boltzman equation

We call f(x,v) the phase space distribution function. A volume element in real space

dx3 = dx dy dz

A volume element in velocity space

dv3 = dvxdvydvz

The distribution function f() is the number of stars (or particles) per unit volume in space
per unit volume in velocity space. For a specific phase space volume element the number
of stars in it is

f(x,v, t)dx3dv3
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What is the number of stars per unit volume?

n(x, t) =

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz f(x,v, t) =

∫
d3vf(x,v, t) (2)

If all the particles have the same mass m then the density at position x is

ρ(x, t) = mn(x, t)

What is the mean velocity at a position x?

⟨v⟩(x, t) = u(x, t) =
1

n(x, t)

∫
vf(x,v, t)d3v (3)

This is similar to the expression for an expectation value where f gives a probability
distribution.

Conservation of mass for a fluid gives

∂ρ

∂t
+∇ · (ρu) = 0

where density ρ(x, t).
If stars are not born and do not disappear then similarly

∂n

∂t
+∇ · (nu) = 0

This can be written in index form and using summation notation as

∂n

∂t
+

∂

∂xi
(nui) = 0

Stars can change velocity. If stars are not born and do not die then Df/dt = 0. We
can take f(x,v, t) and differentiate all variables w.r.t. to time

Df

Dt
=

∂f

∂t
+

∂f

∂xi

dxi
dt

+
∂f

∂vi

dvi
dt

= 0

=
∂f

∂t
+∇f · v +∇vf · v̇ = 0, (4)

In the first line I used summation notation. I am using gradient operators

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∇v =

(
∂

∂vx
,

∂

∂vy
,

∂

∂vz

)
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Equation 4 is the collisionless Boltzmann equation. The acceleration is related to
the gradient of the gravitational potential

v̇ = −∇Φ

so the collisionless Boltzmann equation can also be written as

∂f

∂t
+∇f · v −∇vf ·∇Φ = 0. (5)

Collisions and birth and death of stars would add terms to the collisionless Boltzmann
equation.

We are only keeping track of the position and velocity of stars. We could also take into
account more degrees of freedom, such as mass or age or metallicity.

2.1 The particle distribution function

To describe a distribution of particles we can consider a particle distribution function that
depends on position, velocity and time, f(x,v, t). Here f(x,v, t)d3xd3v represents the
number of particles found in a volume element of volume d3x and in a velocity bin of size
d3v at time t. Here volume elements

d3x = dx dy dz d3v = dvx dvy dvz

in Cartesian coordinates. The number density (number of particles per unit volume) at
position x and at time t would be

n(x, t) =

∫ ∞

−∞
f(x,v, t)d3v

where we perform the integral in 3 dimensions. If each particle has mass m then the density

ρ(x, t) = mn(x, t). (6)

We can consider the average of any function Q(v) as

⟨Q⟩(x, t) = n−1

∫
Q(v)f(x,v, t)d3v. (7)

For example the bulk or average velocity would be

u(x, t) = ⟨v⟩ = n−1

∫
vf(x,v, t)d3v (8)

and ∫
vivjf(x,v, t)d

3v = n⟨vivj⟩ for i ̸= j
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For a single component (like v2x or v2y) we can write∫
v2i f(x,v, t)d

3v = n⟨v2i ⟩

But this is not necessarily the same as nu2i = n(⟨vi⟩)2 which depends on the square of the
average velocity. Usually

⟨v2i ⟩ ≠ u2i ⟨vivj⟩ ≠ uiuj

We can define a total velocity dispersion, σa, averaged over all directions, as

σ2
a ≡ 1

3

(
⟨(vx − ux)

2⟩+ ⟨(vy − uy)
2⟩+ ⟨(vz − uz)

2⟩
)

=
1

3n

∫
|v − u|2fd3v

Evaluating σ2
a

σ2
a =

1

3n

∫
(v2 + u2 − 2u · v)d3v

=
1

3
(⟨v2⟩+ u2)− 2

3n
u ·
∫

vd3v

=
1

3
(⟨v2⟩+ u2)− 2

3
u2

=
1

3
(⟨v2⟩ − u2) (9)

so we can write

n⟨v2⟩ =
∫

v2fd3v = n(u2 + 3σ2
a)

We can think about the velocity vi as a sum of the mean velocity ui plus a random
component. Let us consider a velocity dispersion tensor

wij ≡ ⟨(vi − ui)(vj − uj)⟩ = ⟨vivj⟩ − uiuj

Here wij is a symmetric dispersion tensor with two indexes where each index can assume
one of three values (x, y, z). When wij contains off diagonal components or its diagonal
components are not equal we say the dispersion tensor is “anisotropic.” If the system
is “isotropic” then the diagonal components would all be the same and the off diagonal
components would be zero.

We can write the trace of w as trw =
∑

j wjj . The dispersion averaged over all directions
(using equation 9)

σ2
a =

1

3
(⟨v2⟩ − u2) =

1

3
trace w
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If wxx = wyy = wzz then σ2
a = wxx. The dispersion tensor is symmetric. We can decompose

the dispersion tensor, wij , into the sum of a trace component that has zeros off the diagonal
and a symmetric traceless component, yij ;

yij =
wij + wji

2
− trace w

δij
3

=
wij + wji

2
− σ2

aδij

Note that yij can contain components on the diagonal but their sum would be zero. If the
system is isotropic then all components of yij would be zero.

We can associate pressure in a fluid or gas with the trace of the dispersion tensor
∑

j wjj

or σ2
a.

2.2 Collisionless Boltzmann equation

In the absence of collisions the collisionless Boltzmann equation describes the evolution of
the density distribution.

Df

Dt
=

∂f(x,v, t)

∂t
+

∂f(x,v, t)

∂x
· dx
dt

+
∂f(x,v, t)

∂v
· dv
dt

= 0.

The derivative here is done with respect to all degrees of freedom of the distribution
function. As v = dx/dt and dv/dt = −∇Φ for a force field with potential Φ we can write

∂f(x,v, t)

∂t
+∇f(x,v, t) · v −∇vf(x,v, t) ·∇Φ = 0. (10)

Using summation notation this equation is

∂f(x,v, t)

∂t
+

∂f(x,v, t)

∂xi
vi −

∂f(x,v, t)

∂vi

∂Φ(x, t)

∂xi
= 0. (11)

Equation 10 (or 11) is known as the collisionless Boltzmann equation. It is used to study
the kinetic theory of gases, atomic nuclei and for stellar dynamical systems such as galaxies
and globular clusters. The collisionless Boltzmann equation is sufficiently complex that it
is usually difficult to solve. Equation 10 is sometimes written

Df

Dt
= 0

where the Lagrangian derivative is

D

Dt
=

∂

∂t
+ v ·∇−∇Φ ·∇v

Here the Lagrangian derivative describes a small element moving in phase space or (x,v).
Previously we used a Lagrangian derivative for a small element moving only in Cartesian
space.
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When collisions are important we can use the full Boltzmann equation by adding a
source term that is due to collisions

Df

Dt
=

(
∂f

∂t

)
C

where the term on the right hand side depends on the cross sections of particles and their
velocity differences. In many situations collisions conserve mass, momentum and kinetic
energy. When these are conserved∫

m

(
∂f

∂t

)
C

d3v = 0∫
mv

(
∂f

∂t

)
C

d3v = 0∫
mv2

(
∂f

∂t

)
C

d3v = 0.

Connections between different equations

No collisions in phase space Collisionless Boltzmann equation
With collisions in phase space Fokker-Planck equation
Averaging over velocity and space Tensor Virial equations
Taking the trace Virial equation
Velocity moments in real space Jeans equations

The Fokker-Planck equation can used within what is known as kinetic theory to derive
quantities like viscosity and thermal conductivity. The collisionless Boltzmann equation
can be relevant in the context of rarefied gases where the mean free path is long compared
to sizes of interest, for example a particle embedded in the outer parts of a protostellar
disk.

2.3 Galactic Observables

If n̂los is a unit vector giving the direction of the line of sight, the line of sight component
of the mean velocity

⟨v⟩ · n̂los = u · n̂los = ulos (12)

is an observable. This would be a mean velocity measured from a spectrum at a particular
position.

The velocity dispersion component in the same direction is would be

σ2
los(x, t) = ⟨(v · n̂los − ulos)

2⟩ = 1

n

∫
d3vf(x,v, t)(vz − uz)

2 (13)
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Suppose the line of sight is in the z direction and the sky is in the x, y plane. We can
integrate along the line of sight

g(x, y,v, t) =

∫
dzf(x, y, z, vx, vy, vz, t). (14)

This is a distribution function as a function of velocity and position on the sky. The surface
brightness on the sky

µ(x, y, t) ∝
∫

dzd3vf(x, y, z, vx, vy, vz, t) (15)

The constant of proportionality depends on the brightnesses of the stars. A spectrum
would be sensitive to Doppler shifts in the z direction giving

h(x, y, vz, t) =

∫
dzdvxdvyf(x, y, z, vx, vy, vz, t). (16)

which is proportional to the brightness as a function of velocity at position x, y. This is
what would be measured from an integral field spectrograph at different positions x, y on
the sky. The mean velocity in the z direction would be the average velocity at a particular
position

uz =

∫
h(x, y, z, vz, t)vzdvz∫
h(x, y, vz, t)dvz

(17)

In a galaxy absorption lines seen in stars are broadened by the different Doppler shifts
caused by the motions of the stars. The velocity dispersion along the line of sight direction
at different positions on the sky can be observed spectroscopically

σ2
z(x, y, t) =

∫
dzd3v(vz − uz)

2f(x, y, z, vx, vy, vz, t)∫
dzd3vf(x, y, z, vx, vy, vz, t)

.

2.4 Conservation of mass

The simplest continuum equation can be made by integrating the Boltzmann equation over
all possible velocities. The first term in the collisionless Boltzmann equation (∂f/∂t) gives
us the time derivative of the particle density. Integrating the first term in the collisionless
Boltzmann equation over velocity space∫ ∞

−∞

∂f(x,v, t)

∂t
d3v ≈ ∂

∂t

∫ ∞

−∞
f(x,v, t)d3v =

∂

∂t
n(x, t)

The second term in the collisionless Boltzmann equation is v · ∇f . Both x and v are
arguments of the distribution function f so their derivatives commute. We can integrate
the second term ∫ ∞

−∞
∇f(x,v, t) · v d3v = ∇ ·

∫
fvd3v = ∇ · (nu)
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where we have rewritten the last term in terms of the average velocity u. The last term
in the collisionless Boltzmann equation is −∇vf ·∇Φ(x). We integrate this over velocity
space

−∇Φ(x, t) ·
∫

d3v∇vf(x,v, t)

Consider one part of the sum

−∂Φ(x, t)

∂x

∫
dvxdvydvz

∂f

∂vx
= −∂Φ(x, t)

∂x

∫
dvydvzf(x,v, t)

]vx=∞

vx=−∞
= 0

This vanishes as long as we assume that the numbers of stars is small at large velocity, or
f → 0 as vi → ±∞.

Putting these together with the integral of the collision term (also zero) we find

∂n

∂t
+∇ · (nu) = 0 (18)

To summarize: the integral over velocity space of the Boltzmann equation gives an equation
that looks just like the equation for conservation of mass for a fluid.

2.5 Conservation of momentum and Jeans equations

To derive an equation similar to Euler’s equation (which is a result of conservation of mo-
mentum) we multiply the Boltzmann equation by v and then again integrate over velocity
space. Taking the i-the component of the velocity and using summation notation for the
other indices ∫ (

∂f

∂t
vi +

∂f

∂xj
vjvi −

∂f

∂vj

∂Φ

∂xj
vi

)
d3v =

∫ (
∂f

∂t

)
C

vid
3v = 0 (19)

Consider the first term∫
∂f

∂t
vid

3v =
∂

∂t

∫
fvid

3v =
∂

∂t
(n⟨vi⟩) =

∂(nui)

∂t

Consider the second term of equation 19. This can be written∫
∂f

∂xj
vjvid

3v =
∂

∂xj

∫
fvjvid

3v =
∂

∂xj
[n⟨vjvi⟩].

We can decompose this in terms of the dispersion tensor (w) and then the traceless com-
ponent of the dispersion tensor (y) and the average dispersion (σ2

a)

∂

∂xj
[n⟨vjvi⟩] =

∂

∂xj
[n(uiuj + wij)] (20)

=
∂

∂xj
[n(uiuj + σ2

aδij + yij)]

=
∂

∂xj
[n(uiuj + yij) + Pδij ],
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where we define a pressure in terms of the trace of the dispersion tensor

P ≡ nσ2
a =

nwii

3
.

Altogether the second term in the momentum equation (19) becomes

∂

∂xj
(nuiuj + Pδij + nyij).

Within the context of hydrodynamics, we would call the term nuiuj ram pressure. The
first two terms inside the derivative, nuiuj+Pδij contribute to the stress tensor. The last
term nyij depends in the traceless component of the dispersion tensor and is only non-zero
when the velocity distribution is anisotropic.

The third term in the momentum equation (19) can be integrated by parts. The term
is

∂Φ

∂xj

∫
∂f

∂vj
vi d

3v.

First consider the case i ̸= j and let k be the third index

∂Φ

∂xj

∫
dvk

∫
dvivi

∫
dvj

∂f

∂vj
=

∂Φ

∂xj

∫
dvk

∫
dvivi f(x,v, t)

∣∣∣∣vj=∞

vj=−∞
= 0.

Now consider the case i = j. We integrate by parts∫
∂f

∂vi
vidvi = fvi

∣∣∣∣∣
∞

−∞

−
∫

fdvi

= −
∫

fdvi.

Insert this back into the full term for i = j,

∂Φ

∂xj

∫
∂f

∂vj
vi d

3vδij = − ∂Φ

∂xi

∫
fd3v

= −n
∂Φ

∂xi
.

This is the integrated third term of equation (19)
Altogether (19) becomes

∂

∂t
(nuj) +

∂

∂xj
(nuiuj + Pδij + nyij) + n

∂Φ

∂xi
= 0

This is an equation for momentum conservation. Except for the term associated with
anisotropy this looks just like that derived in hydrodynamics but with n replaced by mass
density ρ.
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By making use of the equation of continuity we can manipulate this equation so that
it becomes an equation for acceleration that resembles Euler’s equation

Du

Dt
= − 1

n
∇P −∇Φ− 1

n
∇ · (ny)

where the last term is a divergence of the traceless component of the dispersion tensor.
If the velocity dispersion is isotropic then y = 0 and we recover Euler’s equation. To
summarize: by multiplying the Boltzmann equation by velocity and integrating over all
velocities we recover an equation that looks remarkably like Euler’s equation.

Here we have integrated over velocity. We have taken the first ”moment” of the col-
lisionless Boltzmann equation. If one also integrates over all space one can derive tensor
“virial” equations. Integrating only over velocity and working in cylindrical or spherical
coordinates the equations, and in the setting of stellar dynamics, the equations are called
the Jeans equations.

Using equation 20 and not trying to use a pressure like term we can also write the
momentum equation as

∂

∂t
(nuj) +

∂

∂xi
(nuiuj + nwij) + n

∂Φ

∂xj
= 0 (21)

and using summation notation.
Then combined with the equation of continuity (equation 42) this becomes

n
∂uj
∂t

+ nui
∂uj
∂xi

+ n
∂Φ

∂xj
+

∂(nwij)

∂xi
= 0 (22)

These equations are known as the Jeans equations.
Jeans equations in vector form is

n
∂u

∂t
+ n(u · ∇)u+ n∇Φ+∇ · (nw) = 0. (23)

In the last term w is a 2 index tensor. In this form the Jeans equations resemble the
Navier Stokes equation, as expected, since they are consistent with conservation of mass
and momentum.

The Jeans equations contain 9 unknowns (3 average velocities and 6 dispersion tensor
terms), but are only 3 equations. Jeans equations cannot be solved unless additional
assumptions are made, or by leveraging symmetry. It is often convenient to work in a
coordinate system in which the dispersion tensor is diagonal or assume that the system is
isotropic, which means that the dispersion tensor is diagonal in Cartesian coordinates and
all components are the same.
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2.6 Jeans equation for a spherically symmetric isotropic system

Consider a system that is spherically symmetrical and in equilibrium. Since the system
obeys rotational symmetry, u = 0 and the velocity dispersion tensor must be diagonal
wij ∝ δij . If we in addition assume an isotropic velocity dispersion, then wij = σ2δij . If
the system is static then ∂u

∂t = 0. Because of the spherical symmetry, σ(r), n(r),Φ(r) are
functions of radius. We relate the number density to the mass density with a mean stellar
mass m.

We apply Jean’s equation (equation 22) along the x direction,

n
∂Φ

∂x
+

∂(nσ2)

∂x
= 0. (24)

We can consider Jeans equation along the x axis where x = r and

n
∂Φ

∂r
+

∂(nσ2)

∂r
= 0. (25)

We relate the derivative of the potential to the mass density n and the mass M(r)
within radius r

M(r) =

∫ r

0
dr′4πr′2n(r′)m

dM

dr
= 4πr2n(r)m

dΦ

dr
=

GM(r)

r2

If you know the mass distribution, then you know n(r) from the second equation and you
know dΦ

dr from the third equation. These can be inserted into equation 25 to solve for σ2(r).

2.7 The singular isothermal sphere

What would be the velocity dispersion σ(r) of a spherically symmetric isotropic system
with a flat rotation curve that has velocity vc? By isotropic we mean

⟨(vx − ux)
2⟩ = ⟨(vy − uy)

2 = ⟨(vz − uz)
2 = σ2. (26)

Because the mass distribution is spherically symmetric

GM(r)

r2
=

v2c
r

=
dΦ

dr
Φ(r) = v2c ln r

n(r) =
1

4πr2m

dM

dr
=

v2c
Gm4πr2

.
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We plug these into Jeans equation (equation 25)

v2c
Gm4πr2

× v2c
r

+
∂

∂r

(
v2c

Gm4πr2
σ2

)
= 0

v2c
r3

+
∂

∂r

(
σ2

r2

)
= 0

−2
v2c
r2

+
σ2

r2
= constant.

If we desire a finite σ2 at large r, we neglect the constant and the solution is

σ =
√
2vc. (27)

Because the rotational velocity is constant, so is the velocity dispersion. In a gas, the
velocity dispersion is directly related to temperature. Because the velocity dispersion is
constant, this mass distribution is called isothermal. Because the density n(r) ∝ r−2, the
mass distribution is called singular.

3 Moments of the Collisionless Boltzmann equation

3.1 The tensor virial equations

We will integrate the collisionless Boltzmann equation over all space.
We define something that is like a moment of inertia tensor

Iij ≡
∫

d3xρ(x)xixj = m

∫
d3x xixj

∫
d3vf(x,v, t)

This is to be compared to the actual moment of inertia tensor for a rigid body about
the origin which is the sum over mass elements inside the rigid body

Iij,actual =
∑
k

mk(r
2δij − xixj) =

∫
d3xρ(x)(r2δij − xixj)

where r is the distance to the origin for each particle in the sum and xi is x, y or z depending
upon the index.

Kinetic energy per unit volume∑
i

1

2

∫
d3vv2i f(x,v, t)m =

∑
i

1

2
n(x, t)m⟨v2i ⟩ =

∑
i

1

2
ρ(x, t)⟨v2i ⟩

The total kinetic energy

K =
∑
i

1

2

∫
d3xn(x, t)m⟨v2i ⟩ =

∑
i

1

2

∫
d3xρ(x, t)⟨v2i ⟩
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A more general total kinetic energy tensor we define as

Kij ≡
1

2

∫
d3xρ(x, t)⟨vivj⟩ (28)

=
1

2
m

∫
d3x

∫
d3vf(x,v, t)vivj . (29)

The trace of this ∑
i

Kii = K

is the total kinetic energy.
A velocity tensor can be defined as

Tij =
1

2

∫
d3xρ(x, t)uiuj . (30)

Here u is the local average velocity (defined in equation 8) and this vector is a function of
position. This tensor describes streaming or rotational motions.

A tensor describing random rather than streaming motions is an integral of the velocity
dispersion

Πij ≡
∫

d3xρ(x)w2
ij (31)

=

∫
d3xρ(x)(⟨vivj⟩ − uiuj)

= 2Kij − 2Tij .

This gives a relation between the total kinetic energy tensor, the order velocity tensor and
the the random velocity tensor

Kij = Tij +
1

2
Πij . (32)

Lastly we create a tensor for the gravitational energy. We tentatively define a gravi-
tational potential energy tensor as

Wjk ≡ −
∫

d3xρ(x)xj
∂Φ(x)

∂xk
(33)

This is also known as the Chandrasekkar potential energy tensor. The gravitational poten-
tial

Φ(x) = G

∫
d3x′ ρ(x′)

|x− x′|
The gradient of the gravitational potential

∂Φ(x)

∂xk
= −G

∫
d3x′ ρ(x

′)(xk − x′k)

|x− x′|3

15



This gives an alternative form for Wjk

Wjk = G

∫
d3x

∫
d3x′ρ(x)ρ(x′)

xj(xk − x′k)

|x− x′|3

= −1

2
G

∫ ∫
d3xd3x′ρ(x)ρ(x′)

(xj − x′j)(xk − x′k)

|x− x′|3

In the last step we infer that we can flip the indices to rewrite the integral in such a way
that it is clear that it is symmetric. The trace of this

W =
∑
j

Wjj =
1

2

∫
d3xρ(x)Φ(x)

is equal to the total gravitational potential energy.
Now that we have a few definitions, we go back to the first moment of the collisionless

Boltzmann equation (equation 5, or 21) which I repeat here:

∂

∂t
(nuj) +

∂

∂xi
(nuiuj + nwij) + n

∂Φ

∂xj
= 0 (34)

We multiply this by mxk and integrate this over all space∫
d3xxk

∂

∂t
(ρuj) +

∫
d3xxk

∂

∂xi
(ρuiuj + ρwij) +

∫
d3xxkρ

∂Φ

∂xj
= 0 (35)

The last term on the right is equal to the potential energy tensor −Wjk from the definition
in equation 33. The second term can be integrated by parts∫

d3xxk
∂

∂xi
(ρuiuj + ρwij) = δik

[
xk(ρuiuj + ρwij)|∞xk=−∞ −

∫
d3x(ρuiuj + ρwij)

]
= 0− δik (2Tij +Πij)

= −(2Tjk +Πjk)

where we have neglected a term on the second line with the assumption that the density is
zero at infinity, ρ → 0 at x → ±∞. This neglect means the outer boundaries might affect
the results. The first term can be written in terms of∫

d3xxk
∂

∂t
(nuj) =

∫
d3xd3vxkvj

∂f

∂t

=

∫
d3xd3vxkvj(−

∂f

∂xi
vi +

∂f

∂vi

∂Φ

∂xi
)

using df
dt = 0. The second term is removed by integrating by parts in space. The first term,

after integrating by parts becomes∫
d3xxk

∂

∂t
(nuj) =

∫
d3xd3vfvjvk. (36)
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Equation 35 becomes

d

dt

∫
d3xxkρui = 2Tjk +Πjk +Wjk. (37)

With a bit more effort, the left hand side can be related to the moment of inertia tensor.

d

dt
Ijk =

d

dt

∫
d3xd3vfxjxk

=

∫
d3xd3v

(
fvjxk + fxjvk + xjxk

df

dt

)
=

∫
d3xd3v (fvjxk + fxjvk) because

df

dt
= 0

d2

dt2
Ijk =

∫
d3xd3vf(v̇jxk + xj v̇k + 2vjvk).

We use the fact that v̇j = − ∂Φ
∂xj

and integrate by parts (in space) to show that the terms

with accelerations are zero. This leaves

1

2

d2

dt2
Ijk =

∫
d3xd3v fvjvk.

Which is the same thing as in equation 36.
The resulting tensor virial equation is

1

2

d2Ijk
dt2

= 2Tjk +Πjk +Wjk. (38)

In steady state, there is a relationship between the gravitational potential energy which
depends on shape, the velocity dispersion, with could be anisotropic, and the bulk motion
or rotation. Elongated non rotating (elliptical) galaxies tend to have anisotropic velocity
dispersions. Rotating galaxies tend to be flat (they are disky). Elliptical galaxies tend to
be supported by their velocity dispersion rather than by rotation.

Using equation 32 for the kinetic energy tensor, the tensor virial equation (equation
38) becomes

1

2

d2Ijk
dt2

= 2Kjk +Wjk. (39)

Taking the trace of the steady state equation, the tensor virial theorem becomes

2K +W = 0 (40)

which we recognize as the scalar version of the virial theorem.
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3.2 Applications of Jean’s equations

The velocity moments of the collisionless Boltzmann equation are called Jeans equations.
One application is known as asymmetric drift. Consider a disk of stars all in circular

orbits about the center a galaxy and all confined to a single plane. The velocity dispersion
is small. In a local region the average velocity is tangential and is equal to the circular
velocity.

Now consider a similar disk of stars but the stars have some ellipticity to their orbits and
undergo radial oscillations. The orbits have random phases so the stars do not move in and
out together. The velocity dispersion arises from the radial oscillations of the orbits. What
is the mean tangential velocity component? It must be slightly lower than the rotation
velocity. This makes sense looking at the tensor virial equations. The difference between
the mean tangential velocity and that of a star in a circular orbit is known as asymmetric
drift.

Using Jeans equation in polar coordinates, it is possible to show that

va ≡ ⟨vϕ⟩ − vc ≈
⟨v2R⟩
2vc

[
σ2
ϕ

⟨v2R⟩
− 1−

∂ ln(n⟨v2R⟩)
∂ lnR

− R

⟨v2R⟩
∂(⟨vRvz⟩)

∂z

]
Another application of Jean’s equations is similar to hydrostatic equilibrium giving a

relation between the velocity dispersion and density in the z direction and the gradient of
the potential. Repeating Jeans equations (equation 22)

∂uj
∂t

+ ui
∂uj
∂xi

+
∂Φ

∂xk
+

1

n

∂(nwij)

∂xi
= 0 (41)

We assume steady state and drop the first term. We assume symmetry about the galactic
plane, no vertical bulk or average motion and take the z component. The result is this:

1

n

∂(n⟨v2z⟩)
∂z

= −∂Φ

∂z

Using Poisson’s equation
∂2Φ

dz2
= 4πGρ

Putting these two together we find

∂

∂z

[
1

n

∂(n⟨v2z⟩)
∂z

]
= −4πGρ

The left hand side can be measured using vertical velocity measurements for stars as a
function of distance above and below the Galactic plane. The stellar tracers, giving n, need
not necessarily represent the total mass whereas ρ on the right would contain contributions
from both stellar mass and dark matter. Thus measurements of the vertical stellar velocity
distribution as a function of distance above the Galactic plane can be used to estimate the
fraction of dark matter in the vicinity of the Sun.
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3.3 Tremaine-Weinberg method for measuring pattern speeds

The continuity equation in Cartesian coordinates

∂n

∂t
+∇ · (nu) = 0

where n(x, y, z, t) is the stellar number density. Assume that the density of a flat galaxy in
2D rotates at a fixed and steady pattern speed Ωp, n(r, θ − Ωpt) in polar coordinates. We
assume that the density distribution does not vary in a frame rotating with the pattern.

The continuity equation in 2D Cartesian coordinates becomes

−Ωp

(
x
∂n

∂y
− y

∂n

∂x

)
+

∂(nux)

∂x
+

∂(nuy)

∂y
= 0. (42)

Consider integrating the continuity equation (equation 42) along the y axis. This is as
if we are integrating along a slit that is oriented along the y axis. The first term∫

dy Ωpx
∂n

∂y
= 0

because n → 0 at large y. The second term is∫
dy Ωpy

∂n

∂x
= Ωp

∂

∂x

∫
dy yn(x, y).

The third term ∫
dy

∂(nux)

∂x
=

∂

∂x

∫
dy nux(x, y).

The fourth term ∫
dy

∂(nuy)

∂y
= 0.

because n → 0 at large y. Putting this together

∂

∂x

(
Ωp

∫
dy yn(x, y) +

∫
dy nux(x, y)

)
= 0.

Integrating this

Ωp

∫
dy yn(x, y) +

∫
dy nux(x, y) = C

where C is a constant. This relation must be true for any x value and C cannot depend
on x. This means that it must be true at large x and we can let the constant C be zero.
This gives the relation

Ωp = −
∫
dy nux(x, y)∫
dy yn(x, y)

.
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The estimate for the pattern speed depends on the mean velocity component in the
direction perpendicular to the slit, ux. The denominator weights the stellar density by the
distance along the slit. The estimate for the pattern speed is also valid if the number density
is replaced by the light density. The light density would also be a conserved quantity, but
again we assume that the density is fixed in a frame rotating with the pattern.

The galaxy is likely inclined with respect to the viewer. When measuring the mean
velocity component ux with a spectrum and using a Doppler shift, you would need to
correct for galaxy inclination to get the full size of the in-plane velocity component.

This technique has been used to measure bar pattern speeds in some barred galaxies.
We made a few assumptions. There is only a single pattern speed and the galaxy is nearly
steady state. Both of these might be violated as galaxies can be changing shape and barred
galaxies often also host spiral arms which may move at different or even varrying pattern
speeds. Bars tend to have high surface brightness compared to spiral arms, making it easier
to measure a mean velocity from a spectrum.

4 Some additional topics

4.1 Jeans Theorem

It is possible to switch variables f(L,E) for example, depending upon quantities that
are conserved in a spherically symmetric gravitational potential, angular momentum L
and energy E. Alternatively one can write or f(I,θ, t) where I,θ are pairs of action
angle variables. The collisionless Boltzmann can be evaluated similarly with advective
derivatives. If the potential is fixed and the system relaxed, the phase space distribution
function only depends on the actions.

4.2 Core Collapse

Up to this time we have primarily considered static or steady state systems. Stars in the
outer parts of clusters tend to expand due to encounters. Some stars can be evaporated
from the cluster. As energy is conserved, this means the center of the cluster increases
in density. Numerical integrations (without binaries) find that after about 16 relaxation
times, the density of the core increases without bound, causing the integrations to fail.
This phenomenon is called core collapse. Some globular clusters are though to have
experienced episodes where the central density increased. The integrations that saw rapidly
growing core density, lacked binaries. As a core density increases, encounters of single
stars can cause binaries to tighten. The binaries serve as an energy source. Consequently
the formation and evolution of binaries in the cluster can halt core collapse. Because
binaries can tighten, a prediction is that phenomena associated with close binaries is seen
in globular clusters. Examples of exotic objects associated with cluster evolution would be
X-ray binaries (tight enough to exhibit mass transfer), revived pulsars (pulsars that are
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spun up by mass transfer in a binary) and blue stragglers. A blue straggler is an apparently
young star that seems younger than the other stars in the cluster. An apparently young
star can be the result of two low mass stars, containing unburnt hydrogen, that merge to
form a hydrogen rich and bright main sequence star that appears to have an age that is
younger than the cluster itself.

4.3 Some dynamics in a galaxy center

Binaries can be disrupted near the black hole leaving a tightly bound star in an eccentric
orbit around the black hole. In our Galaxy these stars are called S-stars. The other stars
in the original binary can be ejected at high velocity giving what is called a hypervelocity
star.

M31 hosts a lopsided stellar eccentric disk within its bulge. The eccentric disk remains
coherent because stars near the black hole are on nearly Keplerian orbits that have pericen-
ters that precess slowly. Formation mechanisms include a young stellar disk that forms and
then becomes lopsided through instability. Alternatively there might have been a minor
merger leaving a dense galaxy nucleus that disrupts near the black hole somehow leaving
a remnant that remains coherently lopsided.

Stars near a black hole can vary in eccentricity and inclination due to interactions with
each other. This is sometimes called resonant relaxation as the encounters are sometimes
computed by averaging over the orbits. Stars that can be disrupted by the black hole are
said to be the loss cone.

Galaxy centers could host binary black holes which merge due to scattering with stars.
If stars are scattered, the black hole binary would tighten and the stellar core would
flattened as stars are kicked away from the center. Massive elliptical galaxies tend to have
low surface brightness near their galaxy centers, suggesting that stars have been scattered
by a black hole.

If star is disrupted by a black hole, then a bright transient could occur which could be
detected in a photometric survey.

The blackhole can become an AGN if fed with gas, but that same gas could also form
stars.

Galaxies centers are dynamic and complex. Of recent interest is a new class of galactic
center transients called quasi-periodic eruptions.

5 Problems

• Problem 1

Show that in a frame that rotates with constant angular velocity Ω the collisionless
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Boltzmann equation is

∂f

∂t
+ (v ·∇) f −

[
∇
(
Φ− 1

2
(Ω× r)2

)
+ 2Ω× v

]
·∇vf = 0

Note that acceleration a′ = v̇ in a rotating frame is

a′ = a+Ω× (Ω× r) + 2Ω× v

It is helpful to use vector identities to evaluate the gradient operator.

• Problem 2: Averaging over z

The collisionless Boltzmann equation in cylindrical coordinates R,ϕ, z is

∂f

∂t
+vR

∂f

∂R
+vz

∂f

∂z
+
vϕ
R

∂f

∂ϕ
+

(
v2ϕ
R

− ∂Φ

∂R

)
∂f

∂vR
−
(
vRvϕ
R

+
1

R

∂Φ

∂ϕ

)
∂f

∂vϕ
− ∂Φ

∂z

∂f

∂vz
= 0

(43)

a. Consider integrating the collisionless Boltzmann equation over vz. Why would
this be true? ∫

dvz
∂Φ

∂z

∂f

∂vz
= 0

b. Consider integrating the collisionless Boltzmann equation over z. Why would this
be true? ∫

dzvz
∂f

∂z
= 0

c. In two dimensions we can describe the problem in terms of a distribution function
f(x, y, vx, vy, t) or in polar coordinates f(R,ϕ, vR, vϕ, t). The collisionless Boltzmann
equation in 2D polar coordinates is the same as equation 43 except lacking those
terms that depend on z, vz or their gradients.

∂f

∂t
+ vR

∂f

∂R
+

vϕ
R

∂f

∂ϕ
+

(
v2ϕ
R

− ∂Φ

∂R

)
∂f

∂vR
−
(
vRvϕ
R

+
∂Φ

∂ϕ

)
∂f

∂vϕ
= 0 (44)

Using parts a, b, argue that by integrating in z and vz we derive the same equation.
In other words if f3(R,ϕ, z, vR, vϕ, vz, t) satisfies equation 43 then

f(R,ϕ, vR, vϕ, t) =

∫
dz dvzf3(R,ϕ, z, vR, vϕ, vz, t)

satisfies equation 44.
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