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1 Why study Celestial Mechanics?

Celestial mechanics is an analytical setting with rich complexity that has continued fasci-
nate scientists for centuries. Powerful numerical tools for integration of orbits have been
complimentary to theoretical developments. For the study of chaotic systems, celestial me-
chanics reigns supreme in the breadth of analytical techniques that have been developed.
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With increased observational measurements and characterization of numerous bodies in
our solar system and the complex and different dynamics that likely occurs in recently
discovered exoplanetary systems, celestial mechanics remains current and exciting.

The three body problem cannot be solved analytically because it can be chaotic. If a
system is chaotic, that does not necessarily mean you cannot calculate anything. Chaotic
behavior can sometimes be delineated in specific regions of parameter space, and timescales
for evolution could be characterized.

Sometimes complicated problems can be elegantly and accurately modeled with toy
models that capture the important dynamics, for example by focusing on resonant behavior
or averaging over fast and unimportant angles.

1.1 Lagrangians, Hamiltonians and Newton’s equations

This section is a lightening fast introduction to Lagrange’s equations and Hamiltonian’s
equations and how they are consistent with Newton’s equations.

Newton’s equations give a relation between force and acceleration F = ma. In the
Newtonian limit the gravitational force is a gradient of a potential F = −∇U .

Newton’s equations are consistent with minimization of the integral of a Lagrangian
along a trajectory where Lagrangian

L(q, q̇, t) = T (q̇)− U(q) (1)

is a function of coordinates q and their time derivatives q̇. Here the kinetic energy T = mq̇2

2 .
Using calculus of variations, we can show that the action on a trajectory S =

∫
L(q, q̇, t)ds

is minimized when Lagrange’s equations are obeyed on the trajectory. Lagrange’s equations
are

d

dt

∂L
∂q̇

=
∂L
∂q

. (2)

We show that Lagrange’s equations for the Lagrangian in equation 1 are consistent with
Newton’s equation.

∂L
∂q̇

= mq̇

d

dt

∂L
∂q̇

= mq̈

∂L
∂q

= −∂U
∂q

= −∇U = F

Equating the last two of these (using equation 2 which is Lagrange’s equation) gives F =
ma = mq̈ which is Newton’s equation.
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Newton’s equations are also consistent with Hamilton’s equations. Instead of using a
Lagrangian, we construct a Hamiltonian function H(p,q, t) = T + U with p = mq̇ the
momentum. Hamilton’s equations are

∂H

∂p
= q̇

∂H

∂q
= −ṗ. (3)

We show that Hamilton’s equations are consistent with Newton’s equation. In terms of

momentum, the kinetic energy T = p2

2m and the Hamiltonian

H(p,q) =
p2

2m
+ U(q). (4)

Hamilton’s equations (equations 3)

∂H

∂p
=

p

m
= q̇ → ṗ = mq̈ (5)

∂H

∂q
= ∇U = −F (6)

Using the second of Hamilton’s equations gives F = mq̈ which again is Newton’s equation.
I have mentioned a Lagrangian viewpoint which tends to give equations of motion that

involve accelerations of variables. After a series of variable transformations, it is possible
to find equations of motion for orbital elements instead of cartesian coordinates in the
Lagrangian viewpoint.

The Hamiltonian viewpoint has the advantage that momenta that are missing from the
Hamiltonian are conserved quantities. Furthermore the Hamiltonian viewpoint illustrates
that that volume in phase space is conserved. Integrators developed with this view (sym-
plectic or more recently obeying time reversal symmetry) are often much better behaved
during long integrations than integrators that are developed simply to approximate the
solutions to a high order of accuracy.

2 Celestial mechanics

2.1 The Keplerian orbit

We consider the orbit of a very low mass point particle around a massive object of massMc.
It is conventional to divide by the mass of the particle so that potential energy is potential
energy per unit mass and kinetic energy is that per unit mass. Using this convention the
gravitational potential energy U = −k

r where r is the radius from the massive object and
k = GMc. With this convention momenta are also divided by mass.

We can describe the dynamics with a Lagrangian

L(q, q̇) = 1

2
q̇2 +

k

|q|
.
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Equivalently we could describe the dynamics with a Hamiltonian

H(p,q) =
1

2
p2 − k

|q|
.

(Note we have neglected the mass of the particle m).
If we restrict motion to a plane, then it is convenient to use polar coordinates. The

velocity in polar coordinates can be decomposed in to a radial component vr = ṙ and a
tangential component vθ = rθ̇. In terms of the angular momentum per unit mass L =
r2θ̇ = vθ/r

The square the velocity in Cartesian coordinates is related to that in polar coordinates

ẋ2 + ẏ2 = ṙ2 + (rθ̇)2 = ṙ2 +
L2

r2
.

The kinetic energy can be split into two pieces, a radial component and a tangential
component. In cylindrical coordinates we obtain a Hamiltonian

H(pr, L; r, θ) =
1

2
p2r +

L2

2r2
− k

r
. (7)

Here pr = ṙ is the radial component of momentum per unit mass and L is the angular
momentum per unit mass. I have neglected motion out of the plane but we could include
it by adding p2z/2.

Because the Hamiltonian does not depend upon θ, the angular momentum is conserved.
The radial degree of freedom gives an equation of motion (using Hamilton’s equations

for the radial degrees of freedom)

−ṗr =
∂H

∂r
= −L

2

r3
+
k

r2
= −r̈

Because the Hamiltonian is independent of θ, angular momentum per unit mass (in the z
direction), is conserved. Using Hamilton’s equations, but this time using the angle, we can
check that our system gives

L = r2θ̇

as expected.
It is convenient to use a variable inverse radius u = 1/r with

u̇ = − ṙ

r2

du

dt
=
du

dθ

dθ

dt

using L = r2θ̇
du

dt
=
du

dθ

L

r2
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Putting this together with our previous expression for u̇

−ṙ = du

dθ
L (8)

Taking the time derivative of this

−r̈ =
d

dt

du

dθ
L = θ̇

d

dθ

du

dθ
L

=
d2u

dθ2
L2u2

The equations of motion are

r̈ =
L2

r3
− k

r2
= L2u3 − ku2

Putting these together

d2u

dθ2
L2u2 = −L2u3 + ku2

u′′ + u = kL−2.

This has solution for inverse radius

u = (1 + e cos θ)p−1 (9)

with

p = L2/k (10)

and free parameter e known as the eccentricity. Inverting this for radius

r =
p

1 + e cos f

and we have replaced θ with angle f called the true anomaly. For f = 0 the orbit is a
pericenter. The minimum and maximum radius are rmin = p/(1+ e) and rmax = p/(1− e)
giving a semi-major axis a

2a =
p

1 + e
+

p

1− e
=

2p

1− e2

so that
p = a(1− e2)

The orbit is then

r(f) =
a(1− e2)

1 + e cos f
(11)
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We have found the orbit as a function of true anomaly f . It is much hard to find r(t), or
radius as a function of time or f(t) true anomaly as a function of time.

With some manipulation it is possible to show that energy per unit mass and angular
momentum per unit mass are

E = − k

2a
(12)

L =
√
ka(1− e2). (13)

These are appropriate for elliptical orbits.
With some generalization a similar description covers parabolic and hyperbolic orbits.

Hyperbolic orbits have e greater than 1, a < 0 and parabolic orbits have e = 1, energy
E = 0, and L =

√
2GMq where q is the radius of pericenter.

2.2 Eccentric anomaly

In a coordinate system defined from the ellipse focal point, a point on the orbit

x = r cos f

y = r sin f (14)

Here f is the true anomaly and r the radius. This coordinate system uses as origin an
ellipse focal point which is also the location of the Sun for the orbit of a planet in motion
around the Sun.

In a coordinate system with origin at the center of the ellipse, the orbit defines an
ellipse obeying (see Figures 1) ( x̄

a

)2
+
( ȳ
b

)2
= 1 (15)

with semi-major axis a and semi-minor axis b = a
√
1− e2. The coordinates for a point on

the orbit can be written in terms of an angle called the eccentric anomaly E

x̄ = a cosE

ȳ = b sinE = a
√
1− e2 sinE = y (16)

with origin the center of the ellipse rather than an ellipse focal point. Note that this
definition for x̄, ȳ ensures that equation 15 is obeyed. Also helpful is the x distance from
the focal point in terms of the eccentric anomaly

x = a(cosE − e). (17)

These relations can be read off Figure 1 showing the orbit.
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Figure 1: a) One focal point of an elliptic orbit is the location of the Sun. Also drawn is
the auxiliary circle with radius a, the angle known as the true anomaly f , and the eccentric
anomaly E. The true anomaly f is defined with respect to origin at the Sun and the focal
point of the ellipse. The Eccentric anomaly is defined with origin at the center of the ellipse
and the auxiliary circle. b) Coordinate relations. x, y are positions with origin at the Sun.
x̄, ȳ are coordinates with origin at the center of the ellipse.
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We have not actually shown that the orbit equation is consistent with being an ellipse
but you can turn equation 11 into an equation only involving x2, x and y2 and constants
and this can be turned into the equation for an ellipse by shifting the origin.

Because x = a(cosE − e) and y = b sinE

r2 = x2 + y2 = a2(cosE − e)2 + a2(1− e2) sin2E

r2

a2
= cos2E − 2e cosE + e2 + (1− e2)(1− cos2E)

= cos2E − 2e cosE + e2 + 1− e2 − cos2E + e2 cos2E

= 1− 2e cosE + e2 cos2E = (1− e cosE)2

This is consistent with
r = a(1− e cosE). (18)

Useful is a relation between true and eccentric anomaly

tan(f/2) = tan(E/2)

√
1 + e

1− e
. (19)

By differentiating equation 18 w.r.t time

ṙ = ae sinEĖ. (20)

It can be handy to find the velocity in terms of ṙ and ḟ . Because the tangental velocity
component vθ = rḟ and L = rvθ,

(rḟ)2 =
L2

r2
(21)

v2 = (rḟ)2 + (ṙ)2. (22)

Using the orbit equation for r(f) (equation 11)

e cos f =
a(1− e2)

r
− 1. (23)

Using equation 8 which is ṙ = −du
dθL,

u =
1 + e cos f

p
=

1 + e cos f

L2/(GM)

du

df
= − e sin f

L2/(GM)

ṙ =
e sin f

L2/(GM)
L

e sin f = ṙ
L

GM
. (24)

These relations are useful for finding the true anomaly f given Cartesian positions and
velocities.
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Figure 2: Angles describing orbit orientation and the orbital elements.

2.3 Orbital elements

Orbital elements are the following quantities

1. The semimajor axis, a. Set by the energy of the orbit.

2. The orbital eccentricity, e, describing the ellipticity of the orbit. Depends on the
magnitude of the orbital angular momentum.

3. The inclination, I or i. Describes the tilt of the orbit. In the solar system an orbit
with I = 0 lies in the ecliptic. Depends on the orientation of the angular momentum
vector.

4. The argument of pericenter, ω. Determines the location of pericenter.

5. The longitude of the ascending node, Ω. Determines where the orbit crosses a ref-
erence plane such as the ecliptic plane. Is sensitive to the orientation of the angular
momentum vector.

6. The mean anomaly M . Describes how the orbit advances in time. Is not an angle on
a plot.
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In a purely Keplerian system (the two body problem), all orbital elements are constant
(conserved quantities) except M which continuously advances at the mean motion. The
orbital elements are all angles except for a and e. Only semi-major axis a has dimensions
(of length). The orbital elements are illustrated in Figure 2.

Sometimes it is useful to group the orbital elements in two groups of three (a, e, I) and
(M,ω,Ω). Or they can be grouped pairs as (a,M), (e, ω), (I,Ω).

The true and eccentric anomalies are not orbital elements.

2.4 Anomalies, arguments and longitudes

Any angle can be called an argument. Example: the argument of pericenter ω.
An angle measured from pericenter is often called an anomaly. We have three of them:

1. M , the mean anomaly, (not an angle you can identify on a map, serves only to be
related to time with mean motion n = Ṁ .)

2. f , the true anomaly (measured from the ellipse focal point which is the same as the
star).

3. E, the eccentric anomaly. Measured from the center of the ellipse.

These anomalies are computed using the position of the body in its orbit and they are all
equal to zero at pericenter.

Angles measured from a specific reference direction, such as the Sun/Earth line at the
vernal equinox, are called longitudes. Examples are

1. The longitude of the ascending node Ω.

2. The longitude of pericenter ϖ = Ω+ ω.

3. The true longitude θ = ϖ + f = Ω+ ω + f .

4. The mean longitude λ = ϖ +M = Ω+ ω +M .

Note that these sums involve angles that are not necessarily measured in a single plane.

2.5 The mean anomaly and Kepler’s equation

We take the time derivative of r = a(1− cosE)

ṙ = ae sinEĖ. (25)
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We recognize that y = r sin f = a
√
1− e2 sinE and use equation 24

e sin f = ṙ
L

k

e

r
a
√
1− e2 sinE = ṙ

√
ka(1− e2)

k
e

a(1− e cosE)
a sinE = ṙ

√
a

k
=

ṙ

na

ṙ = na
e sinE

1− e cosE

with n =
√
k/a3. We set the two equations for ṙ (eqns 25, 26) to be equal to find

Ė =
n

1− e cosE
. (26)

The frequency n is called the mean motion

n =

√
GMc

a3
(27)

with k = GMc and Mc the central mass. We are purposely not using the M symbol as
central mass because we need M as the symbol for a new angle!

We assume that there is an angle M , known as the mean anomaly, that advances
with constant angular rotation rate given by the mean motion n

M =M0 + nt

so that

Ṁ = n. (28)

(The mean motion n = Ṁ should not be confused with a mass accretion rate!) The mean
anomaly is not a physical angle on the sky or any geometric drawing. Now insert this into
our equation for Ė

Ė =
Ṁ

1− e cosE

we can integrate this equation (with respect to time) finding

M = E − e sinE. (29)

This equation is known as Kepler’s equation. Kepler’s equations implies that given E
we can find M and vice versa. While integrating, we dropped a constant which is removed
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with the requirement that M = 0 when E = 0. In other words, the mean anomaly is
defined so that M = 0 at pericenter.

Kepler’s equation cannot be solved analytically. In other words, given M , it is not
possible to solve analytically for E. However extremely rapid numerical techniques that
converge to third order are known (like Laguerre’s method). To converge to a solution to
a precision of order 10−16 (double precision floating point) I find that it takes less than 6
or 7 iterations of the Laguerre method, even at high eccentricity.

To advance an orbit in time, M is advanced, then E computed. From E, the position
in the orbit can be computed. Then the orbit is rotated according to its longitude of
perihelion ω, inclination, I, and longitude of the ascending node Ω. The reverse procedure
is done to convert a cartesian positions and velocities to orbital elements. The orbital
elements are a, e, i and angles M,ω,Ω. The ordering in my two lists is chosen because
canonical momenta depending primarily on a, e, i are conjugate to canonical angles either
equal to or related to the angles M,ω,Ω, respectively.

2.6 Finding orbital elements from Cartesian coordinates

We start with a position r = (x, y, z) and a velocity v in a coordinate system with the xy
plane set to the ecliptic plane. We first compute the angular momentum vector L = r×v.
The sign of Lz is important. The angular momentum vector

Lx = ±L sin I cosΩ

Ly = ∓L sin I sinΩ

Lz = L cos I (30)

defines two angles, the inclination I and the longitude of the ascending node Ω. The signs
depend on wether Lz is positive or negative. If Lz > 0 then take the positive Lx sign and
the negative Ly sign. The inclination by convention I ∈ [0, π) with [π/2, π) corresponding
to retrograde orbits.

Here the positive x axis I think refers to the direction from Sun to the Earth at the
vernal equinox which is the March equinox (spring in the northern hemisphere).

The line of nodes is the intersection of the orbital plane and the reference plane or
ecliptic. A vector pointing along the line of nodes can be constructed with n̂ = L × ê/L
where ê is perpendicular to the ecliptic plane. Longitude of ascending node Ω is the angle
between line of nodes (the ascending side) and the reference line (vernal equinox).

The argument of pericenter ω is the angle between the line of nodes and pericenter.
Position of the star is the origin.

The longitude of pericienter ϖ = Ω+ ω. Note that Ω and ω do not usually lie in the
same plane.

With the angular momentum vector you can compute the two orbital elements Ω, I.
Using L =

√
GMa(1− e2 and orbital energy Eo = −GM/(2a) the position and velocity

vectors can be used to compute orbital elements a, e.
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Compute the right hand sides of these two relations

e cos f =
L2

GMr
− 1.0 (31)

e sin f =
ṙL

GM
(32)

that are from equations 23, 24, and then from their ratio compute the true anomaly f .
We can calculate the right hand sides of the two equations

x′ = r cosu = x cosΩ + y sinΩ

y′ = r sinu =
(y cosΩ− x sinΩ)

cos I
(33)

where u is known as the argument of latitude. From the ratio of these two we can compute
u. Then we can compute

ω = u− f

This arises from the following: In the orbital plane (x′, y′, z′) = (r cosu, r sinu, 0) with
orbit

r =
a(1− e2)

1 + e cos(u− ω)

with u−ω = f . The argument of latitude seems to be the angle in the orbital plane taking
into account the argument of pericenter ω. Two rotations relate (x′, y′, z′) with (x, y, z),
one involving Ω and the other involving inclination I. Starting with x, y, z we first rotate
the orbit with Ω in the x, y plane. The orbit is then tilted in y, z by the inclination I. The
two rotations should give equations 33.

After computing true anomaly f , the mean anomaly E is computed using equation 19
and then by solving Kepler’s equation (equation 29) iteratively, we can find M , the true
anomaly.

The orbital plane xo, yo, zo with x axis aligned with perihelion and the references ones
x, y, z. They are related via rotation matrices

Pω =

 cosω − sinω 0
sinω cosω 0
0 0 1

 about ẑ (34)

PI =

 1 0 0
0 cos I − sin I
0 sin I cos I

 about x̂ (35)

PΩ =

 cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

 about ẑ (36)
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xo = PΩPIPωx (37)

x = P−1
ω P−1

I P−1
Ω xo (38)

x′ = P−1
I P−1

Ω xo (39)

As
xo = r(cos f, sin f, 0)

 x
y
z

 = r

 cosΩ cos(ω + f)− sinΩ sin(ω + f) cos I
sinΩ cos(ω + f) + cosΩ sin(ω + f) cos I

sin(ω + f) sin I

 (40)

2.7 Finding Cartesian coordinates from orbital elements

1. Compute the eccentric anomaly using eccentricity e and mean anomaly M .

2. Compute true anomaly f using the relation between f and E (equation 19).

3. Compute x, y using true anomaly in orbital plane. Set z = 0.

4. Rotate in xy plane using longitude of pericenter.

5. Rotate using inclination.

6. Rotate using longitude of the ascending node.

Question: Are the orbital elements ω,Ω,M well defined for an orbit with zero eccen-
tricity and inclination?

The answer is No.
If you are specifying a circular orbit, it is a good idea to use the true longitude to

specify the position of a particle within the orbit. If the inclination is zero, then it is a
good idea to use the longitude of pericenter and true longitude to specify the position in
the orbit.

2.8 f and g functions

Numerical integrations leverage the knowledge of Keplerian orbits to improve the accuracy
of the integration. In a numerical integration, it is not necessarily to follow the entire
procedure of finding every orbital element during every integration step. Instead two
functions, known as f and g functions are used to compute new functions of position and
time. The f and g functions are functions of position, velocity and time

r(t) = f(t, t0, r0,v0)r0 + g(t, t0, r0,v0)v0

v(t) = ḟ(t, t0, r0,v0)r0 + ġ(t, t0, r0,v0)v0 (41)
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where r0 and v0 are a current position and velocity. During an integration you would like
to know r,v at a later time, with ∆t = t− t0. The functions f, g can be written in terms
of the eccentric anomaly

f = 1− a

r0
[1− cos(E − E0)]

g = (t− t0)−
1

n
[(E − E0)− sin(E − E0)]

ḟ = − na2

r − r0
sin(E − E0)

ġ = 1− a

r
[1− cos(E − E0)]. (42)

Subtracting Kepler’s equation at two different times we find that

∆M = n∆t

= ∆E − e cosE0 sin∆E + e sinE0(1− cos∆E) (43)

This is a differential form of Kepler’s equation and can be solved in a similar way as solving
Kepler’s equation.

To do an integration from r0,v0 and advance to a new position and velocity with a
time-step ∆t:

1. Compute a, e from energy and angular momentum.

2. Compute E0 from current position and velocity.

3. Compute ∆E from solving numerically the differential form of Kepler’s equation.

4. Compute f, g functions, use them to find the new position r.

5. Compute ḟ , ġ, find the new velocity vector!

Note, ∆t need not be small. Large steps can be taken accurate as long as Keplerian
motion is a good approximation.

There is a way to generalize the f and g functions so that they work for hyperbolic and
parabolic orbits. For hyperbolic orbits, cosine is replaced by cosh and sine by sinh. The
technique is described by Prussing and Conway in their book “Orbital Mechanics”, where
they refer to a formala due to Battin.

2.9 The parabolic orbit

Consider our equation for the orbit (equations 9, 10

r(f) =
L2/GM

1 + e cos f
(44)
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With e < 1, the orbit is an ellipse and for a hyperbolic orbit, e > 1. The transition is an
parabolic orbit which we can mimic with e = 1. The minimum radius is at f = 0 where
the pericenter distance

2q =
L2

GM
. (45)

The orbit

r(f) =
2q

1 + cos f
. (46)

The orbit energy per unit mass E = 0 and the angular momentum per unit mass L =√
2qGM .

2.10 Canonical Variables — Poincaré and Delaunay Variables

While with orbital elements we have numerous conserved quantities the orbital elements
are not a set of canonical momenta and coordinates.

Using Hamilton-Jacobi equations it is possible to take the the Keplerian Hamiltonian
in polar coordinates and convert it into action angle variations leaving it as a function of a
single momentum. Hence there are 5 conserved quantities. We knew that already as of the
orbital elements, all are conserved except for the mean anomaly, M . These new variables
can be written in terms of the orbital elements.

An example of canonical coordinates for the Keplerian system are the Poincaré variables

λ = M + ω +Ω, Λ =
√
ka

γ = −ϖ = −ω − Ω, Γ =
√
ka(1−

√
1− e2)

z = −Ω, Z =
√
ka(1− e2)(1− cos I)

, (47)

where angles λ is the mean longitude, γ is the negative of the longitude of pericenter, and
z is the negative of the longitude of the ascending node. These angles are conjugate to the
momenta Λ,Γ, Z in action angle pairs

(Λ, λ), (Γ, γ), (Z, z)

In Poincaré coordinates the Keplerian Hamiltonian is

Hkep(λ, γ, z; Λ,Γ, Z) = − k2

2Λ2
(48)

Let us quickly check that this is consistent with the mean motion

n = λ̇ =
∂H

∂Λ
=
k2

λ3

= k
1
2a−

3
2 ,
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as we expect!
A closely related set of canonical coordinates are called the Delaunay variables:

l = M, L =
√
ka

g = ω, G =
√
ka(1−

√
1− e2)

h = Ω, H = cos I
√
ka(1− e2).

(49)

With the Hamiltonian in canonical coordinates the equations of motion are straight-
forward. However if there is a perturbation (such as arises from a planet) we can write the
Hamiltonian as

H = H0 +H1

where H0 = Hkep from equation 48 and H1 is -1 times a function known as the disturbing
function. Working in a heliocentric coordinate system the disturbing function contains
two terms often called direct and indirect. The indirect term arises because a heliocentric
coordinate system is not an inertial one (the Sun moves).

The equations of motion now depend on derivatives of the disturbing function with
respect to canonical coordinates. When written in terms of orbital elements the equations
of motion are known as Lagrange’s equations.

2.11 What is the disturbing function?

The disturbing function is equal to −1 times the potential energy and it is per unit mass
for a particular particle that one is studying. Often the disturbing function is given in
a heliocentric coordinate system, with origin at the location of the Sun. This coordinate
system is not an inertial one if there is a planet in the system. This means there is a term
in the disturbing function caused by the recoil of the Sun due to the perturbing planet.

Consider a system with two planets with masses mi,mj . The disturbing function when
studying planet mi would be

Ri =
Gmj

|ri − rj |
− Gmj

r3j
ri · rj . (50)

The first term is -1 times interaction potential term between mj and mj and because it is
per unit mass of mi it only contains the mass mj in it. The first term is called the direct
term. The second term in equation 50 is caused by the recoil of the Sun because of mj and
it is called the indirect term.

The disturbing function when studying mj looks the same except both terms are pro-
portional to mi and the indirect term depends on r3i instead of r3j ,

Rj =
Gmi

|ri − rj |
− Gmi

r3i
ri · rj . (51)
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A disturbing function can be expanded or averaged. When expanded as a function of
eccentricity and inclination and with angles put in terms of orbital elements, often two cases
are distinguished by the ratio of the two object’s semi-major axes. Laplace coefficients are
written in terms of α, the ratio of the two semi-major axes, but requiring that α < 1. That
means you would first decide whether the perturber has orbit external or internal to the
object you are studying before doing the expansion.

If you take a look the appendix of Murray and Dermott’s book which gives a 4th order
expansion of the disturbing function due to a single point mass (either internal or external
to the orbit of the object you are studying), the notation should make more sense with
these definitions in mind. However, I find that I am often confused on which object is given
the ’ in the orbital elements in the expansion.

2.12 Low eccentricity expansions

For a setting where the planets are in nearly circular orbits with low inclination e, i ≪ 1.
The dynamics can be approximated with a low inclination and eccentricity expansion.
In this section we illustrate some expansions that are common in celestial mechanics.
We expand e sinE in a Fourier series of the mean anomaly M . In other words, we find
coefficients as, bs such that

e sinE = a0 +
∞∑
s=1

(as sinM + bs cosM) (52)

where s are integers. We can show that the a0 term is zero by integrating with Kepler’s
equation. The coefficients as for s > 0 terms are zero based on a symmetry argument. To
find the bs coefficients, we integrate

bs =
1

π

∫ 2π

0
e sinE sin sM dM. (53)

This is equivalent to finding a Fourier coefficient leveraging the orthogonality of the func-
tions sin sM and cos sM when integrated. The result (following a series of manipulations
that involve Kepler’s equation and integrating by parts) is that

bs =
2

s
Js(se) (54)

where Js is a Bessel function of the first kind. The expansion is

e sinE =
∞∑
s=1

bs(e) sin(sM). (55)
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We insert this into Kepler’s equation to find

E =M +

∞∑
s=1

2

s
Js(se) sin(sM). (56)

To third order (inserting the actual Bessel function polynomials) this is

E =M + e sinM +
e2

2
sin(2M) + e3

(
3

8
sin(3M)− 1

8
sinM

)
+ ...

With a series of similar manipulations (integrating by parts, and using Kepler’s equation,
discarding terms that integrate to zero by symmetry arguments) the following expansions
can be derived

cos(nE) = −e
2
δn,1 +

∞∑
k=1

n

k
[Jk−n(ke)− Jk+n(ke)] cos(kM) (57)

sin(nE) =

∞∑
k=1

n

k
[Jk−n(ke) + Jk+n(ke)] sin(kM). (58)

For more details see on how these are derived see books on Celestial mechanics, such as
Valtonen and Karttunen’s book or Murray and Dermott’s book. Restating equation 18

r = a(1− e cosE)

the radius can be expanded in terms of M by expanding the cosine with equation 57

r

a
= 1− e cosE

r

a
= 1 + e2 −

∞∑
k=1

e

k
[Jk−1(ke)− Jk+1(ke)] cos(kM). (59)

The gravitational potential involves 1/r we would also like to expand this. We starting
with Kepler’s equation

M = E − e sinE Kepler′s equation

dM

dE
= 1− e cosE take derivative (60)

a

r
=

1

1− e cosE
from Equation 18

=
dE

dM
using equation 60

= 1 +

∞∑
s=1

2Js(se) cos sM taking derivative of equation 56 (61)
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We use the orbit and equation 61 to find an expression for cos f

r =
a(1− e2)

1 + e cos f

e cos f =
a

r
(1− e2)− 1

= (1− e2)(1 +
∞∑
s=1

2Js(se) cos sM)− 1 (62)

= (1− e2)
∞∑
s=1

2Js(se) cos sM − e2. (63)

We now work on sin f . Starting with equation 24

e sin f = ṙ
L

GM

= ṙ
√
GMa(1− e2)

1

GM
= ṙ
√
1− e2

√
a

GM

=
ṙ

na

√
1− e2. (64)

Using equation 59

ṙ

a
=

∞∑
k=1

e

k
[Jk−1(ke)− Jk+1(ke)] sin(kM)kn (65)

This and equation 64 give

sin f =
√
1− e2

∞∑
k=1

[Jk−1(ke)− Jk+1(ke)] sin(kM) (66)

These expressions illustrate how powers of r can be turned into sums of cosine terms
each with their own power of eccentricity.

2.13 Expansion of an interaction term

The potential energy between two point masses

U =
Gm1m2

|r1 − r2|
=
Gm1m2

∆

∆ = |r1 − r2| = (r21 + r22 − 2r1r2 cosψ)
1
2 (67)
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with angle

cosψ ≡ r̂1 · r̂2 (68)

We define two angles θ1, θ2 known as true longitudes.

θ1 = ϖ1 + f1 = ω1 +Ω1 + f1

θ2 = ϖ2 + f2 = ω2 +Ω2 + f2. (69)

Recall ϖ = ω + Ω is the longitude of pericenter whereas ω is the argument of pericenter
and Ω is the longitude of the ascending node.

The angle ψ is related to the true longitudes via

Ψ = cosψ − cos(θ1 − θ2) (70)

The reason for using Ψ is to separate terms that depend upon inclination with those
that depend upon eccentricity. If the inclination is small, then Ψ would be small. The
interaction term depends on ∆ which is expanded in a Taylor series of Ψ

1

∆
=

∞∑
i=0

(2i)!

(i!)2

(
rr′Ψ

2

)i

∆−2i+1
0 (71)

where

∆0 =
√
r2 + r′2 − 2rr′ cos(θ − θ′). (72)

Then two small parameters are defined

ε =
r

a
− 1 ε′ =

r′

a′
− 1 (73)

and ∆0 can be expanded assuming that ε and ε′ are small. The inclinations are only
contained within Ψ and the eccentricities are only contained in ε, ε′.

It is useful to define

ρ0 = (a2 + a′2 − 2aa′ cos(θ − θ′))
1
2 (74)

Note that r = a(1 + ε) and r′ = a′(1 + ε′). We insert these into ∆0 giving

∆0 =
√
a2(1 + ε)2 + a′2(1 + ε′)2 − 2a(1 + ε)a′(1 + ε′) cos(θ − θ′). (75)

We expand ∆
−(2i+1)
0 (in equation 71) assuming that ε, ε′ are small

∆
−(2i+1)
0 = ρ

−(2i+1)
0 + (r − a)

∂

∂a
ρ
−(2i+1)
0 + (r′ − a′)

∂

∂a′
ρ
−(2i+1)
0

+
1

2
(r − a)2

∂2

∂a2
ρ
−(2i+1)
0 +

1

2
(r′ − a′)2

∂2

∂a′2
ρ
−(2i+1)
0

+ (r − a)(r′ − a′)
∂2

∂a∂a′
ρ
−(2i+1)
0 + ... (76)
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We define

Dm,n ≡ ama′n
∂m+n

∂an∂a′m
(77)

∆
−(2i+1)
0 =

[
1 + εD1,0 + ε′D0,1 +

1

2!

(
ε2D2,0 + ε′2D0,2 + 2εε′D1,1

)
+ .....

]
ρ
−(2i+1)
0 (78)

2.13.1 Laplace coefficients

The coefficients for ρ
−(2i+1)
0 are written in terms of Laplace coefficients which are

b(j)s (α) ≡ 1

π

∫ 2π

0

cos jψ dψ

(1− 2α cosψ + α2)s
(79)

for non-negative half integer s, integer j and positive real number α < 1. These are Fourier
coefficients of the function (1− 2α cosψ + α2)−s which is related to powers of ρ0 using α,
a ratio of the semi-major axes. The ratio α = a/a′ or α = a′/a depending upon which is
larger since we require α < 1.

What is the result of all of this? Products of cosines and sines can be manipulated
to be a single cosine of an angle that is a sum of orbital elements. The result is that the
expansion can be written to look like

∆−1 =
∑

integers

f(α, e, s, e′, s′) cosϕintegers (80)

where f is a polynomial of e, s, e′, s′ and a function of α, the variables s = sin(I/2), s′ =
sin(I ′/2), the angle

ϕ = kλλ+ kλ′λ′ + kϖϖ + kϖ′ϖ′ + kΩΩ+ kΩ′Ω′ (81)

and the k’s are integers.
An appendix by Murray and Dermott lists all the terms to fourth order (in e and s).
There is a nice new python package for calculating Laplace coefficients: https://

pylaplace.readthedocs.io/en/latest/ (though I have not yet tried it out) This package
will calculate one of the derivatives. If you need a second or higher order derivative you will
need to use recursion relations that are available (their eqn 6.71) in Murray + Dermott’s
book and taken from the classic book by Brouwer and Clemence.

2.14 Heliocentric Coordinates

Orbital elements for objects in the solar system are conventionally given in heliocentric
coordinates.
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For N massive bodies with masses mi and coordinates ri and interaction via gravity
alone

H(pi, ri, all i) =

N−1∑
i=0

p2i
2mi

−
∑
i>j

Gmimj

|ri − rj |

we take a generating function

F2(ri,Pi, all i) =
∑
i>0

(ri − r0) ·Pi + r0 ·P0

giving new coordinates

Qi ̸=0 =
∂F2

∂Pi
= ri − r0

Coordinates are now heliocentric in that they are with respect to body with index 0.

pi ̸=0 =
∂F2

∂ri
= Pi

New momenta are the same as old momenta for i ̸== 0.

Q0 =
∂F2

∂P0
= r0

The new coordinate of the central body is unchanged.

p0 =
∂F2

∂r0
= P0 −

∑
i>0

Pi

The new momenta for the central mass is with respect to the centre of mass of all the other
bodies.

The new Hamiltonian, in heliocentric coordinates, looks like

H(P,Q, all i) =
∑
i>0

(
P 2
i

2mi
− Gmim0

Qi

)
−

∑
i>j,j>0

Gmimk

|rirj |
+

1

2m0

(
P0 −

∑
i>0

Pi

)2

We notice that the first term is a Keplerian term. This form is convenient if we want
to construct an integrator, leveraging our ability to integrate exact Keplerian systems
and considering the other terms as perturbations. The second term is a list of potential
interaction terms. The odd new term is the last one, containing the momenta, that acts
like a drift. It acts like a drift because terms in the Hamiltonian only containing momenta
and so cause only changes in position.
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Figure 3: A set of masses mj with j ∈ {0, ...., N − 1} have coordinates xj with respect to
an origin. A consecutive set of centers of mass Rj (for masses up to and including mj ,
shown as blue squares and defined in equation 83) are shown with respect to the origin.
Jacobi coordinates are r0, ...rN−1 and are with respect to the centers of mass Rj .

2.15 Jacobi Coordinates

Jacobi coordinates are used in some integrators and are the default in the rebound simula-
tion code.

Using Jacobi coordinates the drift term in the Hamiltonian can be eliminated entirely.
Firstly particles are ranked in order (usually of mass). The coordinates of each mass
depends on the center of mass of the previous ones. For N masses with masses mj and
positions xj with index j ∈ {0, 1, ...., N − 1},

ηj ≡
j∑

k=0

mk (82)

is the sum of all masses up to and including j’s. The center of mass of the masses up to
and including j’s is

Rj =
1

ηj

j∑
k=0

xj . (83)
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The Jacobi coordinates are with respect to the different centers of mass

rj = xj −Rj−1 j > 0 (84)

r0 = RN−1. (85)

There are variants in the coordinate definition with different choices in the signs and
indexing.

The use of Jacobi and Heliocentric coordinates in the development of symplectic in-
tegrators is attributed to Matt Holman, Jack Wisdom, and Jihad Touma in the 80’s and
early 90’s.

2.16 Lagrange’s Planetary equations of motion

The mean longitude

λ =M +ϖ =M + ω +Ω = n(t− τ) +ϖ = nt+ ϵ

with
ϵ = ω +Ω− nτ

and τ is a particular reference time chosen to give the orbital elements.
Taking a Hamiltonian equal to the Keplerian one plus a perturbation R known as the

disturbing function, the equations of motion (for the orbital elements) are

da

dt
=

2

na

∂R
∂ϵ

(86)

de

dt
= −

√
1− e2

na2e
(1−

√
1− e2)

∂R
∂ϵ

−
√
1− e2

na2e

∂R
∂ϖ

(87)

dϵ

dt
= − 2

na

∂R
∂a

+

√
1− e2

na2e
(1−

√
1− e2)

∂R
∂e

+
tan(I/2)

na2
√
1− e2

∂R
∂I

(88)

dΩ

dt
=

1

na2
√
1− e2 sin I

∂R
∂I

(89)

dϖ

dt
=

√
1− e2

na2e

∂R
∂e

+
tan(I/2)

na2
√
1− e2

∂R
∂I

(90)

dI

dt
= − tan(I/2)

na2
√
1− e2

(
∂R
∂ϵ

+
∂R
∂ϖ

)
− 1

na2
√
1− e2 sin I

∂R
∂Ω

(91)

Usually ∂
∂ϵ is replaced by ∂

∂λ . There is a technical difference as mean motion n depends on
a and if you take a partial derivative with respect to λ you need to assume that a is held
fixed.

If one transfers the Keplerian Hamiltonian into action angle coordinates (using canon-
ical transformations), deriving Poincaré or Delaunay variables, then Lagrange’s equations
follow from Hamilton’s equations.
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