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Pixels in both hybridized and monolithic CMOS detector arrays may couple capacitively to their
neighboring pixels � this �inter-pixel capacitance� can signi�cantly distort the characterization of
conversion e�ciency and MTF in CMOS devices. These e�ects have been largely unaccounted for
in measurements to date. In this paper, the e�ects of this coupling are investigated. Compensation
methods for these errors are described and applied to silicon P-I-N array measurements. The
measurement of Poisson noise, traditionally done by �nding the mean square di�erence in a pair of
images, needs to be modi�ed to include the mean square correlation of di�erences with neighboring
pixels.

I. INTRODUCTION

CMOS detector arrays operate in a �non-destructive�
readout mode that measures the voltage produced by a
detector node (pixel) without transferring it out of the
pixel. In such arrays, small amounts of stray capacitance
can couple pixels to neighboring pixels and in�uence the
voltage read for that pixel. This coupling is inter-pixel
capacitance. Inter-pixel capacitance can be very promi-
nent in deeply or fully depleted (P-I-N) detectors, partly
due to the higher dielectric constant of the detector sub-
strate and partly due to the low detector capacitance that
comes with deep or full depletion.

Inter-pixel capacitance creates two e�ects. The �rst
and most obvious is that crosstalk is generated � a
strong signal in one pixel creates a weak signal in neigh-
boring pixels. This observed crosstalk may easily be mis-
taken for a more common crosstalk � di�usion crosstalk
� which occurs when photocarriers generated within one
pixel di�use to adjacent pixels. A second e�ect naturally
exists as well. The signal appearing in those neighbor-
ing pixels is signal that �should have� appeared in the
central pixel had there been no inter-pixel capacitance.
The signal in the central pixel is therefore attenuated.
This attenuation may also be mistaken for attenuation
resulting from di�usion.

Crosstalk from di�usion and crosstalk from capaci-
tive coupling are the result of di�erent mechanisms and
have di�erent properties. Crosstalk from di�usion oc-
curs before charge collection and is stochastic � Poisson
noise from di�usion crosstalk is completely uncorrelated
in neighboring pixels. Crosstalk from inter-pixel capac-
itance occurs after charge collection and is determinis-
tic � Poisson noise observed with inter-pixel capacitive
crosstalk is correlated in neighboring pixels. Given a
choice between the two mechanisms, crosstalk from inter-
pixel coupling is more desirable.

The presence of inter-pixel capacitance in detector ar-
rays was anticipated in simulations performed by Kava-
dias et al. circa 1993.1 Caccia et al.2,3 measured inter-
pixel coupling in a hybrid �Vertex� detector for a su-
percollider in 2000. Moore et al.4 �rst suggested that
inter-pixel capacitance can create signi�cant errors in
the �noise-squared versus signal�5,6 method of estimat-
ing conversion factor (quanta per output unit, such as
electrons per microvolt), and presented data supporting
this suggestion. The e�ects of inter-pixel capacitance and
the mechanisms which cause them were investigated in
more detail in a second paper.7

Inter-pixel capacitance causes Poisson noise in a device
to be attenuated. As a result, the responsive quantum
e�ciency (RQE) is overestimated � the detector array
appears to be collecting more photons than it actually
is. Capacitive crosstalk of 1% to each neighboring pixel
will attenuate noise amplitude by 4% and result in an 8%
error in the measurement of noise power (variance) and
thus in noise-squared versus signal � resulting in at least
8% more observing time to achieve the expected signal
to noise ratio.

For scienti�c detector arrays in low-signal applications
such as space telescopes, the RQE of the array is the �bot-
tom line� as to its information-gathering ability � arrays
with poorer RQE take longer to accumulate the same in-
formation, and are proportionally that much more �ex-
pensive� (in observing time) to operate in order to make
the same scienti�c discoveries. Since relatively small
amounts of interpixel capacitance can create large er-
rors in the measurement of RQE, even small amounts of
crosstalk (observable in the vincinity of either hot pixels
or cosmic events) may be a warning sign that actual RQE
is signi�cantly lower than reported RQE determined us-
ing �noise squared versus signal� methods.

Inter-pixel capacitance is expected to become more sig-
ni�cant with modern arrays. As detector array designers
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Figure 1: Photocurrent physically entering a detector node
may leave the node as displacement current through small
coupling capacitors (labeled Cc) and appear on adjacent
nodes instead. Even if all quanta are captured by the cen-
tral C00, signal still appears on neighboring nodes that have
captured no quanta.

continue to strive for the simultaneous qualities of high
pixel density (requiring small distances between pixel
centers) high quantum e�ciency, low di�usion crosstalk,
and low latent images (requiring 100% �ll factor � small
gaps between pixel implants) and high sensitivity (low
capacitance multiplexer nodes) the stray capacitance to
neighboring pixels will be more pronounced. Stray ca-
pacitance to a detector node is the result of the presence
of conductors adjacent to the detector node. Detector
nodes must be conductive to accumulate charge. Thus,
the nearest conductors adjacent to the pixels in the low-
est capacitance detector arrays will be the neighboring
pixels.

II. BASIC MECHANISM

A photo-detector array is modeled here as an array
of capacitors C [i, j], each receiving a signal Q [i, j] that
is the accumulated photo-current entering node i, j over
some integration time ∆t. We consider input signals that
do not change over time, so

Q [i, j] =

t+∆t∫

t

I [i, j] (τ) dτ ≈ I [i, j]∆t. (1)

All capacitors C [i, j] are assumed equal by fabrication
so C [i, j] = Cnode. The array is modeled as a discrete
linear shift-invariant8 (LSI) system, outputting an array
of voltages:

V [i, j] =
∞∑

m=−∞

∞∑
n=−∞

Q [i, j]hc [i−m, j − n] . (2)

or, more simply:

V [i, j] = Q [i, j] ∗ hc [i, j] . (3)

where ∗ is the 2D convolution operator and hc [i, j] is the
impulse response of the collection array.

Ideally,

hc [i, j] =
δ [i, j]
Cnode

. (4)

where δ [i, j] is the discrete 2D �unit impulse� or �delta
function�. The ideal output of the array is simply a volt-
age V [i, j] such that

V [i, j] =
Q [i, j]
Cnode

. (5)

Equation 5, although very simple, has been the nodal
electrical model to date. Inter-pixel capacitance intro-
duces a new �electrical crosstalk� mechanism.

Upon introducing small coupling capacitors Cc be-
tween detector nodes (pixels on the array) as shown in
Figure 1, photo-current into a single detector node re-
turns via multiple paths. From Kircho�'s current law,
the total charge entering the node (at the top of Fig-
ure 1) is equal to the total charge appearing electrically
on that node and its neighbors:

Qpoint = Ipoint∆t =
∑

i,j

Ii,j∆t =
∑

i,j

A [i, j] . (6)

where Ii,j is the current through C [i, j] and A [i, j] is the
apparent charge appearing electrically on that node.

Thus,
∑

i,j

V [i, j] =
∑

i,j

A [i, j]
Cnode

=
Qpoint

Cnode
. (7)

and the photo-carriers collected in a single node appear
upon readout to be distributed into several nodes, but
only the nodal capacitance Cnode appears in the �DC�
output of the detector array. The impulse response of
the detector nodes is

hc [i, j] =
A [i, j]

QpointCnode
. (8)

At this point, we normalize out the nodal capacitance
Cnode and express the impulse response as a deviation
from ideal response � the ratio of apparent charge A to
actual collected charge Q. Thus,

h [i, j] = hc [i, j]Cnode =
A [i, j]
Qpoint

. (9)

and
∑

i,j

h [i, j] = 1. (10)
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Since inter-pixel capacitance pulls the voltages of neigh-
boring nodes in the same direction,

h [i, j] ≥ 0. (11)

Also, the circuit is passive and cannot create an output
greater than its input. Thus:

h [i, j] ≤ 1. (12)

Symmetry is a direct consequence of the array of identical
pixels. We do not assume that vertical coupling is equal
to horizontal coupling, or that the diagonal couplings are
equal, but simply that a pixel will couple to a neighbor
the same way that neighbor will couple back to it.

h [i, j] = h [−i,−j] . (13)

Photo-current arrives in detector nodes quantized by
the charge of an electron. Photon arrival and di�u-
sion in the detector are both stochastic processes, and
without correlation mechanisms in photon arrival, car-
rier generation and di�usion, the individual collection
events are statistically independent and obey Poisson
statistics. Thus, charge collected by detector nodes may
be expressed as a mean signal component M [i, j] plus a
�white� noise image N [i, j]

Q [i, j] = M [i, j] + N [i, j] . (14)

The white noise image has a uniform power spectral den-
sity SN�

SN (ξ, η) = lim
T→∞

E
{
|F {N [i, j]}|2

}

2T

= lim
T→∞

E
{|FN (ξ, η) |2}

2T

= σ2
N . (15)

where E{} is the expectation operator, F{} is the
Fourier transform operator resulting in FN (ξ, η), and ξ
and η are spatial frequency (in x and y) expressed in
cycles per pixel. The inter-pixel capacitive impulse re-
sponse h [i, j] causes apparent charge to be a spatially
�ltered version of the actual charge. The observed out-
put is:

A [i, j] = (M [i, j] + N [i, j]) ∗ h [i, j] . (16)

In the absence of an internal gain mechanism in the de-
tector itself, i.e., assuming one electron per photon, the
variance of the noise image is equal (in quanta) to the
mean signal M :

σ2
M [i, j] = M [i, j] . (17)

The di�erence D [i, j] of a pair of otherwise identically
acquired images A1 and A2 cancels out the signal compo-
nent and leaves a noise image that is twice the variance
of the original images' noise components.

D [i, j] = A1 [i, j]−A2 [i, j] = (N1 [i, j]−N2 [i, j])∗h [i, j] .
(18)

The noise energy in this di�erence image is typically com-
pared to the mean of the sum of the images to obtain an
estimate of the conversion factor. Uniform illumination
M [i, j] = M is typically used, but is not required and has
not been assumed. Assuming the noise di�erence image
is stationary, (this covers random spatial variations in
illumination and detector e�ciency) the power spectral
density of the noise image in Equation 18 is

SD (ξ, η) = 2σ2
N |H (ξ, η) |2. (19)

Thus, the power spectral density of the observed di�er-
ence image yields information about the inter-pixel ca-
pacitive e�ect. Since the input signal (the noise on the
charge collected by the nodes) is white (a constant) the
output power spectrum is proportional to the squared
magnitude of the Fourier transform of the impulse re-
sponse.

Direct measurement of the power spectra of random
processes by averaging spectra from samples is generally
discouraged; autocorrelation techniques are preferred.
The Weiner-Khinchine relation in two dimensions

S (ξ, η) =
∑
x,y

R [x, y] e−j2πξxe−j2πηy = F {R [x, y]} .

(20)
expresses the power spectral density of a 2D random
process in terms of its autocorrelation function. The
power spectral density of a 2D stationary random pro-
cess S (ξ, η) is obtained by measuring its autocorrelation
function R [x, y], then taking the Fourier transform of
that.

Combining Equations 19 and 20 results in:

F {RD [x, y]} = 2σ2
N |H (ξ, η) |2 = 2σ2

NH (ξ, η)H∗ (ξ, η) .
(21)

or, equivalently:

F {RD [x, y]} = 2σ2
NF {h [x, y] ∗ h [−x,−y]} . (22)

Taking the inverse Fourier transform of Equation 22
yields

RD [x, y] = 2σ2
Nh [x, y] ∗ h [−x,−y] . (23)

The output autocorrelation is equal to the correlation of
the impulse response with itself, scaled by the Poisson
noise power at the input.

Since the impulse response h [i, j] has unit area, its
correlation with itself does also, and the summation of
Equation 23 results in:

∑

i,j

RD [i, j] = 2σ2
N . (24)
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Equation 24 is the key result, and should be used
to estimate �noise squared� in lieu of the traditionally
applied variance estimator

R̂D [0, 0] = 2̂σ2
N = D̂2 =

∑
i,j

D2 [i, j]

N
. (25)

which does not account for inter-pixel coupling.
Since (Equations 11 and 13) h [x, y] is non-negative

and even, no phase information is actually removed by
the magnitude operator and another expression for Equa-
tion 22 is:

F {RD [x, y]}
2σ2

N

= (F {h [x, y]})2 . (26)

Taking the square root of Equation 26 �rst (this can
also be done here since h [x, y] and H (ξ, η) are both non-
negative and even) and then taking the inverse Fourier
transform results in

F−1

{[F {RD [x, y]}
2σ2

N

] 1
2
}

= h [x, y] . (27)

This is a direct expression which may be used to obtain
the impulse response of inter-pixel capacitance from the
autocorrelation of the shot noise in a di�erence image.

The total power of the output power spectral density in
Equation 19 is the mean square output, and by Parseval's
relation, is:

D2 = RD [0, 0]

= 2σ2
N

∫ ∫
|H (ξ, η)|2 dηdξ

= 2σ2
N

∑

i,j

h2 [i, j] . (28)

Thus, the sum of the squares of the impulse response is
the attenuation of the white input noise variance caused
by the inter-pixel capacitance. From Equations 10, 11,
and 12, this is indeed attenuation � always less than one
if there is any coupling.

III. MEASUREMENT OF COUPLING
BY AUTOCORRELATION

Lifting the correlation out of the noise images takes
substantial averaging. For a uniform strength of µ
quanta, the variance of the incoming Poisson noise is µ
quanta squared. We assume here that µ is large enough
that a Gaussian approximation is appropriate. A di�er-
ence image will have a variance 2µ quanta squared of
noise, but zero mean. The variance of the product of any
uncorrelated pair x, y of these noise values is equal to:

E
[
(xy)2

]
= E

[
x2y2

]

= E
[
x2

]
E

[
y2

]

= 4µ2. (29)
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Figure 2: The autocorrelation of the 2d impulse response is
equal to the expected correlation coe�cients R. Neglecting
the tiny α2 terms results in nearest-neighbor correlation co-
e�cients of 2α, leaving 1− 8α in the center.

which is a variance (in quanta to the fourth power)
that is the square of the mean variance in the di�erence
image itself.

If the pair x, y is completely correlated, this variance
is doubled.

E
[
(x2)2

]− E2
[
x2

]
= E

[
x4

]− 4µ2

= 3E2
[
x2

]− 4µ2

= 8µ2. (30)

If accurately measured cross-correlation of some frac-
tion α of the photon noise is desired, we require that N
averages are performed such that the standard deviation
of the cross-correlation estimator is less than some small
fraction of the mean square pixel noise in a di�erence
image:

2µ√
N
¿ α2µ. (31)

Dropping the dependency on the signal strength and
rearranging yields:

N À 1
α2

. (32)

So, bringing a one percent correlation signal up to the
noise level requires averaging 10000 samples. Raising it a
factor of ten above the noise requires a million samples.

In most cases, only correlation to the immediate neigh-
bors needs to be considered � for small but signi�cant
amounts of inter-pixel coupling, the �second neighbor�
coupling may be considered e�ectively zero. It should be
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apparent from inspection of the autocorrelation if more
terms are required. Neglecting �second neighbor� and
�diagonal neighbor� coupling, the center node loses 4α of
its charge � 1α to each of its four nearest neighbors �
so the impulse response is approximated by

h [i, j] = (1− 4α) δ [i, j]
+αδ [i + 1, j] + αδ [i− 1, j]
+αδ [i, j + 1] + αδ [i, j − 1] . (33)

and the resulting convolution is shown in Figure 2.
The center term of the convolution, R [0, 0] /2σ2

N =
h2 ≈ (1− 4α)2 ≈ 1− 8α, also expressed in Equation 28,
is the relative mean square output of the noise compared
to what would be measured without any inter-pixel cou-
pling � the factor by which conversion gain is in error
when inter-pixel capacitance is signi�cant. The approxi-
mation 1 − 8α holds for small amounts of coupling, and
illustrates the magnitude of error this e�ect can cause.
1% coupling to each of four neighbors can cause a 8%
error in estimated conversion factor.

Assuming most inter-pixel coupling is to these four
immediate neighbors, a simple algorithm for estimating
Poisson noise σ2

D in a scene, given D, the di�erence of
two acquisition instances of the scene, is

σ̂2
D =

1
2N


∑

i,j

D2 [i, j]

+2
∑

i,j

D [i, j]D [i + 1, j]

+2
∑

i,j

D [i, j] D [i, j + 1]


 . (34)

where N is the number of pixels. The second and third
terms in Equation 34 are doubled because the center pixel
has two horizontal and two vertical neighbors. The over-
all result is divided by 2N because the variance in the
di�erence image is twice the variance of the original im-
age. This estimator of Poisson noise may be used in the
�slope of noise variance versus signal� method of estimat-
ing conversion factor described by Mortara and Fowler5.

IV. MECHANISMS OF INTER-PIXEL
COUPLING

In our �rst paper4, we suggested the coupling was be-
tween the parallel faces of the indium bumps. This hy-
pothesis was incorrect. Analysis and simulation7 indi-
cated that coupling exists mainly through fringing �elds
between the edges of the pixel implants.

Two di�erent types of detector are considered here
which couple pixel-to-pixel with two di�erent �eld paths.

bump bump

metal grid

implant

indium
V1 V2

depletion

coupling

oxide

MULTIPLEXER (reduces coupling)

indium

oxide

bulk is

Eregion

implant

epoxyepoxy

contact
Vbias surface of detectorVbias

Figure 3: Some coupling in fully depleted detectors occurs in
the detector bulk. In silicon, this is enhanced by a relatively
high dielectric constant. The metal grid in the PIN detector
tested inhibited additional coupling underneath the detector.

The �rst is a hybridized silicon PIN array for visible imag-
ing � a detector with fully depleted bulk. The second is
a hybridized indium antimonide array for infrared imag-
ing, a �per-pixel� depleted detector.

The hybridized silicon PIN array, shown in Figure 3,
is somewhat unusual � with the detector bulk fully de-
pleted, electric �elds exist throughout. A metal grid,
deposited on thick oxide between the pixels, controls the
electrical state of the silicon gap between the pixel im-
plants. This voltage is biased to keep the inter-pixel gap
out of inversion and accumulation. The presence of this
grid also (unintentionally) prevents signi�cant inter-pixel
coupling in the space between the indium bumps � it
heavily in�uences the potential in this region where sig-
ni�cant coupling otherwise would occur. It must do this,
unfortunately, by increasing the nodal capacitance, and
thus reducing sensitivity.

A hybridized indium antimonide array, depicted in Fig-
ure 4 is a more typical detector. The bulk is doped op-
posite that of the implants, and each pixel maintains a
separate depletion region close to the pixel implant. The
bulk of the detector, however, is conductive. No electric
�eld, and therefore no inter-pixel capacitive coupling, can
exist in the detector bulk. There is no metal grid control-
ling the surface state in the gaps between pixels in the
illustration however (although some per-pixel depleted
arrays do have �eld control grids.)

The gaps between the pixels in a per-pixel depleted de-
tector are conductive, and should shield neighboring pix-
els from each other somewhat, but not completely. Since
the gap varies with pixel bias, this predicts that inter-
pixel coupling in per-pixel depleted devices is non-linear,
and that it decreases as the nodes collect photocarriers.

There is, of course, no reason necessitating undepleted
gaps between pixels; detector arrays fall in between these
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Figure 4: Coupling in a more typical per-pixel depleted detec-
tor occurs in the space between the readout and the detector.
Fully-biased detectors have a smaller gap between depletion
regions, and should exhibit non-linear interpixel coupling that
decreases as the pixels accumulate charge and the inter-pixel
gap widens.

-574 16196 23060 5123 521
9578 63021 253064 61183 12483
30770 258440 4044351 259273 30120
12989 59031 252469 64626 11585
-83 5127 21765 16001 468

Table I: Observed P-I-N noise correlation indicates a nearest
neighbor correlation of 6 percent of the central value, and thus
a 3 percent coupling, agreeing with other observations.

two extremes. Full depletion of these gaps does not create
a short between adjacent pixels � if it did, P-I-N devices
would not work. However, most CMOS detector arrays
cannot tolerate the deep depletion shown in Figure 3 and
CMOS depletion regions tend to be smaller and closer to
the implant9.

V. AUTOCORRELATION OBSERVED IN
P-I-N AND INSB ARRAYS

Table I shows a typical observed autocorrelation of ob-
served Poisson noise from many di�erence images taken
with a prototype silicon P-I-N array made by Raytheon.

These values were computed by analyzing the autocor-
relation in hundreds of patches taken from approximately
one hundred di�erence images. Autocorrelation of many
50 by 50 patches was computed as the sum of the prod-
uct of the pixels in the di�erence image divided by the
number of pixels in the patch. Patches were rejected if
they appeared to be tainted by a cosmic event. Typically,
several hundred to several thousand patches were used,

296 -441 -927 -1170 -242
-1186 1499 14341 2357 -482
-187 15236 476374 15200 145
-140 2609 14502 1173 -1015
-191 -1373 -1295 -296 734

Table II: Observed InSb noise correlation indicates 3 percent
correlation, or 1.5 percent coupling � a somewhat question-
able result.

each with 2500 samples (pixels), representing a sample
size on the order of a million, satisfying Equation 32.

The averaging strategy used in Table I resulted in a cal-
culated uncertainty of roughly 4000 units, as computed
from Equation 29. It can be seen that the outermost
values are indeed within 4000 of the expected zero cor-
relation, but the nearest neighbors, the nearest diagonal
neighbors, and even the second horizontal neighbors ex-
hibit mean correlations sums that are at least 5 to ten
standard deviations away from this expected zero. We
can quite con�dently assert that this observed noise is
not Poisson distributed.

The nearest-neighbor correlation is 255 thousand,
roughly 6.3 percent of the central value of 4.04 million.
This percentage is twice the coupling (see Figure 2) and
thus indicates coupling of α = 3.1 percent. This small
amount of coupling (i.e., the coupling capacitor is 3.1
percent of the nodal capacitor, as shown in Figure 1)
resulted in an initial overestimation of P-I-N conversion
factor by roughly 31 percent � a very large error �
large enough that the 8α approximation is not holding
very well.

We also note that, by Equation 13, left-neighbor and
right-neighbor correlation coe�cents should be identical
� as should the up and down neighbor coe�cients. The
slight di�erences seen in these data are the result of a
simple correlation algorithm e�ectively applied to only
slightly di�erent data sets. A more e�cient algorithm
would measure horizontal and vertical correlations once,
and use the same estimator for both directions of cou-
pling.

The correlation data in Table II were obtained from
similar tests performed on an InSb array at the Univer-
sity of Rochester's Near Infrared Astronomy Lab. Very
long wavelengths produced too strong of a signal to at-
tenuate read noise with Fowler sampling, so near-visible
wavelengths were used.

These data indicate a 1.5 percent coupling to adja-
cent pixels in the InSb arrays � a result that seems
high when compared to tests using hot pixels. (Hot pix-
els indicated only 0.5 percent coupling) Several e�ects
may have caused the discrepancy. First, a small amount
of photoconductive gain may have been present in this
(longer wavelength) device, resulting in additional corre-
lation. Second, the hot pixels were fully depleted, result-
ing in a larger inter-pixel gap. The autocorrelation tests
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Figure 5: For edge spread modeling, the projection of the pixel
is required. For vertical and horizontal projections, a square
pixel appears to be box shaped. A 45 degree projection yields
a triangular shape. At arbitrary angles, a square pixel has a
trapezoidal projection.

were performed with small amounts of signal, and the
nearly fully biased pixels had a smaller inter-pixel gap
that should have yielded more coupling. We conclude
that coupling is present, but we are yet uncertain of its
exact magnitude and/or dependence upon detector bias.

VI. EDGE SPREAD AND
INTER-PIXEL CAPACITANCE

In the silicon P-I-N arrays, inter-pixel coupling was
signi�cant enough to in�uence the observed edge spread.
The edge spread function, or ESF, is the integral of the
line spread function, or LSF � which itself is the convo-
lution of a line impulse with the point spread function,
or PSF. For circularly symmetrical PSF such as that pro-
duced by di�usion in an array of continuous pixels, the
Abel transform derives a unique LSF from the PSF8. P-
I-N devices should produce Gaussian PSF from di�usion,
and the Abel transform of Gaussian PSF yields Gaussian
LSF and an �error function� shaped edge spread.

Pixels are not circularly symmetrical and are typically
in a square grid. The overall response is more properly
characterized by a pixel response function (or PRF) that
may be directly obtained by spot-scanning10 techniques.
This PRF yields line spread (pixel projection) and result-
ing edge spread that varies with angle. Here, we assume
a square PRF. We use the variable u to represent dis-
tance from some central location along some projection
at an angle θ. At arbitrary angles, the projection of a
square pixel (shown in Figure 5) can be represented as
the convolution of a pair of rect (or �boxcar�) functions
� each of unit area but with a width proportional the
cosine or sine of the angle.

pixelθ (u) =
rect (usin(θ))

sin(θ)
∗ rect (ucos(θ))

cos(θ)
. (35)

At zero and 90 degrees, one of the rect functions has
zero width � it is an impulse function. At 45 degrees the
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line or edge
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line or edge

diagonal line or edge

arbitrary
line or edge

2D
response
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Figure 6: The center pixel and four nearest neighbors in the
inter-pixel response appear at di�erent relative positions as a
function of angle, but their intensities do not change. At zero,
45 and 90 degrees, some pixels coincide and their responses
add together.

EDGE DIFFUSION COLLECTION COUPLING

Figure 7: Expected edge spread is the convolution of the opti-
cal edge, the di�usion pro�le, the pixel collection pro�le, and
the interpixel capacitance pro�le.

rect functions are identical and a triangle shaped function
results.

The four nearest neighbor pixels contribute via inter-
pixel coupling, as shown in Figure 6, resulting in a 1D
projection of the 2D impulse response in Equation 33 at
angle θ:

ipcapθ (u) = α[δ (u + sin(θ)) + δ (u− sin(θ))
+δ (u + cos(θ)) + δ (u− cos(θ))]
+(1− 4α)δ(u). (36)

The expected edge spread is the convolution of the
di�used edge (an integrated Gaussian) with Equations
35 and 36, as illustrated in Figure 7.

ESFθ (u) = pixelθ (u) ∗ ipcapθ (u) ∗
u∫

−∞

Gaus (σb)
b

dσ.

(37)
We produced optically sharp edges at varying angles

on the P-I-N arrays4, and processing of many resulting
images repeatably produced the edge pro�le shown in
Figure 8. This particular edge was horizontal. Only
by including inter-pixel coupling in the model could we
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Figure 8: A closeup of observed and expected edge spread
compared with the best-�t Gaussian-only model. Inter-pixel
coupling correctly predicts the shape of the edge spread in
the pixel adjacent to the center of the edge.

Figure 9: A stochastically generated sine wave illustrates the
signal and noise at high spatial frequencies associated with
low photon �uxes.

�nd agreement between expected and actual results. The
best-�t edge from a model that only included Gaussian
carrier di�usion is included in the �gure for comparison.

Edge response at 45 degrees was also modeled, and a
slight di�erence between diagonal edges and vertical or
horizontal edges was expected. We were able to observe
these slight di�erences as well, but the results just verify
the 2D edge spread model and don't shed much addi-
tional illumination on interpixel capacitance � and thus
are not included here.

VII. INTER-PIXEL CAPACITANCE AND DQE

The true measure of a detector array's performance
is its detective quantum e�ciency, or DQE. DQE, the
squared SNR at the output of the array compared to the
squared SNR incident at the surface of the array, is a
power ratio. It tells how much power is necessary in an
imperfect detector to attain the SNR that a perfect de-
tector would get. Zero-frequency DQE may depend upon

other conditions, such as signal and background levels
and exposure time. We neglect background levels here
and just consider the additional DQE loss that occurs
at high spatial frequencies, as pioneered by Doerner,11
and built upon by Shaw12, Van Metter, Rabbani13,14,
Yao and Cunningham15, and others. Doerner general-
ized the de�nition of DQE for imaging application to in-
clude a spatial frequency dependence. Figure 9 shows a
stochastically generated two dimensional sine wave that
may help visualize the signal and noise at high spatial
frequencies. Stochastic scattering from di�usion reduces
DQE at high spatial frequencies, and in an otherwise per-
fect detector, DQE is reduced by the square of T (ξ), the
scattering MTF13,14:

DQE (ξ) = |T (ξ) |2. (38)

In fully depleted arrays such as the Si PIN device
shown in Figure 3, stochastic scattering leads to a Gaus-
sian scattering MTF. In detectors with �per-pixel� de-
pletion regions as shown in Figure 4, such as the InSb
devices, the MTF is approximately16,17:

T (ξ) =
2e−2πξ

1 + e−4πξ
. (39)

where ξ is the spatial frequency in cycles per detector
thickness. (Thinner detectors have better MTF.)

Inter-pixel capacitance, like scattering, also reduces
MTF. This response is easily derived from the inter-pixel
coupling impulse response given in Equation 33 and the
shifting property of the Fourier transform, yielding:

T (ξ, η) = (1− 2α + 2α cos (2πξ))
· (1− 2α + 2α cos (2πη)) . (40)

for small α. In Equation 40, ξ and η are spatial frequency
in cycles per pixel � the minimumMTF is at the Nyquist
frequency of one cycle per two pixels.

It is very easy to mistakenly attribute the e�ects of
inter-pixel capacitive coupling to di�usion. Inter-pixel
capacitance is a deterministic scattering mechanism how-
ever, and attenuates photon noise and signal iden-
tically at all spatial frequencies. Di�usion would
cause some of the carriers shown in Figure 9 to wander
to neighboring pixels, and information about their origin
would become more uncertain. Inter-pixel coupling does
not cause such a loss of information. Thus, inter-pixel
capacitance has no e�ect upon device DQE, and its ef-
fect should be distinguished from di�usion MTF for the
purpose of accurately evaluating expected DQE(ξ, η) for
an array.

The inter-pixel capacitive e�ect can cause errors in the
measurement of DQE, as it reduces the observed Poisson
noise and causes DQE to be overestimated the same way
RQE is overestimated. DQE is commonly measured by
illuminating an array with a known photon �ux (thus
a known input SNR) and measuring the SNR observed
at the array output. Since the observed noise is atten-
uated by interpixel coupling but the observed signal is
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una�ected, such measurements can inexplicably indicate
DQE exceeding 100 percent.

A. Assumptions and Simpli�cations used here

This analysis has used several simpli�cations, but none
that seem signi�cant. First, pixels are frequently non-
linear � the capacitance changes with voltage. This non-
linearity can be ignored if the stochastic signal considered
(the Poisson noise) is small compared to the well depth
of the pixel. Pixel non-linearity can also cause signi�cant
error in measurement of conversion factor.18

There are also slight variations in nodal capacitance
that were ignored here. There is strong evidence that
inter-pixel capacitive coupling is not symmetrical around
defective (�hot�) pixels in InSb arrays. Normal pixels
are likely have slight variations as well, but the average
coupling must be symmetrical. Should a complete map
of pixel capacitance, including coupling, be desired, it
should be obtainable from a very large number of noise
images � as given by Equation 32.

Our pixel response model has assumed that di�usion
of is independent of pixel implant geometry. There are
cases when this is not a good assumption, but it seems
to be appropriate in devices such as the PIN array where
the gap between pixels is fully depleted.

We have also assumed that photon arrival, carrier dif-
fusion and capture are uncorrelated. Known correla-
tion mechanisms in photon arrival (such as Bose-Einstein
or Hanbury-Brown-Twiss) and di�usion (such as carrier-
carrier interaction) seem unlikely to be signi�cant here
at visible or near infrared wavelengths. If any stochastic

gain is present in the detector however, the carriers pro-
duced by a single arrival can create correlation in neigh-
boring pixels if they di�use to di�erent pixels.

VIII. CONCLUSION

In certain kinds of detector arrays, notably P-I-N and
other fully-depleted devices, inter-pixel capacitive cou-
pling can attenuate Poisson noise and cause conversion
factor to be overestimated. Measuring the energy in the
central autocorrelation terms is an e�ective and simple
technique that can characterize and compensate for this
e�ect. Inter-pixel coupling has been observed in both hy-
bridized silicon P-I-N and hybridized inidium antimonide
arrays. The error in silicon P-I-N arrays was an overesti-
mation of roughly 30 percent. It has been shown to yield
more accurate modeling in P-I-N edge spread analysis.
Inter-pixel coupling is a deterministic scattering mecha-
nism, and does not reduce device DQE� whereas carrier
di�usion does. As detector arrays become more sensitive,
it is expected that the e�ects of inter-pixel capacitance
will become more signi�cant.
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